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ASYMPTOTIC NUMBER OF ROOTS OF CAUCHY LOCATION
LIKELIHOOD EQUATIONS!

By JAMES A. REEDS
AT&T Bell Laboratories

The number of local maxima of the Cauchy location likelihood function
which are not global maxima is asymptotically Poisson distributed with mean
parameter 1/7.

1. Result. Let X;, X;, --+, X, be iid random variables with density
1/x(1 + x%) and let R, = R.(Xy, -+, X.) be the set of roots of the “Cauchy
location likelihood equation”:

n 9 1 _
R, = {0' L 5 log (1 + (X; —0)?) 0}‘

How many elements has R,; how many roots are there? The standard maxi-
mum likelihood theory guarantees that one of the elements of R,—the maximum
likelihood estimate—is close to 0, and that all other elements are bounded away
in probability as n — o« from 0. But it does not tell us how many elements there
are.

Let r, = card(R,) be the number of roots. With probability one the likelihood
equation has only simple roots, which are alternately local maxima and minima
of the likelihood function. Hence r, is odd, there are Y2(r, + 1) local maxima and
Y(r, — 1) local minima. Of the local maxima, one is the global maximum: the
maximum likelihood estimate. Let us call the other local maxima “false maxima”.
These ¥2(r, — 1) false maxima are an embarrassment for the maximum likelihood
method of estimation; the following theorem shows that their number is really

quite small.

THEOREM 1. If Xy, Xs, - - - are iid with density 1/x(1 + x2), then for each k,
lim, o P (Y2(r, — 1) = k) = e~V /z*E),

That is, the number of false maxima of the Cauchy likelihood function is
asymptotically Poisson with parameter 1/7 = .31831. This agrees with computer
experiment results obtained by Barnett (1966), part of whose data are given in
Table I. ‘

2. Explanation. This result rests on the fact that in the limit all the local
maxima are in one-to-one correspondence with those data points which are
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TABLE 1
V. D. Barnett’s Monte Carlo Results

Empirical relative frequency of number of local maxima

o MonteCarlo e
1 2 3 4 5
3 18000 646 .262 .092 cee cee
5 3000 652 .268 .069 011 .001
7 3000 670 .261 .058 .009 .001
9 2250 673 .269 .052 .005 e
11 1000 .706 245 .036 .012 .001
13 931 698 255 .039 .009 cee
15 1000 .696 262 .039 .002 .001
19 784 707 .245 .043 .005 “ee
o Exact limiting 727377 231531 .036849" 1003910 .000311
distribution

greater than 2n in absolute value. In particular, the proof of the theorem is
broken into the following steps:

1.

If 6 is a local maximum there is some i for which | X; — 0| < 1. We may think,
then, of each observation X; as having a nearby local maximum in potentiam.
Depending on the configuration of the other observations, this potential local
maximum may or may not become an actual local maximum. If there are
several observations X; close to X;, then the potential local maximum at X;
will not be expressed; if the observation X; is isolated from the other obser-
vations, its potential maximum is likely to manifest itself as an actual
maximum. We will see that the false maxima will typically occur in the sparse
outlying fringes of the observed scatter of the data X; and not in the crowded
central portion.

. The classical Wald theory of the consistency of the maximum likelihood

estimate rules out the occurrence (in probability) of any false maxima in the
range [—e, e]. This is explained in Perlman (1983).

The central limit theorem, coupled with a fluctuation inequality for the
sample score function, makes the number of false maxima in the ranges
[-n(log n)™, —e] and [e, n(log n)™] (where A is a certain fixed positive
constant) tend to zero (in probability).

. Chebyshev’s inequality, applied to the sample score function, shows that the

number of false maxima in the ranges [n¥% 2n — vn] and [-2n + Vn, —n**]
tends to zero in probability.

. Rouché’s theorem and Chebyshev’s inequality show that with probability

tending to unity each observation greater than 2n — Vn in absolute value has
associated with it a unique false maximum.

But the number of such observations is exactly a binomial random variable
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with parameters n and

_zf“ 1~ L
=7 m—val+x2 an’

and approximately Poisson with parameter A = 1/x.

3. Proofs. For ease of presentation, each of the steps of the outline in the
preceding section is given as a separate proposition, each with its own little proof.
First, however, general notations. Let ¢(s) = 2s/(1 + s2?) and let ¥(8) = (1/n)

%, ¢(X; — 0). Let a S b be shorthand for a = O(b). Let a = b be shorthand for
“a s band b s a”. The set of roots ¢ is the set R, ; the downcrossings of zero by
¥ are the local maxima of the likelihood function. Elementary but tedious

calculations yield
8(|s—t|2—st—4)
S+ +4)(|s—t|2+4)

1) EF®) =2, n Cov@ls), ) =

and
n Var(J(s)) = 2/(s* + 4).
Let ¢}(0) = X ix; ¢(X; — 0) so that for each i,
¥(0) = (1/n)y¥(6) + (1/n)¢(X; — 0).
Then :
Ey(0) = 2(n — 1)6/(6*> + 4) = —2n/0
"if n and 6 are big, and
Var ¢*(0) = 2(n — 1)/(82 + 4) = 2n/6?
if n and 6 are big.

PROPOSITION 1. If 0 is a local maximum there is some i for which | X; — 0|
=<1

ProOOF. If #is alocal maximum of the likelihood function, it is a downcrossing
of zero by ¥, and hence (9/30)¢(8) < 0, which can happen only if, for some i,
(8/00)¢(X; — 0) = =y’ (X; — 0) = 0. But ¥’ (s) = 2(1 — s?)/(1 + s%)® which is
=0onlyif [s|]=1,s0|X;—0| =1.

PRrROPOSITION 2. (Perlman, 1983). For each finite, positive K,

card([-K, K] N R,) - 1 a.s.

PrROOF. Banach space strong law of large numbers.

PROPOSITION 3. There is a positive constant A such that the number of roots
of V¥ in the ranges [e, n(log n)™] and [—n(log n)™4, —e] tends to zero in probability.
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ProOF. We will exhibit a function A(6) such that A(0)y(X; — 0) obeys the
central limit theorem in the Banach space C[e, «] i.e., so that Van(A\¢ — EAY)
converges in distribution to a continuous Gaussian process on [e, ®]. A similar
argument applies on [—o, —e].

Then

limy oo P (8UPeso=e | N(0)F(8) — EX(0)F(0)| < log n/vn) = 1.
Hence, with probability tending to unity as n — o, the following argument
applies: For any root 8* of ¥, we have
N(O*) | E¥(0*)| = N(6*)20%|/(4 + | 6*|*) < log n/n,
and hence | 0* | = k(n) where
k(t) = inf{x > 0: 2\ (x)x/(4 + x2) < log t/t}

is a function whose asymptotics may easily be derived in terms of A. It turns out
that A(0) = 602(log 0)~2 will do, and then k(t) may be underestimated by
t(log t)71°. We may thus take A = 10 in the statement of the proposition.

To see that the central limit theorem applies, we verify a fluctuation inequality.
According to Hahn (1977), it suffices to check that
(2) (s, t) = Var(A(s)y¥ (X1 — s) — M&)¥(Xy — t)) S f(In(s) — n(®)])

where 5 is a homeomorphism of [e, »] onto [0, 1] and where f(y) is a nonnegative,
nondecreasing function which satisfies [J y~3%f?(y) dy < c. In particular, let
n(s) = 1/log s and let f(y) = y/¢(y), where ¢(y) is 1 if y > 1/e and ¢(y) =
|log ¥ |® if y < 1/e. Using formula (1) we see that

2|s — t|? {)\2(3) )\2(t)+ 8A(s)A(2) }
|s—t|*?+4 (s>+4 t2+4 (s>+4)(t2+4)

v(s, t) =

2
tEFDE+)(s—t°+ 4

A few terms in this big expression dominate the others; to see which they are we
use the following properties of \:

{16(X(s) — A(£))® + 4(tA(s) — sA(2))?).

(1) A (s) S A(s)/s. (i) %(A(s)/s) S A(s)/s%

(ii1) A’(s) is decreasing. (iv) dis( A(s)/s) is decreasing.

Thus
IXNGs) = A@&) |2 =]s —t|2IN@W|*=|s—t[2{IN(8)|*+ | N (2)]%
S |s = t12{IA6)/s|?+ | N@®)/t]?)

for some u between s and ¢
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Similarly, for some u between s and ¢,

AG) _ W)
s t

2
= s%t?|s — t|*

4 Aw)|*

_ 2 _ o242
| tA(s) — sA(t)] s“t i

A(s)® | (@)
532t2|s—t|2{—(:4l+——%4)—}.

As a result,

215 —t]% [A%(s) | A%() 8A(s)A(2)
7(s’t)s|s—t|2’+4ls“’+4+t“’+4+(s2+4)(t2+4)
and even
20s —t]% [A%(s) | A%()
(AR e panys any i ey £

Since 1/log t decreases, since A(t)/t decreases, and since

|s—t]> _  min(l, |s —t|)?
|s—¢t|2+4 1+ min(l, |s — t])?

it suffices to check that

0 >\2(s)<f< 11 )
14+ 6%s>+ 4" "\log(s) log(s + 0)

for all s = e and all 6 in [0, 1].
Let a(s) = Yioo(1/(s log(s)?). Then it is easy to verify that

11
log(s) log(s + 0)

fa(s) <

for all s = e and all 0 in [0, 1]. Since f is nondecreasing it suffices to check that

9% A%s) _ _ _ba(s)
T+ 0 5 ~f0a) = o

viz., that
6 (8a(s))(8/(1 + 6%))N*(s)/5* = as).
From the dei.nition of a(s) and of A(s) it suffices to check that
¢(0a(s))6/(1 + 6%) < (log s)*.

To check this last inequality note that ¢ (x) = max(1, |logx|3) s 1+ |logx|®
and so ¢(0a(s)) S 1+ |log 0|% + |log a(s)|® and so it suffices to check that

6/(1 + 62))(1 + |log 8] + |log a(s)|?) = (log s)*.
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Trivially
/(1 +6%)1 + |log 6|3) s 1 = (log s)*
so it finally suffices to check that
|log a(s)|® s (log s)*
which is clearly true by the definition of a(s).
To pfove Proposition 4 we work with the functions ¥ ¥. Recall that
2m—1)0  2n

* = — ~
Eyr©) 0% + 4 0
if n and @ are big, and
2(n—1) 2n
* =2 2
Var ¥70) ==pr g * 32
if n and 0 are big. If Vn < s < 2n — Vn then
Ey¥(s) < -1,

and if s > 2n + vn then
-1 < Ey¥(s) <O.
In either case
(1+ Ey¥(s)? = (2n — 5)7/s

Hence, by Chebyshev’s inequality, if vn <s < 2n — vn,

P(y¥(s) = — 1) s 2n/(2n — s)?,
and if s > 2n + Jﬁ,

PW¥(s) = —1) s 2n/(2n — 5)?,

and

ll

2n s’ 1
* * =00 =
Py¥s)=1) = PY¥(s)=0) = It o
Similar formulae hold for negative values of s.

PROPOSITION 4. Let A; be the event that n** < | X;| < 2n — vn and that
there is a false maximum within distance 1 of X;. Then P(A; U A, U --- A,) —
0asn— o,

PrROOF. Suffices to show that nP(A;) — 0 as n — . Let A(x) be the event
that there is no false maximum within distance 1 of x. Let B(x) be the event that
| X; — x| >1 for all j > 1. Let C(x) be the event that yf(x + 1) <—1if x >0 and
that ¥y¥(x — 1) > 1 if x < 0. For all x the intersection of B(x) and C(x) is
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contained in A (x) and so
1— PA(x)) <1- PB(x)) +1— P(Cx)).

Thus

—lf dx _ _lfl_P(A(x))
PA) == | TS Phot AX) | Xi=x) == | == ds

1 — P(B(x)) f 1 — P(C(x))
SL 1+ x? dx + s 14+ dx

where S = {x: n¥* < | x| < 2n — vn}.

But
1 da \*!
2\ _2(n—1)
- (1 ) wx? sJc2

since n < x%
Similarly, if x > 0,

1—-P(C(x)) =PWi(x+1)=-1) s2n/(2n - x)?
andif x <0
1 - P(C(x)) < 2n/(2n + x)?

dx (2n 2n 1
P(4,) SJ.;I + 2° <F+ (2n — |x|)2)=°<ﬁ)‘

PROPOSITION 5. The expected number of observations X; such that 2n — Vvn
< | X;|, which do not have precisely one false maximum within distance 1 of X;,
tends to 0 as n — .

SO

ProoF. We use Rouché’s theorem to count roots in the complex plane.
Let v be the contour in the complex plane formed by the two circular arcs
(V2" — i: n/4 < 0 < 3x/4} and {V2e” + i: 5w/4 < 0 < Tx/4}. v encloses the
origin, is symmetric with respect to complex conjugation, and | ¢(s)| = 1 for all
s € 4. Let ¥ + x denote the translate of y by x sothat y + x ={s€ C:s—x €
v}. Let R(5, f) denote the number of roots of f enclosed by the contour é. Since
the rational function ¥ (s) has real coefficients its complex roots occur in complex
conjugate pairs. Hence if R(y + x, ¥) = 1 the root of ¥ enclosed by v + x is real.

Say the observation X; is bad if X; > 2n — vn and if there is not exactly one
root within distance 1 of X;. Let B, be the number of such bad X;; we show that
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EB, — 0. Clearly

n lf‘” 1 T =
E'anzz=l1r 2n_‘/;1+x2P(R('Y+Xu¢)¢1|Xt—x)dx

Snf _IQP(R(’Y+X1,J)¢1|X1=x)dx.
2n—-vn X

We use Rouché’s theorem to estimate the probability that R(y + X, ¢¥) # 1.
Compare the function ¥ (X; — s) with n_nf(s) on the contour v + X;. If for all
sE€ v + X; we have |Y(Xy —s)| > |ny(s) —¢(X; — 8)| = | T ¥(X; — 5)]|
then

R(y + X1, ¥) = R(y + X1, ¥(X; — 5)) = R(v, ¥(=s)) = L.
But |¢(X; —s)|=1foralls € vy + X; so
PR(y+ Xy, ¥) #1| X, = x)
< P(supsey+x, | n¥(s) — ¥(Xi — s)| = 1| X; = x)

= P(supsey+x| D=2 ¥(X; —8)| = 1)

< P(XY7-2 supseq | ¢(X; — s + x)| = 1).
Let Y, (x) = ¥ }=2 supse, | ¢ (X; — s + x) | . We have shown that

“ n ® 1
EB, s J;n—& e P(Y,.(x) =1)dx = j;_l/‘/’_l P P(Y.(nt) = 1) dt.

We show in Lemma 3 that for each ¢t # 0 the random variable
Y.(nt) converges in probability to 2/|t|, and hence for values of ¢t > 2,
lim, ,»P(Y,(nt) = 1) = 0. Applying the dominated convergence theorem, we see
that lim, ,.EB, = 0.

This shows that with probability tending to 1 all observations greater than
2n — v/n in absolute value are within distance 1 of exactly one root. The same
calculation also shows that these roots are downcrossings, as follows. We just
saw that with probability tending to 1 for all X; with | X;| > 2n — vn we have

Ing(s) — ¥(Xi — 8)| < |¢¥(Xi — 5)|

for all s € v '+ X, including s = X; = 1. Thus y¥(s) has the same sign as
Y(X; — s) for s = X; + 1. Since ¥(1) = 1 and ¢ (—1) = —1 we know ¢(X; — 1)
> 0> ¢(X; + 1) and hence the root near is X; is a downcrossing.

LEMMA 1. Let X be a Cauchy random variable. Then
lim, .E|X|/1+ |X—-5s]|)=0.

ProOF. Easy.

LEMMA 2. Let f(x) = g(x)/(1 + | x|) be bounded. Suppose lim,,|_«g (x) = a.
Let X be Cauchy. Then lim,_..Enf /(X —nt)=a/|t]|.
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PROOF. |x|f(x) is bounded so the dominated convergence theorem shows
E|X—nt|f(X—nt) > a. By Lemma 1,

| X| | X|

Trix—m EX M SErax 0

E|X|f(X—nt)=E
so E|nt| f(X —nt) - a.
LEMMA 3. Ift# 0 then Y,(t) — 2/| t| in probability.

PROOF. Let f(x) = sup,e,|2(s — x)/(1 + (s — x)?)|. Then g(x) = (1 +
|x])f(x) is bounded and lim ;| .g(x) = 2. But Y,(x) = Y7 f(X; — x) so
EY,(nt) = (n — 1)Ef (X, — nt) — 2/| t| by Lemma 2. Further,

Var Y, (nt) = (n — 1)Var f(X; — nt) < (n — 1)Ef*(X, — nt) - 0

by another application of Lemma 2.

PROPOSITION 6. The distribution of the number of observations exceeding 2n
— /n in absolute value converges to the Poisson distribution with parameter 1/x.

PROOF. The number of such observations has a binomial distribution, with
expectation n times the symmetric tail

l f—2n+\/;+ fm 1 dx
s —c0 on—-vn) 1 + x2 )

Each of the two integrals is clearly asymptotically proportional to 1/2n; thus the
expectation of the number of such observations tends to 1/x.

4. Poisson process limit. The proof of Theorem 1 actually yields more
detailed information than claimed in Theorem 1. Let » be the measure with
Lebesgue density function p(x) = (1/7)(1/x%) if | x| > 2, and p(x) = 0 otherwise.
Let N, (t) be the number of false maxima less than nt.

THEOREM 2. As n — o, the process N,(t) converges in distribution to the
Poisson process on the real line with expectation measure v.

5. Generalizations. Results similar to the present ones can be derived in
many other cases. One can both replace the Cauchy distribution of the data by
some other iid model and replace the maximum likelihood method of estimation
by another M-estimate method. In many cases simpler arguments than the ones
used here are sufficient to count the number of false maxima. Typically the law
of large numbers methods alone are sufficient. Occasionally the central limit
theorem method of Proposition 3 is also needed. It is felt that the present Cauchy
maximum likelihood case is harder than most of the other cases of interest to
statisticians.
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