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In our first reading of this stimulating paper, we were struck by the apparent
close correspondence between the proposed random effects model for contingency
table analysis and the theory of generalized linear models and quasi-likelihood
developed by Nelder and Wedderburn (1972) and Wedderburn (1974) and inves-
tigated further in the recent monograph by McCullagh and Nelder (1983). For
some simple parametric models, the one-parameter family of densities (5.6)
appears identical to the corresponding quasi-likelihood functions with »™!
(nf)~! playing the role of the dispersion parameter that multiplies the variance
function. Further, parallels between the two developments are seen in the fact
that residual deviance or chi-square goodness-of-fit measures, divided by their
degrees of freedom, are used to estimate » (cf. equations (4.8) and (5.20)).
Furthermore, » acts as a scaling factor for the asymptotic distribution of the
vector of sufficient statistics for the @ parameters of primary interest (5.23), as
it does for the parameter estimates under quasi-likelihood. It is quite interesting
that the relatively simple asymptotic results, already known to hold uncondition-
ally from quasi-likelihood theory, apply even to the complicated conditional
distributions considered in the paper. Since we suspect that such matters will
receive more thorough discussion from others with greater knowledge of quasi-
likelihood techniques, however, we turn our attention to a possible alternative
measure of the degree to which a given table conforms to the hypothesis of
independence.

As is well known (Bishop, Fienberg and Holland, 1975), the hypothesis of
independence of row and column classifications in a contingency table may be
expressed as a log-linear model for the expected cell frequencies E(m;;). The
likelihood calculations are simplest when the m;; have independent Poisson
distributions, and we keep to this in order to make the discussion as transparent
as possible. Conditioning on the grand total leads to the hypothesis of indepen-
dence for the multinomial distribution considered by Diaconis and Efron.

In order to accommodate the idea of a sample size that increases while the
number of cells IJ remain fixed, we suppose that the Poisson means have the
form E(m;;) = NX;;. We further suppose that the \;; are sampled independently
from distributions with means {;; = exp(uo + a; + B;), the hypothesis of
independence, and variances that represent the degree of departure from this
hypothesis. The usual quasi-likelihood generalization of the Poisson model results
from the assumption Var(\;;) = ¢%§;;. It follows that E(m;;) = N{;; = u; and
Var(m;;) = (1 + No®)w;. This generalized linear model with dispersion parameter
67! = (1 + No?) corresponds closely to the situation considered by Diaconis and
Efron. Imposition of the parameter constraint Y;; {;; = 1 via an appropriate
choice of u, ensures that N is estimated by the grand total n.

An alternative random effects model that seems to us more natural in the
context of log-linear theory expresses the random effects on the same scale as
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the fixed row and column effects «; and 3;. The model becomes m;; | A;; ~ Poisson
(nX;;) and \;; = exp(uo + a; + B; + &;) where the ¢;; are iid with mean 0 and a
common variance 72 This leads approximately to a generalized linear model of
the form E(m;;) = w;j and Var(m,;) = u;; + 72u%, which equations hold exactly if
one assumes the \;; to have appropriate gamma densities. Following Williams
(1982) work with the binomial distribution, Breslow (1984) suggested a method
of moments estimation procedure for the unknown parameters in this model
such that the chi-square criterion

(my;; — llij)2
gt = (I = 1)(J — 1
Sii ey = (= D@ =)
and the quasi-likelihood equations for fixed 72, which in this case are
) mi; _v. Mij
Zs (1 + py7?) Zs (1 + pi7®)
M e K
2; (1 + pyr?) 2; 1+ pyr?)’

are satisfied simultaneously. Approximate confidence bounds on 72 are obtained
by solving the same set of equations with (I — 1)(J — 1) replaced by percentiles
of chi-square distributions having (I — 1)(J — 1) degrees of freedom; however,
further work is needed to establish conditions under which the Pearson statistic
actually has an approximate chi-square distribution (McCullagh, 1985).

Applying this procedure to the data in Table 1 leads to the estimate 7% = 0.415
with 90% confidence bounds (0.178, 1.476). For the data in Table 2, we have 72
= 0.072 with 90% bounds (0.043, 0.342). This confirms the finding of Diaconis
and Efron that the Table 2 data are closer to independence than those in Table
1, in spite of the fact that Table 2 has the larger x? statistic. However, judging
from the overlap in the confidence intervals for 7% the two tables are more
comparable in terms of their degree of departure from independence with the
alternative procedure we suggest. A disadvantage of our approach, of course, is
the need for iterative calculations to estimate 72.

Diaconis and Efron’s x2 based procedure and the alternative random effects
model suggested here both fail to account for the obvious structure that is present
in Table 2 but lacking from Table 1. A more meaningful appraisal of the degree
of departure from independence in Table 2 could be made by comparing the
mean number of children for families of different income levels, for example, by
fitting separate Poisson distributions to each column. We underscore the authors’
comment that “more elaborate structural models - - - often can give deeper insight
into the data,” and would suggest further that such structure should generally be
accounted for even in routine approaches to data analysis.
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1. General. The paper under discussion by Diaconis and Efron (1985) (DE)
is impressive and stimulating. I would like to bring forward here a few general
questions to which it gives rise and then take a brief look at coherent inference
for the models employed by DE.

Toward the end of Section 1, DE state that their “goal is to extend the
usefulness of x2” I would wish to ask first, how should x 2 be used? On the one
hand, inferences based on tail areas, rather than probability densities or masses,
are not coherent. On the other hand, tail areas are naturally interesting facts
about the data (and about other nonoccurring data values). I do not know the
best answer to this question and I would personally prefer to keep both kinds of
tools in our kit.

Recall that the coherent inference in favor of a hypothesis H versus its
alternative H is given by the Bayes factor B(H, H) (Jeffreys, 1939; Good, 1950;
Edwards, Lindman and Savage, 1963; Dickey and Lientz, 1968). This is the
ratio of the coherent posterior odds P(H | x)/[1 — P(H|x)] to the prior odds
P(H)/[1 — P(H)] > 0. This ratio depends on the data x, but not on the prior
odds, so it serves as a sufficient report of the data for inference regarding H.
The Bayes factor also equals the ratio of predictive densities, B(H, H) =
p(x| H)/p(x| H), each a function of the respective conditional prior distribution,
p(x|J) = [ p(x|=x) dP(x|J), J = H, H. The dependence on conditional
uncertainty may necessitate a tabular or graphical report of the Bayes factor
(Dickey, 1973).

Technical point. In the case of a sharp hypothesis defined by a point value of
a constraining parameter, H: n = 0, where # = n(=), it is tempting to use a single
joint density g () to specify both of the conditional prior distributions, p(x | H)
=g(r) and p(w | H) = g(x | n = 0), where g(= | 1) is a lower-dimensional density
obtained in the usual way by conditioning in g(x). For one thing, Savage’s
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