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I wish to thank Professor Dawid for providing such a thought-provoking
paper to discuss. He has raised an interesting question in his paper, namely,
“Do objective probabilities for events exist, relative to a given information
base?” Professor Dawid suggests that the answer is yes, while this discussant
believes that the answer is no.

1. Existence. Professor Dawid’s main Theorems 7.1 and 9.1 prove the
asymptotic closeness of computably calibrated computable forecasts. Their ex-
istence for any given forecasting problem is an open question. The purpose of this
section is to cast doubt on their existence.

Whether or not there exists a single sequence of computably calibrated
computable forecasts depends on exactly which sequence a actually occurs.
Schervish (1985) has shown that there are uncountably many sequences a such
that not a single computably calibrated computable forecasting system exists.
That is, there are as many noncalibrable sequences as there are calibrable ones.
The claim, which Professor Dawid makes, that the noncalibrable sequences are
sparse in an intuitive sense, is an understandable outgrowth of the fact that, as
statisticians, we view the world through the rose-colored glasses of computable
forecasting systems. Hence, we see only calibrable sequences (with probability 1).
But Nature is not (to my knowledge) hampered by the same computability
restrictions as statisticians are. It follows, then, from the cardinality argument
above that the most positive answer we can give to the question of the existence
of objective probabilities is “Maybe they exist, maybe not.” In Section 2 we will
show that even such a weak positive answer is unwarranted.

Even if the sequence a is noncalibrable, there is no cause for alarm in the
forecasting community. It may very well be the case that, for many forecasters,
the majority of forecasts in any finite initial segment are still quite good. That is,
most forecasts may still be close to the indicators of the forecast events.

2. Probabilities of events. Suppose that the sequence a which will occur
will be calibrable. (Please, do not ask how we might know this.) What then are
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the objective probabilities for the events being forecast? The answer ought to be
“Whatever forecasts are given by a calibrated forecaster.” Unfortunately, there
will be infinitely many such forecasters and they will disagree on every forecast!
At first, this would seem to conflict with Professor Dawid’s Theorems, but the
following example will clarify matters.

EXAMPLE 2.1. Suppose Nature is providing a collective {a;} with proportion
of 1s equal to 0.2. Consider the following set of computable forecast sequences
denoted C;. (Note that i indexes the forecasting system and ; indexes the
sequence of forecasts for each system.) C;; equals 0.8 for j < i and equals 0.2 for
J > t. It is clear that according to Professor Dawid’s criteria, all of the forecasting
systems C; are calibrated. However, for every N, no matter how large, infinitely
many of these calibrated forecasters will be providing the “wrong” forecast on
trial N.

The reason for the apparent conflict between Example 2.1 and Theorems 7.1
and 9.1, is that the theorems only show that every given finite set of calibrated
forecasters will agree asymptotically. The problem is that for any finite set of
calibrated forecasters, there are infinitely many other calibrated forecasters that
do not yet agree with the given finite set. Which set of forecasters is providing
the “asymptotically unique” forecasts?

Of course, Professor Dawid is aware, as he states, that “No such theory can
ever justify assigning particular probabilities to particular events”. But Example
2.1 shows that the theory cannot even justify “asymptotically” assigning prob-
abilities to sequences of events. Since every one of the C; systems is calibrated,
0.8 is as objectively valid a forecast as 0.2 for every trial but not in the limit. Here
we have another example of a result which is true for every N but false in the
limit. Infinity can play dirty tricks on us.

The situation illustrated in Example 2.1 is not peculiar. In fact, it will always
be the case (when a is calibrable) that for every event, infinitely many calibrated
forecasters will disagree. Hence, we see that even if we consider the question of
the “asymptotic” existence and/or uniqueness of objective probabilities for
events, the answer is that even if they exist, they are not unique.

3. Interpretation of Theorems 7.1 and 9.1. Since we now realize that
unique objective probabilities (in the sense Professor Dawid intends them) do not
exist, how are we to interpret the main results (Theorems 7.1 and 9.1)? The usual
way to interpret limit theorems is as approximations for large sample problems.
Professor Dawid suggests this in his section on data analysis, and with the
comment that all “empirically valid” forecasts “must be in essential agreement,
given sufficiently extensive experience.” To see that even such a statement is not
correct, recall Example 2.1. There we saw that no matter how extensive our
experience was, calibrated forecasters were never in essential agreement. That is,
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the “sufficiently extensive experience” needed to ensure that all “empirically
valid” forecasts are in essential agreement is nothing short of infinite.

The problems with interpreting Theorems 7.1 and 9.1 for finite sample sizes
are even more serious than Example 2.1 indicates. First, consider the following
embellishment of Example 2.1.

ExaMPLE 3.1. Under the same conditions as Example 2.1, let D,; =1 — C;,.
It is clear that none of the D; is calibrated. However, for every N, no matter how
large, after N trials, the results will suggest that all but finitely many of the D,
are calibrated and that only finitely many of the C; are calibrated. The evidence
based on every arbitrarily large initial set of trials will suggest just the opposite
of what will actually happen.

Next, consider the following even more problematic situation, which arises in
every forecasting problem, no matter what a is.

ExampLE 3.2. Consider the sequence of forecasting systems F;, where the jth
forecast made by system F; is denoted by F;;. To determine what the forecasts
are, let m be the integer part of (i + 2/ — 1)/2/, and let F;; equal 0 if m is odd
and 1 if m is even. No matter what a is, and no matter how big n is, so long as
the information base always contains n, infinitely many of the F, systems will not
only appear calibrated by time n, but will have predicted perfectly so far.

What Examples 3.1 and 3.2 tell us is that, no matter how long an initial string
of events and forecasts we have seen, we cannot yet tell which forecasters are
calibrated and which are not. In fact, we will be led to believe that infinitely
many calibrated forecasters are not calibrated and that infinitely many non-
calibrated forecasters are calibrated. Such a result should not be surprising; it is a
simple consequence of the fact that no finite initial segment of a sequence, no
matter how long, sheds any light whatsoever on the question of the convergence
of the sequence. Convergence is always a function of the tail of the sequence.
Similarly, calibration is always a function of the future events, not of the initial
segments.

Professor Dawid’s Theorems 7.1 and 9.1 are not like other asymptotic results,
which do have finite sample interpretations. Take, for example, the asymptotic
normality of a posterior distribution (c.f. Walker, 1969). For a given sample of
size n (with a given likelihood and a given prior), one can calculate the actual
posterior density as well as the normal approximation. If the normal approxima-
tion is close enough to the actual posterior (a subjective judgment), it does not
matter whether or not there actually exists an infinite sample; one can use the
approximation in the finite sample. On the other hand, Theorems 7.1 and 9.1
require not only the existence of the entire infinite sequence a, but also properties
of the sequence which can never be checked, even approximately, with finite
initial segments. No finite sample analog of the definition of calibration (based
solely on the outcomes and forecasts known up to time n) could possibly imply
that future forecasts of two arbitrary systems would have to be close together.
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That is, if all we knew about two forecasting systems was that they had each
produced forecasts which satisfied some finite sample analog of calibration at
time n, there would be no way we could guarantee that any future forecasts of
the two systems would be close together, since there are some forecasting systems
for which the initial segments do not control the future forecasts. For example,
two F s from Example 3.2 can agree on all of the first N forecasts, but they will
disagree infinitely often thereafter.

4. Philosophical implications. Professor Dawid suggests that his unique-
ness result “raises difficulties for the forecaster who cannot guarantee that he will
produce objective forecasts.” Surely, it must be evident that no forecaster can
guarantee that he will produce objective forecasts. Even if a is calibrable (which
nobody can guarantee), Oakes (1985) proves that there is no universal algorithm
to guarantee calibration. Hence, the scope for subjective disagreement between
forecasters remains intact, because each forecaster believes that he/she is the one
who will be calibrated in the end (Dawid, 1982). Nobody can prove otherwise
before time infinity. It is true that some forecasters will look worse than others
before time infinity, but, as Examples 2.1, 3.1, and 3.2 show, looks can be
deceptive.

But Professor Dawid claims that his objective forecasts express a “quasi-logi-
cal relationship between the information utilized and the outcomes. In effect they
provide a measure of ‘partial implication’, i.e., the strength with which it is
reasonable to assert that the forecast events will occur, on the (generally incon-
clusive) evidence of the data gathered.” Another example will illustrate the flaw
in this argument.

ExAMPLE 4.1. Consider two different forecasting systems A and B, perhaps
based on mutually singular probability models for Nature. Suppose Nature
decides to ensure that either A or B is calibrated, but not both. But she
postpones the decision of which one to calibrate until after some arbitrarily large
N. In fact, she may alternate between them for an arbitrarily long time, never
knowing for sure whether she will change her mind back to the other one. That
is, no matter how large N is, not even Nature knows which system A or B will be
calibrated, although one of them will be.

How can we possibly say that the forecasts of either A or B (but not both) are
the “strength with which it is reasonable to assert that the forecast events will
occur, on the evidence of the data gathered”? The evidence of the data gathered
is completely irrelevant to the issue of which of them provides the objective
forecasts. Nature has not yet even determined which of them is calibrated! It is
the evidence of the data not yet gathered that provides the strength with which
it is reasonable to assert that the forecast events will occur. In fact, long before
the necessary evidence is gathered, we already know which events occurred and
the whole issue is moot.

The device which Professor Dawid employs, of using the future to determine
what is “valid” now, is typical of frequentist attempts to discredit the theory of
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subjective probability. In fact, Professor Dawid himself states that from the
subjectivist viewpoint espoused by de Finetti (1974) it would “seem that any set
of forecasts is as good as any other.” de Finetti, however, was only trying to set
up minimal criteria that forecasts should satisfy to be coherent based on data
currently available. One forecast is as valid as any other now if they all satisfy
the requirements for coherence based on what knowledge is available now. This is
not to say that all coherent forecasts should be equally well received by all users.
Each individual user of forecasts will have subjective criteria upon which to judge
the goodness of forecasts. Some of these criteria may be measures of past
performance. Others might be measures of confidence in the systems and infor-
mation bases being used. (See Example 4.3 below for a case in which such
confidence might be lacking.) But all of the criteria must be available at the time
the judgment is to be made. Professor Dawid is suggesting that we judge
forecasts based on data not yet available. Of course, certain forecasts will look
better after it has been discovered what the outcomes of the events are. But when
we have to compare forecasters before learning the outcomes of the events, we
must base the comparisons on information available before learning the outcomes
of the events. Perhaps another example will help to clarify this point.

EXAMPLE 4.2. An urn is filled with 10 red and 10 blue balls. Balls will be
drawn with replacement and forecasters must provide probabilities of the events
E, = {draw a blue ball on attempt n}. If a forecaster B consistently assigns
probability 0.6 to E,, are his forecasts invalid? Professor Dawid would have us
believe that the answer depends on what the actual sequence of draws looks like.
Maybe B believes that the balls are not being mixed well or that blue balls are
more pleasant to the touch of the person drawing, etc. Even if we sample many
times and obtain blue balls approximately half of the time, how can we claim,
based on the evidence gathered so far, that B’s forecasts are invalid? After all,
whenever a blue ball was drawn, 0.6 was a better forecast than 0.5. We may not
agree with B’s forecasts and we may choose to model the draws from the urn
differently than B does, but such a choice is a subjective judgment on our part
and not “objective” or “empirically valid.” Whether we agree with B’s forecasts
will depend on how seriously we take his reasons behind them.

On the other hand, assume that 20 draws will be made without replacement.
Then it is clearly incoherent, invalid, and simply wrong to assign probability 0.6
consistently to each of the events E, (assuming B knows the composition of the
urn and what “without replacement” means). But this is because we know the
“limiting” proportion of blue balls is 0.5. Unless we know (rather than simply
believe) something similar in the example with replacement, we have no right to
invalidate the assignment of 0.6. The same thing occurs in all forecasting
problems. Unless we know something about the future, we cannot now say that a
forecast is invalid. We do not have to accept it as our own subjective probability,
but it is still a valid forecast.

Professor Dawid himself notes that “no finite collection of probability fore-
casts can be declared invalid.” And yet he still suggests that we use significance
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tests to detect the “acceptable” finite sequences. Are the finite sequences which
fail the test unacceptable but not invalid?

A final philosophical problem with Professor Dawid’s program arises out of his
metacriteria. M4 seems to have a built-in bias in favor of Theorems 7.1 and 9.1.
In fact, in Section 5 below, we point out a case in which one may not desire such
a criterion. Criterion M3 seems innoccuous, while M1 is biased toward frequentist
criteria. It is metacriterion M2 which is the enigma. On the one hand, it
intuitively makes no sense to evaluate a forecasting system on the basis of what
might have happened, but it also makes no sense to ignore any belief one might
have about what is likely to happen. Consider the following example.

EXAMPLE 4.3. A bum sits on the streetcorner flipping a coin once each day.
Eventually, he begins obtaining heads before each rainy day and tails before each
dry day. (By “eventually” I mean the same thing as Professor Dawid does when
he says “asymptotically”.) This sequence of coin flips can be considered as a
forecasting system (always forecasting probability 0 or 1 for rain). Suppose that
Nature assures us that the bum is just lucky. Nevertheless, assuming that the
information base contains the bum’s coin flip, all computable forecasters will
(eventually) have to agree with the bum if they hope to be calibrated.

We are compelled by metacriterion M2 to treat the bum’s forecasts on the
same footing as every scientifically based system. It is true that the bum’s
forecasts were the “best” in a technical sense, but to call them “objective” seems
to be overdoing it. Just because the bum gave the best forecasts, do we want to
call him the best forecaster? It is fine to use metacriterion M2 for awarding prizes
to forecasters after the fact, but if one wishes to describe a relationship between
the forecasts and the outcomes, such as “ partial implication,” then one must be
careful to separate the sublime from the ridiculous.

5. Practical implications. Of more interest than the philosophical implica-
tions of Professor Dawid’s results are the practical implications. That is, what use
can a forecaster make of Theorems 7.1 and 9.1 if he/she must deal with finite
information bases? The simplest and most correct answer is, of course, “ None.”
But Professor Dawid suggests that his results might be “suitably interpreted for
finite outcome sequences.” For example, he suggests that “we might choose some
collection of computable selection rules, ordered in some reasonable way,” while
noting that this choice will necessarily leave out some computable selection rules.
In fact, some of the selection rules left out will be of the form needed to prove
Theorems 7.1 and 9.1. Hence these theorems may not even be true if we are
required to restrict attention to a computable sequence of computable selection
rules. That is, there may actually exist two computable forecasting systems, each
of which is calibrated for a with respect to every selection rule in our computable
sequence, but which do not asymptotically produce identical forecasts. This
would then violate metacriterion M4. If, on the other hand, one were willing to
allow a noncomputable ordering of the selection rules for checking calibration
sequentially over time, then there would be noncomputable forecasters who make
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use of the ordering of selection rules (sequentially over time), and Theorems 7.1
and 9.1 would not apply to these forecasters.

Another problem which arises in finite samples is that of the prognosticating
bum in Example 4.3. How many correct forecasts in a row will we need to see
before we start paying more attention to the bum than to the local weatherman?
A significance test would be particularly useless here because it takes no account
of the presumably low prior probability that the bum’s coin is actually related in
any meaningful way to the weather. In fact, a problem more serious than that of
the bum occurs in finite sample problems. This was illustrated in Example 3.2. In
that case we saw that, even if there is no bum on the streetcorner, there will
always be infinitely many computable forecasters who have predicted perfectly so
far. It may be that none of these will be calibrated, however.

Since Professor Dawid’s results depend too heavily on the infinitary aspects of
the theory and cannot be “suitably interpreted for finite outcome sequences,”
this discussant chooses an alternative approach to comparing forecasters. This
approach is described in more detail by Schervish (1983). Briefly, the approach is
to assume that each forecast is to be used as the probability of the event being
forecast in a simple two-decision problem, with a fixed loss function. After each
event occurs, one calculates the loss one would have incurred had one made the
optimal decision based on the forecast, and then accumulates the incurred losses
over time. Next, one repeats this process for every possible loss function (essen-
tially a one-parameter family) and obtains the accumulated loss as a function of
one variable (the loss-function parameter). The smaller this function is, the
“better” the forecaster has performed. There is no need to consider an infinite
sequence of possible forecasts. And the determination of who has performed
better can be made at any (and every) time one wishes.

Another advantage of the alternative approach described above is that it
allows comparisons of forecasters who use different information bases. And it
does not penalize a forecaster for using a larger information base even if he/she
turns out to be not calibrated with respect to the larger information base.
Consider the following example.

EXAMPLE 5.1. On 100 days, it rained 50 times and was dry 50 times. One
forecaster always assigned probability 0.5, because he was using an empty
information base. He is clearly calibrated (in any finite-sample sense) with respect
to the only selection rule allowed by his information base. The second forecaster,
however, used a larger information base and forecasted 0.2 on 40 days and 0.8 the
other 60 days. Of the 40 days on which she forecasted 0.2, it rained 10 days and
was dry 30. Of the 60 days on which she forecasted 0.8, it rained 40 days and was
dry 20. This second forecaster is neither calibrated with respect to the empty
information base nor with respect to her larger base. In fact, she is not even
computable with respect to the empty base. And yet it is fairly clear to see that,
so long as all 100 days were equally important, the second forecaster was at least
as good as the first in any sense one cares to name. In particular, she was better
in the sense of Schervish (1983) and in the sense of every strictly proper scoring
rule. It is true that she would have been even better had her 0.2 forecasts been
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0.25 and her 0.8 forecast been 0.667, but how was she to know this ahead of time?
And how does she know if the proportions will continue that way in the future?

What this example illustrates is that the information base can be more
important to making good forecasts than calibration. The goodness criteria
should allow comparisons across information bases as well as within bases. A
forecaster can be bad for using a small information base even if he /she is unable
to be calibrated with respect to a larger base.

The approach described above is not designed to say how well a forecasting
system is likely to perform in the future, but rather only attempts to say how
well it has performed in the past. Nor is any claim made that the best forecaster
is in any way “objective,” “correct,” or “valid.” In fact, the bum of Example 4.3
will perform well both by the above method and by any method (such as scoring
rules) which considers only the actual forecasts and outcomes. One area where
further research is needed is in formulating models and criteria on how to decide
which forecasts are likely to be better in the future given data available from the
past. The problems of comparing forecasters based on past data and assessing
their potential to forecast future data are clearly quite distinct as Examples 3.2
and 4.3 illustrate.

6. Conclusions. Professor Dawid has given us many interesting propositions
to think over. However, the thought we should leave with is that there are no
objective or empirically valid probability forecasts. The existence of calibrated
forecasters is not guaranteed in general, and even when they exist, not a single
event in the entire sequence a has an objective probability associated with it.
Theorems 7.1 and 9.1 do not even imply that each computable subsequence of a
has a unique limiting average probability. All they show is that if a calibrated
forecaster exists, every other calibrated forecaster eventually agrees with him /her,
but it always takes forever for all calibrated forecasters to agree. In the mean-
time, it is unknown (even unknowable) which of them are giving the calibrated
forecasts. Hence, there is no time, after which we can be sure that we are
receiving calibrated forecasts, even if we know who the calibrated forecasters are.
This realization invalidates Professor Dawid’s claim that “An attempt to make
inferences about these objective probabilities is therefore justified to the extent
that it is a hunt for something which does, at least, have a unique existence, at
any rate asymptotically.” It appears that Professor Dawid is attempting to
resurrect objectivist /frequentist statistics within the Bayesian paradigm. Of
course, this attempt fails for the same reasons that all other attempts to lay a
foundation for objectivist /frequentist statistics have failed, namely, there are no
objective or frequency-based probabilities on which to found such a theory.

On the other hand, some of Professor Dawid’s concepts may have a role to
play in creating models and criteria for deciding which forecasters are likely to
provide good forecasts in the future. So long as one keeps in mind that the most a
probability forecast can be is a measure of how strongly one believes that an
event will occur (based on evidence currently available, not based on evidence yet
to be observed), some of the concepts presented in Professor Dawid’s paper may
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yet be the seed from which grows a useful method for comparing and evaluating
forecasters. One step in this direction has been taken by Rubin (1984), but more
work is needed.
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Mark Schervish musters some convincing arguments and examples to back up
his position, outlined in my final paragraph, that the mathematics I have
developed cannot be regarded as establishing the concept of empirical probability
on a firm footing. All in all, I am in agreement with him. The essentially
asymptotic nature of any criteria for empirical validity of probability assign-
ments must mean, quite simply, that these can never be applied to finite
experience in anything other than a nonrigorous and suggestive way. (The
half-baked suggestions of my Section 13.4 clearly attest to this.)

This consideration applies just as much to traditional frequency-based inter-
pretations of probability as to my attempted extension. Indeed, I have considered
elsewhere (Dawid, 1985¢c) some of the logical difficulties that dog attempts to
understand the probability assignments of the Bernoulli model in terms of
limiting relative frequencies, and reached conclusions similar to Schervish’s,
arguing that an entirely subjective approach to the relationship between prob-



