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EXPONENTIAL FAMILY MIXTURE MODELS
(WITH LEAST-SQUARES ESTIMATORS)!

BY BRUCE G. LINDSAY

The Pennsylvania State University

For an arbitrary one parameter exponential family density it is shown
how to construct a mixing distribution (prior) on the parameter in such a way
that the resulting mixture distribution is a two (or more) parameter exponen-
tial family. Reweighted infinitely divisible distributions are shown to be the
parametric mixing distributions for which this occurs. As an illustration
conditions are given under which a parametric mixture of negative exponen-
tials is in the exponential family. Properties of the posterior are given,
including linearity of the posterior mean in the natural parameter. For the
discrete case a class of simply-computed yet fully-efficient least-squares esti-
mators is given. A Poisson example is used to demonstrate the strengths and
weaknesses of the approach.

1. Introduction. The problem is this: suppose one is given an exponential
family of densities for random variable X which have the form
(1.1) f(x; 1) = e™ k™, req,
with respect to an arbitrary sigma-finite measure p on the real line. How can one
then create a parametric family of mixing distributions (or equivalently, priors)
on 7 so that the resulting mixture density (the marginal for X) is still of
exponential form? That is, we seek a parametric family Q(+; a, B) of distributions
on the natural parameter space Q such that for some functions #(x) and k(«, B)
one has

(1.2) f(x; e, B) =defff(x; 1) dQ(r; a, B) = e +BUR kB,

The solution to this problem is given in Theorem 2.1; the eligible class of
functions #(+) are simply cumulant generating functions for infinitely divisible
distributions. Section 2 of this paper provides a description of this class.

The posterior distributions corresponding to the priors of this paper will be
shown to be the exponential family tilts of the corresponding infinitely-divisible
distribution, where the exponential family tilt of the distribution F(x) is the
parametric family of distributions defined by

Ox

dFy(x) = ] dF(x).

e
e®* dF(x)
Although the main thrust of this paper is to develop some understanding of
the structure given to the mixture problem by (1.2), attention will also be given
to modelling and estimation in Sections 3 and 4. In particular, weighted least-
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squares estimators of the parameters (a, 8) in (1.2) will be given, together with a
proof of their full efficiency in finite discrete models. Falling outside the domain
of this paper are densities f(x; 6, 7) involving other “unmixed” parameters 6.
Lindsay (1985) demonstrates that the method of construction of this paper can be
useful in such models.

Before proceeding to the solution, let us consider its ramifications, for which
some background and context is essential. Mixture densities of the form
[f(x; ) dQ() arise in a number of important settings. For example, suppose that
for i = 1 to n each random variable X, is an independent observation from a
stratum i which has an associated parameter ;, but since the strata are sampled
from a population of strata, the 7, are themselves random variables from a
distribution @. In the usual normal linear models theory, this generates the
one-way random-effects model, with @ generally being restricted to being normal
itself. Another way the mixture model arises is as a natural model for overdisper-
sion (‘“heavy-tails”) relative to the basic density f(x; 7). This is perhaps most
dramatically evidenced by the convex shape, as a function of x, of the logarithm
of the ratio of the mixed density [fd@ to the basic density f, a property which
will be utilized later in the paper. See Shaked (1980) and Schweder (1982) for
further results regarding the relative dispersion of mixtures.

One motivation for considering new methods for generating mixing/prior
distributions is the often awkward nature of the marginal distributions for X
when the standard conjugate family is used. Although conjugate families have
many attractive features in the Bayesian mode of inference [cf. Diaconis and
Ylvisaker (1979)] even there it seems extremely limiting to have just one practical
family of priors. Dalal and Hall (1983) consider discrete mixtures of conjugates as
a method of increasing flexibility. Although the methods introduced here might
also be useful in this regard, their main virtues are necessarily frequentist. From
the Bayesian perspective perhaps the most interesting development is that this
theory yields a class of priors for which the posterior mean of the natural
parameter 7 is linear in the prior’s parameters [see (1.4)]. Another useful feature
is that the posterior distributions are generally quite simple.

Consider the possible advantages of an exponential family mixture model in a
frequentist setting. Suppose that one has a distribution @ so that (1.2) holds.
Observe that B = 0 corresponds to the original unmixed model, with a = 7. It
will be seen in the construction of @ that 8 > 0 will correspond to the presence of
mixing, while B8 < 0 represents “underdispersion” relative to the basic model.
Thus there will exist a uniformly-most-powerful unbiased test for the presence of
the random effect (8 > 0) against the null hypothesis of no effect (8 = 0) based
on the conditional distribution of #(X) given X = x, or, with a random sample,
Tt X;) given X, = x.

A second advantage to this family of mixing densities is that when there is a
choice of the function #(x) via selection of @, there is flexibility in the choice of
the mixed model. (It will be shown that the range of choices for #(+) are limited
by an integrability constraint.) Furthermore, since the mixing effect shows up in
the value of an observable, #(x), simple graphical techniques can be useful both in
the choice of #(x) and considering the overall validity of the mixture model.
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To confirm this last point, note that
log[ f(x; @, B)/f(x,7)] = @ + (a - 7)x + Bt(x)

for a = —k(a, B) + k(7). Suppose the x-sample space is discrete. Denote by
n(x) the number of observations of x in a random sample of size n and by # the
maximum likelihood estimator of 7 in the basic density (1.1). Let p(x) = n(x)/n.
Then

(1.3) r(x) =4log[ p(x)/f(x;7)] > as.a+bx+ct(x) asn— oo,

for parametrically determined values a, b, c. For a sufficiently large sample size a
graph of (x, r(x)) is thus diagnostic for the form of #(*). (A Poisson example will
be given in Section 3.) In (1.3) we have used the maximum likelihood estimator of
7 to standardize r(x) as the graph then indicates departures in fit from the
no-mixing model, with r(x) near zero indicating a good fit at value x. In this
regard note that 2Xr(x)n(x)/n is the likelihood ratio goodness-of-fit statistic for
testing the adequacy of the basic model containing no-mixing against an arbi-
trary multinomial alternative. More generally, with adequate data in a continu-
ous model one possibility is to group the sample space into intervals, as in the
chi-square goodness-of-fit test, and use a suitably redefined version of (x, r(x))
for diagnostics for the form of #(x) and the validity of the mixture model.

Along this line, note that (1.3) suggests estimation of parameters by least
squares. In Section 4 it is shown that fully efficient estimators can be so derived
in discrete models.

A third useful feature of this class is the linearity of the posterior mean of the
natural parameter. Lindsay (1985) has given a class of mixture problems where
the linearity of the posterior mean yields a direct solution to an optimality
problem. The linearity of the posterior mean and the form of the posterior
variance follow from these easily derived relationships valid for exponential
family mixtures:

D,log [#(x; 7) dQ(r) = E[r]x],
D,flogff(x; ) dQ(7) = Var[ r|x].

These show that for density (1.2)
E[7x] = a + Bt'(x),
Var[7|x] = Bt"(x).

(1.4)

(1.5)

In contrast with (1.5) under the conjugate prior it is the posterior mean of the
mean value parameter 2'(7) = E_[x] which is linear in the data x [see Diaconis
and Ylvisaker (1979)].

Despite their virtues the methods of mixture modelling discussed herein are
not statistical panaceas. For a start, numerical integration or summation will
typically be necessary for maximum likelihood estimation. A second difficulty is
that in a more complex model involving several parameters one cannot turn the
sampling variation of one parameter 7 into a “random effect” of the form
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considered here unless the model fits rather narrow structural constraints. Thirdly,
the eligible class of mixing distributions will generally change with the sample
size n of each stratum. Finally, the priors are unconventional. Indeed, the most
important aspect of the proposed models may not be their practicality but the
insight gained by turning the presence of mixing into an observable phenomenon
through the statistics #(x). '

2. The reweighted infinitely divisible densities. In this section the basic
relationships between infinitely-divisible distributions and exponential family
mixture models are established. First let B; be a family of infinitely divisible
distributions, with 8 a positive-valued parameter defined by the moment gener-
ating function (m.g.f.) relationship

(2.1) / e™ dPy(1) = eft®),

Note that #(0) = 0. We assume #(x) is finite on the sample space of X. Important
examples of this relationship are given by

Distribution t(x)
Normal (0, 8) x2/2
Poisson (B) exp(x) — 1
Gamma (8,1) —log(1 — x)

For k() defined from (1.1) by k() = logfexp(7x) du(x), we define the k-
reweighted distributions Py by the relationship

(2:2) dPi(7) = c(B)e*™ dPy(r),

where c(+) is the necessary standardizing function; we assume, of course, that the
defining integral is finite, else the distribution is not defined. The following
theorem establishes the main result.

THEOREM 2.1. If dP} is defined as in (2.2), then
(2.3) /efx—k(r) dpﬂ*(,‘.) = ¢(B)ehi®),

Conversely, suppose (2.3) holds for some function t(+) on a set of x-values which
has a point of accumulation and which includes 0, on an interval of B-values
with left endpoint 0. Then (2.2) holds for a family of infinitely divisible distribu-
tions with logm.g.f. B(t(x) — #0)).

PROOF. Integrating the left side of (2.2) gives (2.3) directly. For the converse,
we define from P;* a family of probability measures
dBy() = d(B)e™*™ dPy(r),

where d() is the standardizing constant. Note that we are just standardizing by
the inverse of the value of the density (2.3) at x = 0. Hence (2.3) may be
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rewritten as
(2.4) [e dBy(r) = eft=tO,

If this relationship holds for a set of x-values with a point of accumulation, then
the right-hand side of (2.4) completely determines the distribution P It follows
that the distribution of P is the n-fold convolution of the dlstrlbutlon PB -
Hence I}, is infinitely d1v1s1ble and B(#(x) — t(0)) is the logm.g.f. for it. O

In the next proposition the families of infinitely divisible distributions are
extended by several parameters.

ProPoOSITION 2.2. (a) Suppose that Bt(x) is the logm.gf. of an infinitely
divisible family of probability distributions Py. Then

t*(x) = ax + B[t(ox + 0) — t(6)]

is also the logm.gf. for a family P} of infinitely divisible distributions, for
arbitrary choice of real parameters a, o, and 6, subject to t(0) < co. If the
support of By is contained in a half infinite interval, then By has support shifted
to the right by a.

(o) If Bity(x),...,Buti(x) are each the logm.gf. for a family of infinitely
divisible distributions, then so is B,t,(x) + - -+ + Bit(x).

Proor. First, we construct by exponential family tilt the density

(2.5) dPB; 4(7) = c(8, 0)e’" dPy(7) = ef7—BH(®) dPy().
This distribution has the m.g.f. in x:
(2.6) ePHx+0)—K(8)

If Y has this m.g.f., then 6Y + a has the logm.g.f. ¢*(x) specified in the lemma,
part (a).

Part (b) simply indicates the closure of infinitely divislbe distributions under
convolutions. O

In Table 1 Proposition 2.2(a) is used to generate several classes of functions
t(*). Using part (b) one can create multiparameter exponential family mixture
models. In regard to computing the posterior distributions on 7, notice that the
joint density of (7, x) is proportional to

e'rx—k(r)ek(r) df’g(?’)

so that for each B the family of distributions in parameter x is the exponential
family tilt of the distribution Fj. If ¢4(s) is the moment generating function for
dP;, then the m.g.f. for the posterior given x is ¢(s + x)/¢dp(x). Since the prior
is the expectation of the posterior over the marginal distribution of X, the priors
corresponding to the families in Table 1 are mixtures of normals, Poissons, and
gammas, respectively.
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TABLE 1
Three important infinitely divisible distributions and the corresponding mixture structure

Parameter
Infinitely space Q
divisible must Posterior  Posterior
distribution t(x) contain Posterior Mean Variance
N(a, 62) ax + o2x2/2 (—0,0) N(a+ oix,0?) a+ o’x o?
a + oY where ax + B(e”* - 1) oR*+ « a+dY a + ofe’*  o2Be’*
Y ~ Po(B) Y ~ Po(Be’)
. oB B
a + oY where ax + Blog—— R "+ «a a+ oY a+
(A —ox) A —ox ()\—ax)2
Y~G(B,N) (ox < A) Y~ G(B,A—ox)
and
c=+1

Since all infinitely divisible distributions are the weak-convergence limits of
convolutions of generalized Poisson distributions one might consider

(2.7) Hx) = ax + ) B;(e”* — 1)

to be a general format for the class of models. This is correct when the X-sample
space is bounded. However, the constraint that [exp(#(x))du(x) < oo otherwise
provides some (possibly severe) limitations. Indeed, on an infinite sample space
the possibility of generating an exponential family that models overdispersion
may be considerably reduced by the integrability constraint. The following
proposition, a direct application of Fubini’s Theorem, gives us an alternative test
for the eligibility of families { P;}.

ProposITION 2.3.

/eﬁt(x)d”(x) < o if and only if fek") dPy(7) < 0.

ExaMpPLEs. From Proposition 2.3 for the normal (6,1) distribution one has
the requirement on F; that

/exp('r2/2) dPy(7) < 0.

From this it is clear that the tails of dPy(7) must decline faster than exp(—12/2),
and so no generalized Poisson will have a convergent integral. We note, however,
that in some problems a truncation of the sample space may not be unreasonable,
in which case there is no difficulty with convergence for the corresponding
truncated exponential family. .

For the negative exponential density, Texp(—7x), Proposition 2.3 yields the
requirement that [77'dPy(7) < co. Since this will hold whenever there is no
support at 0, correspondingly there is a rich class of exponential class mixture
models, with an interesting contrast to the arbitrary mixture density.
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PRrROPOSITION 2.4. Let f(x;7)=7e™™ for x 20, 7> 0. Then if f(x) is a
density on x > 0, we have

(a) f(x) is a mixture of f(x,7) densities if and only if f(x) is completely
monotone.

(b) If f(x) = e(B)exp(— By (x)) for B > 0 is a mixture of f(x; 7) densities with
f(0) < oo then Y'(x) = D [—log f(x)] (the posterior mean of 7) is completely
monotone.

(c) Conversely, if Yy(x) has a completely monotone derivative ' on (0, o),
then there exists an exponential mixture density

f(x; @, B) = c(a, B)exp(—ax — By(x)) = [f(x; 7) dP (1)
fora>0,8=>0.

Proor. (a) Feller (1971), page 464, # 11.
(b) Follows from Feller (1971), page 450, Theorem 1. O

3. Exploratory analysis. As mentioned in Section 1, the form of the
exponential family model suggests that an exploration of the mixture structure of
a data set might potentially be conducted by analysis of the logarithmic residuals

r(x) = log[ p(x)/f(x; #)].
In this section a data set is used to verify this idea, with emphasis on two
attributes: (a) a graphical analysis illustrates important aspects of structure and
(2) the problem of finding an appropriate mixture model is similar to that of
finding an appropriate higher order term in a regression model. The example will
also serve to illustrate several potential limitations on this simple approach which
arise from the unbounded nature of the sample space.

10 #I
L Log residuals 7 #2
and w4 .
8l fitted models ///;/ Neg. Bin.

| ] 1 1 | | 1l
0 | 2 3 4 5 6 7x

Fi1G. 1. Graph of logarithmic residuals r(x) and three fitted models discussed in text.
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TABLE 2
Observed and estimated counts of the number of accidents
for 9461 drivers

Observed Negative
X count nf, nf, binomial
0 7840 7846.81 7852.20 7846.93
1 1317 1298.18 1265.93 1288.48
2 239 238.60 259.42 256.52
3 42 54.44 62.41 54.05
4 14 15.12 15.88 11.70
5 4 4.90 3.97 2.58
6 4 1.77 0.95 0.57
7 1 0.69 0.21 0.13
8 + 0 0.47 0.05 0.04

9461

A graphical presentation of the number of accidents in a year of driving by
9461 drivers in Belgium is given in Figure 1. The data appears in Table 2. The
data was given by Thyrion (1961) and given further analysis by Seal (1971),
Simar (1976), and Lambert and Tierney (1984). Assuming the number of acci-
dents in a homogeneous population is Poisson, there is good reason to model the
observed distribution as a mixture of Poissons. In Figure 1 the residuals r(x) are
plotted against x, revealing the convex shape characteristic of a mixed distribu-
tion [see (1.4)]. Also plotted on Figure 1 is the maximum likelihood fit of r(x) by
the negative binomial density, which is the mixture model arising from the
conjugate mixing distribution. One can see that it appears to inadequately
describe the tail behavior of the empirical density p(x).

The convergence criterion of Proposition 2.3 for the Poisson f with mean A
and natural parameter 7 = log A is

(3.1) fee’ dPy(r) < .

This converges for every dPy(t) of the generalized Poisson form a — oX for
which o is positive and X is Poisson (8). This implies that there exist exponen-
tial family mixture densities of the form

(3.2) log f(x; a,B) = ax + B&°* — k(a, B) — log x!

for o positive. :

The shape of the r(x) graph suggests a reasonable fit could be obtained from a
function #(x) with decreasing second derivative and so class (3.2) seems prom-
ising. Figure 1 also shows the fit of exponéntial family Poisson mixtures for two
choices of o in (3.2)

#1: log f(x) =ax + Bexp(—0.25x) — k(a, B) — logx!,
#2: log fy(x) = ax + Bexp(—0.50x) — k(a, B) — log x!.
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(The choice of o is a delicate issue which will be discussed in a remark at the end
of this section.) From the parameter estimates (a, 8) for the two exponential
models one can directly compute estimates of the posterior mean E[log u|x] and
variance V(log p|x) via (1.4).

The parameter estimates used to fit these exponential models were obtained
by minimizing over (a, 8, k) the weighted sum of squares

(3.3) Y p(x)(r(x) — ax — Bt(x) + k)°.

One nice feature of these estimators is that—unlike maximum likelihood estima-
tion—one does not need to compute the summation constant k(a, 8); one can
estimate it and thereby eliminate the need for iterative methods. What is
surprising is that in a discrete problem with finite support these estimates are
fully efficient. This is shown in the next section. Of course, the term k(&, ) must
be computed terminally in order to correctly standardize the fitted density.

For comparison purposes Pearson’s chi-square goodness-of-fit statistic for these
models was computed by grouping all data from 5 on. The values for f,, f,, and
the negative binomial were 3.38, 13.50, and 14.69, respectively. Even allowing a
degree of freedom for the selection of o, the density f, is a superior fit.

Of course, this Poisson example does not have a finite sample space, and the
use of the least-squares method here illustrates some limitations in this approach.
Since the value of magnitude factor k(a, B8) is estimated, it is primarily the shape
of the density being fit. There is no penalty for a poor fit in regions where
p(x) = 0. In the example, p(x) =0 for x > 8, and in particular, if one used
model (3.2) with ¢ = —0.10, then the solution is inadequate. It gives a bimodal
density with the larger mode lying beyond the range of the data.

Information about the appropriateness of the least-squares fit can be obtained
by evaluating A = k(&, B) — k. This is the shift on the logarithmic scale between
the least-squares fit and the correctly standardized fit for each x. Since it will be
shown in Proposition 4.4 that A is also the Kullback-Leibler information
distance between the empirical density and the restandardized fit, it follows that
if A is small, the observed data are sure to be close to the model. In this regard
Proposition 4.4 implies that 2nA would be the likelihood ratio goodness-of-fit
statistic against the general multinomial alternative except that the least-squares
estimators of (a, B) are substituted for the maximum likelihood estimators. Since
2nA is therefore greater than the likelihood ratio statistic, it provides a conserva-
tive test of the fit of the model. In the above models #1 and #2 the differences A
were quite small, being 0.0003 and 0.0009, respectively. The shift in log fit is
negligible on the scale of Figure 1.

REMARK. When o is treated as a free parameter, as was done implicitly
above, the resulting family of distributions is no longer exponential family and
the method of least squares becomes a nonlinear problem in the parameter o. The
method of least squares could still be applied to choose &, but in the given
example the unbounded sample space makes this fail, as the solutions falls in the
range where least squares gives a poor solution. Thus if the statistical user were



EXPONENTIAL FAMILY MIXTURE MODELS 133

to need more than the above results, a more precise maximum likelihood solution
is called for. We do note, however, what has been gained by the exploratory
analysis: an idea of the data structure along with a good set of initial parameter
estimates.

4. Least-squares estimators. In this section it is shown that certain least-
squares estimators are fully efficient estimators for finite discrete exponential
families. Two theorems are given; in the first, the standardizing constant for the
density must be computed, in the other it is estimated. Conceptually, the first is
more attractive, as it forces the correctly standardized density to lie near the
empirical density; but the second least-squares estimator can be computed
directly by ordinary weighted regression, and when the model fits the data well
the standardization seems to be well estimated, as was seen above.

This section is not meant to be a complete study of the properties of
least-squares estimators for discrete exponential families; indeed the theorems
herein raise further questions which will be addressed elsewhere. The preliminary
results are offered here merely to indicate that the exponential family models
being considered are not as computationally unattractive as one might have
supposed.

THEOREM 4.1. Suppose that 8 = (6,,...,8,), t(x) = (t(x),..., t(x)), and
that

fo(x) = exp(6 - t(x) — £(8))h(x)

is a discrete exponential family density with respect to counting measure on a
finite support set {x,,...,x,} on which the functions 1, t)(x),...,t,(x) are
linearly independent. Then the vector § which minimizes

R(8) = ¥.p(x){log[ p(x)/h(x)] — 8+ t(x) + k(8)}”

is an asymptotically efficient estimator of 6.

Proor. This is an element of a type of estimating equation considered by
Rao (1961). Define the probability estimates for each x by p(x) = n(x)/n. Then
the estimating equation is of the form

Zi)(x)(log p(x) — log fo(x))( fo/fg) = 0.

It is easily shown to satisfy Lemma 3 of Rao, and hence is first-order efficient.
(Rao’s lemma is for univariate 8, but is easily extended.) O

REMARK. We note that for n = 1, the solution is the maximum likelihood
estimator. Moreover, one can apply the results of Rao concerning second-order
efficiency to show that this estimator of § has the same second-order efficiency as
the minimum chi-square estimator and the minimum Kullback-Leibler distance
estimator.
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THEOREM 4.2. Under the same conditions as Theorem 4.1 the component 0
of the vector (0, k) which minimizes

R*(8, k) = L p(x){log[ p(x)/h(x)] = 8- t(x) + &}’
is an asymptotically efficient estimator of 0.

Proor. Although this could again be proved using Rao [see Remark (1)
below], a direct proof offers some insight. Consider univariate 8. The solution in 8
to the weighted least-squares problem may be obtained by first regressing out the
constant term. For univariate 6 this gives

Zp(x){log(p(x)/h(x))}(t(x) — F)
Lp(x)(H(x) - t)°
where ¢ = L p(x)t(x). Moreover,
VnZp(x){log p(x) — log fo(x)}(#(x) - )
Lh(x)(#(x) - &)’ '

As n — oo, the denominator converges in probability to Var 7. If we view the
numerator of § — 6, as a function of p, say g(p) and use the delta method to find
its limiting distribution about p = f, , we obtain the result. O

9:

’

‘/’_{(é - 00) =

By the delta method, k(#) is a fully efficient estimator of k(6). The following
corollary shows that the least-squares estimator & is also.

COROLLARY 4.3. The least-squares estimator k of the standardizing constant
k(0,) is asymptotically efficient.

Proor. We write
k= —Y p(x)logl p(x)/h(x)] + b¢
and so
k—ko=(8-6,)f— X p(x)(log p(x) — log fy(x)).

The second term has, when multiplied by —2n, an asymptotic x2(s — 1) distri-
bution, hence

\/Z(ie — ko) =Vn(6- 0,)% +0,(1),
which implies the limiting distribution N(0, E?(T)/Var(T)), thus achieving the

required lower bound for the variance of an estimator of k. O

We define the Kullback-Leibler information distance K(p, f) between two
discrete densities by

K(p, f)=Yp(x)og[p(x)/f(x)].
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The following proposition establishes some structural properties of the weighted
least-squares solution with regard to this distance.

PROPOSITION 4.4. (i) The least-squares estimators (&, B, k) satisfy

k< log{ y h(x)e&x+ﬁt<x>} < k(& B).
p(x)>0
(ii) The Kullback-Leibler information distance between p(x) = n(x)/n and
the densztyf f(x; &, ,B) is

K(i’1 f) =k(&’/§) —i@

PROOF. Let k*(& B) be the middle term in the above inequalities. We have
from the least-squares equations (with intercept) that the weighted residuals sum
to zero:

(4.1) 2 p(x)[log p(x) — log f(x)] =0,

where f(x) is the fitted value using k. However, the information inequality for
probability mass functions implies

(42) Lp(x)[log p(x) — log f*(x)] = 0,

where f*(x) is any probability mass function with support inclusive of that of
p(x). In particular, f*(x) = exp(k — k*(&, B)f(x) is a density on the range
{x: p(x) > 0} Using f* in (4.2), together with (4.1), gives result (i) of the lemma.
Use f = exp(k — k(&, B))f(x) on the full range to get (ii). O

REMARKS. (1) One can generalize Theorem 4.2 to considering the problem of
estimating 6 in fy(x) = g,(x)exp(—k(8)), where g,(x) is some positive function
of § and x and exp(k(6)) = L, g,(x). Then the problem

min 335(x)(log p(x) + & — log gy(x))’
becomes after minimization over k
. n n A A A 2
min 3 p(x)(log p(x) — log g5(x) — Lp(y)log p(¥) + Lp(»)log gs( 7))

Again, using an adapted version of Rao’s Lemma 3, one can demonstrate full first
order efficiency for this functional of p.

(2) Although weighted least-squares estimators have been used in various
guises in the statistical literature for discrete data analysis [e.g., Grizzle, Starmer,
and Koch (1969)] to the author’s knowledge this is the first explicit recognition
that the standardizing constant can be treated as an unknown intercept. Its use
seems to be implicitly advocated in Gabriel and Zamir (1979).

(3) A small computer experiment substantiated that the least-squares estima-
tors can have reasonable efficacy in small samples. Samples of size 10 and 20
were taken from the binomial (2,0.75) distribution. Expected counts of (0,1,2)
were therefore (0.625,3.75,5.625) and (1.25,7.5,11.25), respectively. Since the
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maximum likelihood estimator of 8: = log(p/1 — p) is infinite on points of the
sample space, and the least-squares estimator is undefined on some points we
cannot precisely define mean square error here. However, in 362 Monte Carlo
repetitions of the sample size 10 experiment (the trials terminated at the first
“bad” sample) the sample mean square error of the m.l.e. was 0.292 and the mean
square error of the least-squares estimator was 0.338. Note that the asymptotic
variance for this problem is 0.266. In the second Monte Carlo experiment, after
1150 iterations the same mean square errors were 0.139 and 0.130 for the m.l.e.
and least-squares estimators, respectively (cf. asymptotic variance 0.133).

5. Concluding remarks. Some useful comparisons can be made between the
mixture dispersion models of this paper and the dispersion models used in the
generalized linear models of McCullagh and Nelder (1983). In the univariate-x
case the quasi-likelihood methods that they develop are exactly maximum
likelihood methods when the underlying density has the form (McCullagh, 1983)

(5.1) f(x; 6,02) = h(x)exp(o~2(6x — b(8)) — c(0?, x)).

Here o2 represents a dispersion parameter, and for comparison purposes think of
o2 = 1 as being the basic exponential family model. The practical advantages of
this structure are extremely important: the mean of X and indeed the likelihood
equations in the #-parameter do not involve o2, so regression modelling in the
mean value of X is straightforward. Moreover, since (as will be shown) ¢? is
effectively a sample size parameter, the model easily accommodates observations
which are themselves means of varying sample sizes. The exponential families
discussed earlier in this paper do not in general have these nice modelling
properties, being directly applicable only to a random sample from one popula-
tion.

On the other hand, the model given by (5.1) is only a single possible represen-
tation of dispersion. In fact it is one generated by convolutions rather than
mixtures, as we now demonstrate.

The moment generating function for (5.1) in variable s is

(5.2) o(s) = e° "B+ —b(O)

For (5.2) to be a moment generating function for all 62 > 0 implies that it is
infinitely divisible; it is in fact [as can be seen from (2.6)] the exponential family
tilt in @ of an infinitely divisible distribution with convolution parameter 8 = o~ 2.

Thus one cannot in general create a model of the form (5.1) to represent
dispersion about a baseline exponential model. However, (5.2) will represent a
true moment generating function for all positive integer values of o~2; these are
just the convolutions of the baseline density. Thus one could interpret ¢~ 2 in
(5.1) as being the unknown sample size of the sample from which the observation,

the sample mean X, was taken.
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