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MODELING EXPERT JUDGMENTS FOR BAYESIAN
UPDATING?

By CHRISTIAN GENEST AND MARK J. SCHERVISH

University of Waterloo and Carnegie-Mellon University

This paper examines how a Bayesian decision maker would update
his/her probability p for the occurrence of an event A in the light of a number
of expert opinions expressed as probabilities g, - - -, g, of A. It is seen, among
‘other things, that the linear opinion pool, Aop + ¥ /=1 Aigi, corresponds to an
application of Bayes’ Theorem when the decision maker has specified only
the mean of the marginal distribution for (q;, - --, ¢») and requires his/her
formula for the posterior probability of A to satisfy a certain consistency
condition. A product formula similar to that of Bordley (1982) is also derived
in the case where the experts are deemed to be conditionally independent
given A (and given its complement).

1. Introduction. This paper examines the situation in which a decision
maker (DM) uses the opinions of n = 1 expert individuals to revise his/her own
probability for the occurrence of A, an event of interest. These subjective opinions
are represented by probabilities ¢, ---, ¢, of A, and it is desired to use this
information to form the DM’s posterior probability for A. The approach here is
that of Morris (1974, 1977), French (1980, 1981), Winkler (1968, 1981), and
Lindley (1985). The experts’ opinions are treated as random variables §; whose
values ¢;, 1 < i < n, are to be revealed to the DM. Using Bayes’ Theorem, he/she
can then update p, his/her prior probability of A, by forming the posterior
probability p* given Q = (Qy, - - -, @,) as follows

(1.1) p*=pPr(Q=ql|A)/Pr(Q = q).

In order to do this, however, the DM must proceed to elicit his/her beliefs about
how good the experts are and how much common information they provide. This
assessment can be modeled in different ways.

French (1981), in extending the work of Lindley, Tversky and Brown (1979)
and French (1980), assumes that A = (/;, ---, [,) has a multivariate normal
distribution in the DM’s mind, where [; = log[®;/(1 — Q;)] represents the log-
odds for A versus its complement A as assessed by the ith expert.
These distributions for A are conditional on whether or not A occurs and on
the DM’s prior information. When Bayes’ rule is applied, French finds that
log[ p*/(1 — p*)] equals log[ p/(1 — p)] plus a linear function of . Naturally, this
solution depends on the choice of distributions for A which implicitly model the
DM’s beliefs regarding the behavior of Q. Different modeling assumptions for Q
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will produce different answers for p*; compare French (1980, 1981) with Winkler
(1981) or Lindley (1985). Moreover, the choice of a model is often complicated
by the lack of empirical evidence concerning the experts’ performance as predic-
tors, as well as a legitimate desire for tractable solutions. For these reasons,
simpler direct ways of pooling opinions have been sought (see, for example,
Section 1 in French, 1985).

Our purpose here is to illustrate how a DM might still exploit the Bayesian
scheme described above, even though he/she might be unable or unwilling to
assess his/her beliefs about the experts’ opinions thoroughly. More specifically,
we will assume throughout that the DM has specified his/her prior probability p
for the occurrence of A, whose indicator will also be denoted A. We will also
assume, however, that the DM does not feel confident in specifying the probability
distributions Pr(Q = q|A) and Pr(Q= q| A) which are required for computing
p* in (1.1). (One reason for this could be that the DM does not feel comfortable
assessing the distribution of Q conditional on an event which has not yet
occurred.) Rather, we will suppose that initially, the DM is willing to specify
either certain aspects of his/her marginal distribution dF(q) of Q, or perhaps
certain features of the joint distribution of A and Q, in addition to p. For example,
the DM could specify some moments of the marginal distributions of the Qs (as
in Sections 2 and 3), or he/she could determine that the experts are conditionally
independent given A and A (see Section 4). Such specifications will be referred
to as initial specifications, and will always include, in order to model reality more
closely, the assumption that the support of dF is the entire cube [0, 1]".

Because the DM has not assessed the joint distribution of A and Q completely,
he/she realizes that p* in (1.1) cannot be determined uniquely. As an alternative,
he/she might decide to choose a formula p*(q) from those which satisfy the
following intuitively reasonable requirement.

CONSISTENCY CONDITION. No matter what the unspecified marginal
distribution dF for Q is, there exists a joint distribution for A and Q which is
compatible with dF, satisfies the initial specifications and is such that p*(q) =

Pr(A|Q = q).

To choose a specific formula p*(q), however, it turns out that the DM will
need to specify at least some further aspects of the joint distribution of A and Q
in addition to his/her initial specifications. In the one expert case, for instance,
this could be accomplished by specifying the correlation between A and . The
hope here is that while remaining entirely consistent with the Bayesian paradigm,
this procedure will help the DM to produce a legitimate posterior probability for
A given Q = q without forcing him/her to endorse an entire joint dlstrlbutlon
for A and Q with which he/she may not feel comfortable.

Suppose, for example, that the initial specifications consist of the DM’s prior
probability p and the mean vector of Q, say E(Q) = (u1, - -, ua). We will show
in Sections 2 and 3 that, in this case, the only formulas p*(q) which satisfy the
above Consistency Condition are those linear combinations of the ¢s and p of
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the form

(1.2) p*a@ =p+ Tk Nlgi — w)

with possibly negative weights, \;, expressing the amount of correlation between
each @; and A, as estimated by the DM. When p; = -+ =, = pand \; = 0 for
all i, (1.2) reduces to the linear opinion pool of Stone (1961),

(1.3) p*(@) = Nop + T Mg,

thereby lending support to a supposition of French (1981, page 335) to the effect
that (1.3) sometimes corresponds to an application of Bayes’ Theorem.

Although this work provides some additional support for the linear opinion
pool, it should be emphasized that it is not written in defense of any particular
pooling formula, including (1.3). Rather, the authors want to promote an ap-
proach to expert resolution which is

¢ not fully axiomatic, and
* Bayesian without requiring the DM to perform a very demanding assessment
task.

To illustrate this point, formulas other that (1.3) are also derived in the single
expert case. When the initial specification consists of the mean of some bounded
function g of @, we show that the formula for p*(q) is linear in g(q). Also, when
the initial specification consists of / = 2 moments for the marginal distribution
of @, a polynomial formula of degree at most [ then results for p*(q). If, on the
other hand, the initial specifications consist of the mean vector of the marginal
distribution of Q as well as the requirement that the experts be independent
given A and A, a product formula then emerges which bears some resemblance
to that obtained by Bordley (1982). As a consequence, Bordley’s prescription can
be interpreted as a posterior probability in a truly Bayesian fashion, even though
his own derivation is not Bayesian (see French, 1985, Section 1.3). To prove this
result, however, it will be necessary to introduce a slightly modified version of
the Consistency Condition which is given in Section 4.

2. A single expert. Consider first the case in which the DM will receive
the opinion of only one expert. Let @ denote the probability which the expert
will assign to the event A, let p be the DM’s probability of A prior to learning @),
and let p*(q) represent the DM’s probability of A after learning @ = g. Given
the joint distribution of A and Q, it is a simple matter, in theory, to calculate
Pr(A | @ = q). Suppose, however, that the DM feels comfortable specifying u, the
marginal mean of @, but not the remainder of the joint distribution of A and Q.
Given the initial specifications p = Pr(4) and p = E(Q), what are the possible
functions p*(q) which satisfy the Consistency Condition of Section 1?

To answer this question, let dF(q) denote the DM’s prior marginal probability
measure for . We assume that this measure exists, although the DM has not
specified it completely. In accordance with Cromwell’s Rule (Lindley, 1982), we
restrict our attention to those measures dF whose support is the entire interval
[0, 1]. In particular, this requires u to lie strictly between 0 and 1. (If u were 0,
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for example, this would mean that the DM is certain that the expert will say
Q = 0.) By definition, the joint probability measure for A and Q is

_ \_ Jp*(q) dF(q) for A=1andgqin [0, 1],
(21) Pr(4,Q=9q) = ][[1 ~'p*(q)] dF(q) for A =0andqin [0, 1].
Let 0 < p < 1be fixed. To find those functions p*(q) which satisfy the Consistency
Condition in Section 1, one must guarantee that [ p*(q) dF(q) = p for every dF
that has mean p and the closed interval [0, 1] as its support. If such a function
p* exists, then no matter what the DM’s prior distribution dF with mean u really
is, (2.1) is a joint distribution for A and @ with the property that the conditional
probability of A given Q = g is p*(q). Theorem 2.1 below shows that the only
functions p* which have the above property are linear functions of g.

THEOREM 2.1. Let the initial specifications consist of p = Pr(A), u = E(Q),
and that the support of dF is [0, 1]. Then p*(q) satisfies the Consistency Condition
of Section 1 if and only if

(2.2) p*@) =p+Ng—wn)
for some X\ satisfying
(2.3)  max{p/(xp — 1), (p — 1)/u} =\ = min{p/u, (1 — p)/(1 — W)}

The proof of this theorem requires the following lemma.

LEMMA 2.2. Let u be some fixed number in the open interval (0, 1), and let A,
denote the collection of all distribution functions F with support [0, 1] for which

f t dF(t) = p.
[0.1]
If k is a real-valued Lebesgue measurable function on [0, 1] such that
(2.4) f k(t) dF(t) =pforall F in A,,
[0.1]
then k(t) = A(t — u) + p for some real number .

PrOOF. Let F, € A, be arbitrary. First consider the set of all 0 < x < u. For
each such x, let F, be the distribution that has mass (1 — u)/(1 — x) at x and
mass (u — x)/(1 — x) at 1. Then F = %4F, + 'F, is in A,. Now assume that k
satisfies (2.4). It follows that

1—wu u—x
+ Yok
RS g

.

(2.5) p= J[:n] k(t) dF(t) = Yp + Y2k(x)

Setting the far left and right members of (2.5) equal yields

(2.6) k(x) = k—(lll__—f (x —u) +p, forall x<p



1202 GENEST AND SCHERVISH

A similar argument for 1 = x > y yields

@.7) k(x) = w

(x—p)+p, forall x>

Plugging x = 0 into (2.6) and x = 1 into (2.7) shows that the two coefficients of
(x — p) are equal. Call their common value A. It is trivial to see that k(n) must
equal p, and this completes the proof of the lemma. O

PROOF OF THEOREM 2.1. It is straightforward to show that if p*(q) =
p + g — u) for some X satisfying (2.3), then (2.1) is a joint distribution for A
and @ for all marginal probability measures dF for @ with mean u. To prove the
other implication, note that Lemma 2.2 implies that p*(q) = p + A(q — u). Since
p*(q) is a probability, the constant A\ must satisfy (2.3). 0

If, instead of specifying the mean of @, the DM had specified the mean of 2(Q)
for some measurable function g, an argument nearly identical to the proof of
Theorem 2.1 would show that the only functions p* satisfying the Consistency
Condition are of the form p*(q) = A(g(q) — u) + p, where \ satisfies

29 max{p/(u — &), (p — 1)/(u — g)}
' =\ < min{p/(u — g), (1 = p)/(& — p)},

with g = infiep,118(¢) and § = sup,eo.118(g). Although this result applies to an
arbitrary function g, it has serious implications only when g is bounded. Indeed,
the upper and lower bounds in (2.8) are both zero if g is unbounded. For the
remainder of this paper, we will assume that the bounded function of interest is
the identity function g(x) = x. In this case, note that if x = p and \ = 0, then p*
is a convex combination of p and ¢. This combination rule A\g + (1 — A\)p was
derived axiomatically by Morris (1983, Section 6), but Schervish (1983) has
pointed out that the supporting system of axioms is flawed.

Consider next how a DM could use Theorem 2.1 to choose a formula p*(q) for
his/her posterior probability of A. His/her ability to model the relationship
between A and Q is drastically limited by this approach. Namely, the conditional
probability measure of @ given A (and A) must now be chosen from the class of
measures of the form

Pr(Q@ =qlA)

29) _ 1I[l + \q — u)/pldF(q) for A=1,¢ in [0, 1],
' [1 =A@ —w)/(1-p)dF(q) for A=0,q in [0, 1],

Le., the marginal probability measure of @ times a linear function of Q. This is
unlike the usual Bayesian approach to modeling, in which the DM would assess
directly the conditional distributions of @ given A and A. Because of the DM’s
unwillingness to specify these conditional distributions completely, the Consist-
ency Condition requires him/her to choose a model of the form (2.9). In such a
model, the linear functions 1 + \(g — u)/p and 1 — A(q — u)/(1 — p) simply
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represent the ways in which the conditional distributions of @ given A and A,
respectively, differ from the marginal of Q. In making his/her final choice of a
formula p*(q), therefore, these differences are the further aspect of the joint
distribution of A and @ which the DM must assess. In principle, this task should
be simpler than that of completely specifying two conditional distributions.

EXAMPLE 2.3. Suppose that the DM’s initial specifications are p = 0.5 and
u=0.6. From (2.9), we see _that the ratio of the conditional probability measure
of @ given A to that given 4 is

(2.10) R(g) = Pr(Q = q| A)/Pr(Q = q| A)
' =[1 + 2)\(g — 0.6)]/[1 — 2\ (g — 0.6)]

where 0 < g < 1. By Equation (2.3), we know that | A | < %, and so R(q) must
satisfy

min{q/(1.2 — q), (1.2 — q)/q} < R(q) < max{g/(1.2 — q), (1.2 — q)/q}

for all g. In order to choose his/her specific value of A, the DM need only assess
R(q) for some g # 0.6. For instance, he/she might estimate that the expert is
twice as likely to say ¢ = 0.85 if A later occurs than if A occurs. In that case,
R(.85) = (2 + \)/(2 — \) = 2 implies that X should be %a.

It is worthwhile to observe that A in Equation (2.2) can also be interpreted as
the coefficient of linear regression of A on Q. Indeed, it follows easily from (2.9)
or from (2.1) that E[(A — p)(Q — 1)] = A Var(Q), so that

X = Corr(4, Q)[Var(4)/Var(@)]'?,

which is the coefficient of linear regression of A on @ in the DM’s opinion. For
example, if the DM thinks that @ is more likely to be high (and less likely to be
low) when A = 1 than when A = 0, he/she should choose A > 0. In fact, the more
closely the DM feels @ varies with A, the higher A should be. On the other hand,
negative values of A indicate that the DM believes @ varies inversely with A.
Incidentally, note that even though Var(Q) appears in the above formula for A,
it is not necessary to specify its value in order to determine X. Rather, one can
either assess \ as a regression coefficient per se, or proceed along the lines of
Example 2.3. Either way, the X in (2.2) is operationally defined in terms of the
DM’s joint distribution of A and @, unlike the expert weights in many other
derivations of the linear opinion pool. Finally, one should note what the restric-
tions (2.3) say about the relationship between p and u. When the DM has a great
deal of confidence in the expert and wishes to use a value of X very near 1, then
(2.3) says that u must be close to p. That is, the DM believes that the mean of
the expert’s probability @ is near the DM’s prior probability p when he/she
believes the expert is very good (high \). Alternatively, (2.3) can be interpreted
as saying that if the expert is very good, then the DM’s prior probability p will
be close to the mean of . The converse, however, may not be true. That is, even
if the DM believes the mean of @ is near p, there is no need to choose A near 1.
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As was mentioned in the introduction, the DM may sometimes be willing to
specify other aspects of his/her marginal distribution of @ beyond its mean. In
that case, the class of formulas p*(q) satisfying our Consistency Condition will
be enlarged. The following natural generalization of Lemma 2.2 makes this
observation more precise.

LEMMA 2.4. Let D' denote the set of all I-dimensional vectors whose ith
coordinate is the ith moment of a distribution on [0, 1]. Let u = (x;, - - -, w) be
some fixed vector in D' which is the vector of moments of a distribution with
support [0, 1]. Let A, denote the collection of all distribution functions F with
support [0, 1] for which

(2.11) f t'dF(t) =w; for i=1, ..., 1
[0,1]
If k is a real-valued Lebesgue measurable function on [0, 1] such that
(2.12) f k(t) dF(t) =p forall Fin A,
[0,1]
then k(t) = ') Ni(t' — w;) + p for some real numbers \;, i =1, ---, .

ProoF. Choose tyin [0, 1] and d = 0 such that ¢, + (I + 1)d < 1. Define the
following two discrete distribution functions:

_ I+
pP=2" zfe+=11,kodd < E 1>I[zo+kd,1],

_ I+1
R =2 ! 5:=10,keven< k )I[t0+kd,1]-

By writing the binomial expansion of (t — 1)! and its first [ derivatives at t = 0,
we can easily show that P and R have the same first [ moments. Let m =
(my, - - -, m;) be the vector of these | moments. Using an observation on page 65
of Karlin and Shapley (1953) together with their Theorem 20.1, we can show
that p is in the interior of D' It follows that there exists ¢ > 0 and a distribution
function G whose vector of moments is (1 — ¢) *(u — em). Let H, = (1 — ¢)G +
eP and let H, = (1 — ¢)G + ¢R. Then both H, and H, are in A,. Applying (2.12)
to both H; and H, yields

fas (—1)’“—f<l “; 1>k(t0 +jd) =0 forall t and d.

It follows from results of Fréchet (1909) and Popoviciu (1934) that & must be a
polynomial of degree at most I. That the polynomial must have the stated form
then follows from (2.11). 0 ’

It follows from Lemma 2.4 that if p*(¢) is to be a coherent conditional
probability of A given @ = ¢ no matter what the prior distribution of @ is (so
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long as its vector of first | moments is u and its support is [0, 1]), then p* must
be a polynomial in g of degree at most (but possibly) I, viz.

(2.13) p*(@) =p + Tk Nlg' — w).

To illustrate the connection between Theorem 2.1 and the above result,
suppose that a DM specifies the mean u of the marginal distribution of € and
then chooses p*(q) of the form (2.2). In the event that he/she later decides to
specify further moments of @, say E(Q’) for i = 2, - - -, |, the DM is assured that
(2.2) will remain a coherent posterior probability because (2.2) is a polynomial
of degree at most . This is not to say that the DM must still use a linear opinion
pool, but rather than he/she need not determine a more complicated p*(g) in
order to remain coherent. By electing to retain the linear formula, in effect, the
DM is simply asserting his/her willingness to set A = ... = A, = 0 in Equation
(2.13). This, in turn, can be interpreted in terms of his/her beliefs regarding the
joint distribution of A and Q.

EXAMPLE 2.3 (continued). Now suppose that the DM calculates R(0.1) = 0.2
from (2.10) but that he/she feels that R(0.1) should be equal to 0.3 instead. The
effect of this would be to increase the value of p*(q) for small values of g. To
allow this extra amount of flexibility in the modeling of the function p*(q), the
DM may then specify a second moment of the marginal distribution of @ and (in
the case p = 0.5) solve two linear equations in A; and ), involving the ratio

Pr(@ =qlA) _1+2M(g— m) + 20(q° — p)
Pr(@ =q|A) 1—2\N(g— m) — 202(q® — p2)

Here, u; = 0.6 as before and if the DM chooses u, = 0.42, say, then a straightfor-
ward calculation shows that A\; = 0.2689 while A\, = 0.3287. The posterior
probability p*(q) is now a quadratic in ¢ given by 0.2006 + 0.2689¢ + 0.3287¢>.
This is virtually the same as the linear formula 0.1 + 0.6667q obtained earlier
except for values of g less than 0.2 for which the new p*(q) takes slightly higher
values.

We do not mean to imply that, in general, it is an easy matter for a DM to
assess R(q) as in the above example. We do believe, however, that this might
prove an easier task than that of assessing the entire conditional distributions of
Q given A and A.

3. Several experts. To treat the case in which a DM wishes to use the
opinions of several different experts simultaneously, it is necessary to consider
the joint distribution of the experts’ opinions and A. To parallel the discussion
in the previous section, suppose that n = 2 experts have agreed to state their
probabilities @, - - -, @, for the event A, but the DM does not wish to assess the
entire joint distribution of the vector Q = (&, ---, Q). Rather the DM will
initially specify his/her prior probability p of A and the mean y; of Q; for each
i =1, --., n. He/she will then choose a formula p*(q) for his/her conditional
probability of A given Q = q among those which satisfy the Consistency Condition
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of Section 1. As in (2.1), we can write the joint probability measure for A and Q
as

_ . _ Jp*(@)dF(q) for A=1 and qin [0, 1],
31) Pr4,Q@=q = {[1 — p*q)JdF(q) for A=0 and qin [0, 1]".
The posterior probability of A given Q = q is then p*(q), while the conditional
probability measure of Q given A =1 is p*(q)dF(q)/p. We need to ask once again
for what functions p* is [ p*(q)dF(q) = p for all distributions dF with mean
vector u. If any such function p* exists, then (3.1) is a valid joint probability
measure for A and Q and the posterior probability of A given Q = q is p*(q).
Lemma 3.1 prescribes the form of p* in the case where the support of dF is
required to be the entire cube [0, 1]".

LEMMA 3.1. Let u be some fixed vector in (0, 1)", and let A, denote the
collection of all n-dimensional distribution functions F with support [0, 1]" and
mean vector u. If k is a real-valued Lebesgue measurable function on [0, 1]" such
that

(3.2) J; ] k(t) dF(t) =p forall Fin A,
0,1
then k(t) = X%, \(t; — u;) + p for some real numbers \;, where t = (t;, -- -, t,).

PROOF. Since we have already proven the result for n = 1, we proceed by
induction. Suppose the following is true foralls=1, ..., n — 1:

INDUCTION HYPOTHESIS: If k(t) satisfies [(o1 k(t) dF(t) = p for all distri-
bution functions F with support [0, 1]° and mean vector (u, - - -, us), then k(t) =
p + Y& N(t; — w;) for some constants \;, no matter what 0 < py, - -+, u, < 1.

Let F,(t;) be a distribution function with support [0, 1] and mean y,, and let
F,_y(ty, ---, t,) be a distribution function with support [0, 1]*"! and mean
(p2, -« wn). If L(ty, -+, ta) = [lo11 k(t1, -+ -, t,) dF1(t1), then by (3.2) we have
that

f Lts, -+, ta) dFoy (b, -+, tn) = p.
From the induction hypothesis, it follows that
L(ty, ---, t,) = p + Xis byt — ).
Define H(t,| tg, -« -, t,) = k(t, - -+, t,) — X %s byi(t; — w). For each (2, ---, t,)
and each F; as above,
f H(t |t -+, t,) dFi(t;) = p.
By induction, H(t,| tz, -+, t,) =p + bi(ts, - - -, t,)(t; — 1), and hence
k(t) =p + bi(ty, - -+, to)(ts — p1) + Xiee bu(t; — ).
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Repeat the above argument separating out t, instead of t,, then t; etc. For each
1 =j < n, we obtain
(3.3) k(t) =p + bi(ts, - - -, t:\;))(t; — W) + Diwgj bjs(ti — ),

where the variables following the symbol \ are deleted from the list preceding
them. Next, set the right-hand sides of (3.3) equal to each other for every distinct
pair of values i and j. It can then be seen that

k(t) = p + cij(ty, - -, ta\ti, t)(& — w)(ti — pi) + Dmm1 At — pm),
where c;; is defined by the relation
N+ ociity, -, t\G, ) — w) = bi(ty, - - -, t.\&).

Continuing in this manner, we obtain
(3.4) k(t) =p+c[l& (6 — w) + ik Nt — ).

By choosing a measure dF with appropriate first and nth moments, we can show
that (3.2) will be satisfied if and only if ¢ = 0 in (3.4). 0

It follows from Lemma 3.1 that formulas of the form (1.2) are the only
posterior probabilities for A satisfying the Consistency Condition of Section 1.
As before, the \/s must obey a number of inequalities analogous to (2.3). If, for
example, the DM feels that all \;’s are positive, the most common case, then they
must be chosen so that

(3.5) max{Xy i Npi/p, L1 M1 — w)/(1 —p)} =1,

which is implicitly two inequalities. For every possible combination of signs for
the A/’s, there will be two inequalities similar to (3.5) which must be satisfied.
With no prior restrictions on the A’s, there are thus 2"*' inequalities to be
verified. Without listing all of these inequalities, we state the following loosely
formulated theorem.

THEOREM 3.2. Let the initial specifications consist of p = Pr(A), p = E(Q)
and that the support of dF is [0, 1]*. Then p*(q) satisfies the Consistency Condition
if and only if p*(q) = Y 1 Ni(g: — ;) for some Ny, - - -, \, satisfying 2" inequalities
similar to (3.5).

When y; = p and \; = 0 for all i, p*(q) reduces to the linear opinion pool of Stone
(1961) in which the DM is considered as one of the experts. An advantage of our
derivation, however, is that it provides an interpretation of the coefficients \; in
terms of the regression of A on Q. Let 24 denote the covariance matrix of Q, let
oaq be the vector of covariances between A and Q, and use A to represent the
vector of A\’s. Then E[(A — p)(Q — u)] = ZgA, from which it follows that
A = 23! (04q), the vector of coefficients of the linear regression of A on Q, so
long as the experts are not linearly dependent. As in multiple regression, each \;
can thus be thought of as a measure of the additional information that the ith
expert provides over and above the other experts and what the DM already
knows.
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As we mentioned in the case of one expert, this approach limits the DM’s
ability to model the joint distribution of A and Q. For example, suppose the DM
contemplates the possibility that one or more experts might not respond. In
accordance with the Bayesian philosophy, one would deal with this situation by
forming the marginal joint distribution of A and those experts who do respond,
and calculating the posterior from that distribution; or equivalently, one could
average (1.2) with respect to the conditional distribution of the nonrespondents
given the respondents. Unfortunately, this procedure will not produce a linear
opinion pool unless the conditional means of the nonrespondents given the
respondents is linear in the respondents’ ¢/’s. Joint distributions for  with this
property exist (e.g., when the coordinates of Q are independent), but certainly
not all joint distributions have this property. In Section 4, we will restrict our
attention to those joint distributions of A and Q in which the Q; are independent
given A and A. In this case, we will obtain combination rules satisfying a
Consistency Condition similar to the one in Section 1, and which produce the
same formula when averaged over nonrespondents as when only the respondents
are considered.

4. Conditionally independent experts. It is common, in modeling de-
pendent observations such as expert opinions, to assume that there is a random
variable Y such that, conditional on Y, the observations are independent. The
random variable Y then introduces dependence between the observations. Since
we assume that all the experts are trying to forecast the random variable A, it
might be natural to expect that only dependence between the experts enters
through A. In this section, we consider the case in which the DM believes that
the experts are independent conditional on A, the indicator of the event of
interest. We believe this is the same meaning of independence which Morris
(1974, 19717, 1983) adopts in his discussion of independent experts.

We will assume that the DM’s initial specifications consist of his/her proba-
bility p of A, the marginal mean vector u = (uy, ---, u.) of Q, as well as the
requirement that the experts be conditionally independent given A and A. In this
case, we hope to find a formula p*(q) for the posterior probability of A which,
when averaged over the conditional distribution of nonrespondents given re-
spondents, will reduce to the formula which would have been obtained, had the
respondents alone been considered a priori. With these added constraints, we
will see that it is impossible for p*(q) to satisfy the Consistency Condition stated
in Section 1. However, Formula (4.3) below will satisfy the following similar
condition.

MOoDIFIED CONSISTENCY CONDITION. No matter what the unspecified uni-
variate marginal distributions for the Qs are, there exists a compatible joint
distribution for A and Q which satisfies the initial specifications and is such that

p*(@) =Pr(A|Q=q).

The above Modified Consistency Condition is actually equivalent to the original
one in the contexts of Sections 2 and 3, where the initial specifications pertained
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only to the univariate marginal distributions of the @;’s. In this section, however,
the DM has also specified certain aspects of the joint distribution of Q, namely
conditional independence and the nonresponse condition.

For ease of notation, we will assume the existence of a dominating measure
on [0, 1] and we will express all distributions as densities with respect to either
that measure or the product measure which it induces in n dimensions. For
instance, the measure could be taken to be the sum of the marginal distributions
of the Q/’s. Let g;(q) be the conditional density of @; given A, and let ;(q) be the
conditional density of @; given A. The joint density of the vector Q can then be
written as f(q) =p [[%18:(q;) + (1 —p) [1%: 8:(q:). It follows that the conditional
probability of A given Q = q is

(4.1) p*(q) = p[Il&: &(g)l/f(@).

Equation (4.1), being a generalization of a formula of Bordley (1982), proves that
his formula is a conditional probability for A given Q = q which could have been
derived within the Bayesian framework, although Bordley himself elected to use
an axiomatic approach instead.

Next, let R be a subset of {1, - - -, n} indicating which experts respond, and let
qr and Qy denote the subvectors of q and Q, respectively, whose components are
the elements of R. Its complement represents nonrespondents. The conditional
density of the nonrespondents given Qr = qr is f(a)/fr(Qr), where

fr(@r) = p [lier &(q:)) + (1 — p) Ilier &i(q:)

is the marginal density of Q. Integrating (4.1) with respect to the conditional
density of the nonrespondents given the respondents gives

(4.2) plIlier &i(g:)1/fr(@).

If the functions g; and g; do not depend on which set of experts is to be the
respondents, then (4.2) is precisely the formula that the DM would have used,
had R been the original set of experts. In other words, the problem with
nonrespondents disappears if and only if the marginal distribution of each Q; is
functionally independent of the other experts. This implies that the choice of the
functions g; and &; used for constructing p*(q) in (4.1) must be done separately
for each i, as in the single expert case.

From Theorem 2.1, it follows that g;/f; and g;/f; must be linear functions of g,
viz.

‘

gi(q) = [1 + \(g — w)/pPlfi(Q),
&i(q) =1+ N(w — q)/(1 = p)Ifi(qg),

where f; is the marginal density of @; and each \; satisfies (2.3) with u replaced
by w;. Since Theorem 2.1 was used separately for each expert, note that the
functions g; and g; are compatible with every marginal density f; for @;, but not
necessarily with every joint distribution for Q. This is because a set of f’s, \/’s
and p together determine the entire distribution of A and Q, under the conditional
independence assumption. Hence, two different joint densities of @ with the
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same marginals cannot both be compatible with a given set of A\;s and p. As there
is no hope of satisfying the Consistency Condition of Section 1 in this case, the
Modified Consistency Condition given above was introduced instead. Qur result
can now be stated as follows:

THEOREM 4.1. Assume that the DM’s initial specifications consist of p =
Pr(A), w = E(Q;) for each i and the assumption that the experts are conditionally
independent given A and A. Furthermore assume that p*(q) must satisfy the
Modified Consistency Condition, and has the property that the mean of p*(Q) with
respect to the conditional distribution of a set of nonrespondents given a set of
respondents is the same as the formula which could be derived by considering only
the respondents from the start. Then

pl_" H?=1 n;
P e+ -p) "I (0 -n)’

where, for each 1 < i < n, \in; = [p + N\i(q; — w)], is between the upper and lower
bounds of (2.3) with u replaced by u;.

(4.3) p*a) =

When all of the u’s equal p, (4.3) becomes a special case of the formula of Bordley
(1982). It should be noted that for each i, the value \; in (4.3) is the same as the
A in (2.2) that would be used in the single expert case. A polynomial version of
Theorem 4.1 analogous to Lemma 2.4 could also be proven.

At this point, we should also comment on the effect of the assumption of
conditional independence. Indeed, such an assumption has consequences which
may not be apparent to the naked eye. For example, consider the case in which
expert i gives @; = p;, i =1, - - -, n. Formula (4.3) reduces to p*(q) = p. This is a
comforting result: if every expert says exactly what the DM expected they would,
his/her probability of A does not change. In contrast, consider the case in which

expert i gives Q; = q; > p;, i = 1, - - -, n. Assume that each ); is positive, and let
2; = p + Ni(q: — w;). Then z; would be the posterior probability of A given @; alone
for each i =1, - .., n. Formula (4.1) shows how to combine these values to get

the conditional probability of A given Q. Since each g; is greater than p;, each z;
is greater than p. Simple algebra shows that, in this case, p*(q) will be greater
than the largest of the 2/’s. For example, if p equals 0.7, and if three experts give
21 = 23 = z3 = 0.8, then p* = 0.92. This overcompensation phenomenon is often
called a risky shift (cf. Bordley, 1983). If this does not correspond to what the
DM considers as appropriate behavior, he/she should consider the joint distri-
bution of the expert opinions more carefully.

5. Conclusion. It is the authors’ conviction that the Bayesian argument
embodied in (1.1) is normatively the only logical method available to a decision
maker for exploiting the collected opinions of a number of experts. “This has the
immediate advantage,” as French (1985, Section 1.5) points out, “that we can use
the likelihood function to allow for the possibilities of miscalibration, dishonesty
and non-independence of the experts.” In practice, however, the DM will rarely
have enough data to face the enormous assessment problems caused, in particular,
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by the dependence of information sources between the experts. The primary
objective of this paper, thus, was to show how these difficulties could be avoided
without abandoning the Bayesian viewpoint.

This objective was accomplished by showing how a DM could choose a formula
p*(q) for his/her posterior probability of A without specifying an entire joint
distribution for A and the expert opinions Q. Assuming that the DM can assess
his/her prior probability of A, some aspects of the marginal distribution of Q, as
well as some aspects of the joint distribution of A and Q, we showed how a
formula could be chosen which is a coherent posterior probability no matter what
is the DM’s complete marginal distribution of Q. This is feasible because the
class of pooling recipes consistent with (1.1) increases as the DM specifies more
and more aspects of the marginal distribution dF of Q. At one extreme, it can be
seen that a Bayesian DM who leaves dF completely unspecified has no choice
but to ignore the expert opinions and use p*(q) = p if he/she wants to satisfy the
Consistency Condition of Section 1. At the other extreme, if dF is determined
completely, p*(q) can be any function such that

f p*(@) dF(q) = p.

An alternative less extreme than either of the above would be, for example, to
assess only the first few moments of the marginal distribution of Q. This is the
situation which we discussed in Sections 2 and 3. When only the first moment
of Q is specified, p*(q) must be a linear opinion pool whose coefficients are
operationally defined. If the DM is willing to model the experts as conditionally
independent given A and A, a logarithmic opinion pool of the form (4.3) obtains
whose coefficients also have a precise interpretation in terms of the joint
distribution of A and Q. This last result was derived under a slightly weaker
consistency condition, however.

As a final note, we should comment on the restriction that the support of the
distributions of the @; should be the entire interval [0, 1]. This assumption, which
was made on account of realism, could be dropped without altering the conclu-
sions of our theorems and lemmas. Had the results been proven without this
requirement, however, a DM might have argued that since his/her distribution
for Q was further restricted by having support [0, 1], he/she had more choices
for p*(q) than implied by our analysis. The assumption was made in anticipation
of this criticism, at the expense of slightly more complicated proofs.

Acknowledgement. We are indebted to the referees for suggestions that
led to a simpler proof of Lemma 2.2 and improved readability of the paper.
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