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We would like to thank Professor Huber for this far-reaching yet penetrating
discussion of projection pursuit methods.

Our comments will touch upon three areas: inference, the relation of PPDE
to the Iterative Proportional Scaling algorithm, and the extension of PPR models
to other settings.

1. Inference. Professor Huber discusses only briefly (Section 21) the prob-
lem of inference for PP models. But if PP is to be used for data analysis, we feel
that this is an important question. We will concentrate on the PPR model,
although qualitatively our findings should apply to PPDE and perhaps to other
PP procedures as well. Suppose that we have fit a one-term PPR model of the
form y = g(a’x) to a set of data with p predictors and n observations. An
important question is: Is the direction a really “significant,” or just an artifact of
our search over all possible directions? We can answer this by comparing the
observed decrease in the corrected sum of squares D =Y (y; — 7)2— X (y: — 9:)?
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to its null distribution. To simplify the discussion, let’s assume that D has been
scaled by the true error variance. In the special case in which g(*) is forced to be
linear, standard regression theory gives us the exact null distribution. Then
g(a’x) is just the least squares solution, and assuming that the y’s are normally
distributed, D is distributed x 3. For example, if p = 5, this means that D must
be at least 11.07 to be significant at the 5% level (one-sided). From this we can
see the (inherent) adjustment for searching over all possible linear combinations
z = a’x: a single predictor that produces a decrease of 11.07 is significant at
<.1%! And the larger p is, the more significant z has to be.

In the projection pursuit model, we would expect this effect to be at least as
large. Note that in the case when the g(+) was linear, the degrees of freedom of
D(p) is just the number of independent parameters in the direction (p — 1) plus
the number in the linear fit (2) minus 1 for the constant model. Thus for a PPR
model, we might guess that the degrees of freedom is p — 1 plus the number of
degrees of freedom on the smooth minus 1. Cleveland (1979) and Tibshirani and
Hastie (1984) provide a method of computing the degrees of freedom of a smooth:
for a running lines smoother, expressible in the form y = Sy, the degrees of
freedom is exactly tr(S). The smoother matrix S depends on the abscissa values
and the span of the smoother (but not on y). (We use the term “degrees of
freedom” to denote the mean of the distribution of D. This distribution is actually
a little more spread out than the corresponding x 2 distribution.)

We found the null distribution of D by simulation to find out if the degrees of
freedom do indeed add. To fix attention on a set of covariates, we used the ozone
concentration data of Breiman and Friedman (1984), considering only the five
variables arrived at in their paper. We generated data from the null model
yi = & ~ 4(0, 1), found the first direction and computed D. This was done 500
times, and the average value of D was computed. Figure 1 (solid curve) displays
the results, for span .1 and larger spans. Now tr(S) was 11.54 (this number is
actually based on the direction a’ = (.80, —.38, .37, —.24, —.14), but depends very
little on the direction used), hence if the degrees of freedom add, the expected
value of D should be (5 — 1 + 11.54 — 1) = 14.54. This number and the numbers
for larger spans are shown in Figure 1 (broken curve). For smaller spans, the
actual degrees of freedom is almost twice the expected number! As the span
increases, this effect starts to disappear. There is some kind of interaction
between the directional search and span size, an effect that would be important
to understand.

Determining the variability of a PPR fit is another (closely related) problem:
the bootstrap (Efron, 1979) can help us here. Figure 2 shows the estimated
function from a single PPR term for the ozone concentration data, the span of
the smoother fixed at .1. This is the smooth for the direction a’ = (.80, —.38, .37,
—.24, —.14), and explained 72% of the residual variation. Figure 3 shows smoothed
bootstrap histograms of 200 values of a*. Each was obtained by sampling with
replacement from the tuples (x;, y1), ---, (Xa30, ¥330) and fitting a one-term
PPR model. Also shown (dotted histograms) are the results for linear g(*). (Note
that —a* gives the same fit as a*; we chose the one having the smallest angle
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FI1G. 1. The solid curve shows the average decrease in residual sum of squares when we fit a one-term
PPR model to null data, as a function of the span of the smoother. The broken curve is what we obtain
by adding the degrees of freedom of the direction and the smooth.
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FIG. 2. The estimated smooth function for the first term in the PPR model.

with 4.) The PPR model shows only slightly more variability than the linear
regression model; interestingly, some of the distributions are offset from the
original &; (vertical spikes). Figure 4 shows the results for the second term of a
two-term PPR model, which explained another 6% of the residual variation (the
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FI1G. 3. Smoothed histograms of the bootstrapped coefficients for the one-term PPR model. Solid
histograms are for span .1; the dotted histograms are for linear g(*).
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Fi1G. 4. The histograms of the bootstrapped coefficients for the second term in the PPR model,
span = 1.
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first term, somewhat surprisingly, looked almost identical to Figure 3). The
histograms show a great deal of variability. A. C. Ehrenberg notes that many
standard regression textbooks tell us on one page not to interpret multiple
regression coefficients, then on the next page, they give a data example and
interpret each of the coefficients! These bootstrap results make us even more
cautious about interpreting the directions of a PPR model.

2. PPDE and log-linear models for contingency tables. There exist
strong analogies between PPDE and PPDA and the Maximum Likelihood
Estimation (MLE) of log-linear models for contingency tables (see Fienberg,
1977, for a full practical treatment of the latter, and Bishop et al., 1974, for a
more theoretical treatment).

A k-way contingency table can be represented by a k-dimensional array X,
where x(iy, i3, ---, i) is the proportion of observations (out of N) occurring
simultaneously in category i; of variable 1, i, of variable 2, etc. There is a
corresponding true array of probabilities P and the data are assumed to be a
multinomial sample from this model. The class of log-linear models £ specify
models for P of the form g(iy, --- , i) = &llgy,.... (0, - -+, 3,) where by, --- , I,
is any subset of the variables 1, - .- k. The following are examples of log-linear
models for the array P:

1) g(iy, - -+, ) = gog1(i1): one nonuniform marginal

2) gy, -+, ix) =8&& (1) - ge(ix): complete independence.

3) gy, -+, ix) =8o812(i1, Ba) « - - gualln, i) - - &k-1k(le-1, k) no third-order
interaction.

There exists in fact a hierarchy of models ranging in complexity from the
uniform model g, to the saturated model P itself. The functions g, are discrete,
e.g. 81(i1) has I, values: g,(1), g:(2), ---, g (), where I, is the number of
categories in variable 1. These I; values are regarded as parameters.

Typically the functions are estimated by maximizing the multinomial like-
lihood, which corresponds exactly to minimizing an estimate of the Kullback-
Leibler distance, or Relative Entropy:

E(P,G) = % x(ia, -+, i)log x(ir,.ix)/8Gi,....ix)

as in Section 13-15 in Huber. The Iterative Proportional Scaling Algorithm (IPS,
Deming and Stephan, 1940) solves the likelihood equations. For just one term,
as in model 1 above, the algorithm finds g, so that model and data marginal agree
in coordinate 1. This is exactly the PPDE estimation procedure of marginal
adjustment as outlined in Dr. Huber’s paper, and as described in Friedman,
Stuetzle and Schroeder (1984). For models such as 3 above with many terms, the
likelihood equations require that the particular model and data marginals agree.
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For example, since the term g;» is included, one set of MLE equations is:
g, iy +,+, -+, +) = x(i3, 15, +, +, - - -, +). A similar set occurs for each term
in the model, and is a direct consequence of MLE in the exponential family. The
iterative proportional scaling algorithm cycles through adjusting each model
marginal in turn, until at convergence all the constraints are satisfied. This
iterative proportional scaling corresponds exactly to the back adjustment proce-
dure of Friedman et al. for continuous data. A typical procedure in log-linear
modeling is to select the appropriate model terms in a manual forward or
backward stepwise fashion. An automatic search would correspond to discrete
projection pursuit, where the “directions” are restricted to this special set of
marginal “projections.”

Diaconis (1983) defines the notion of a general projection for discrete data.
He uses the Radon transform on fairly arbitrary partitions of the original table.
He proposed selecting a projection which minimizes the marginal relative entropy,
or the projection “furthest from uniform.” This corresponds exactly to selecting
the term in a one-term log-linear model by MLE, where the set of possible terms
includes these general projections (the relative entropy factors into constant +
marginal entropy). One could then build up a discrete PP multiplicative model
by successively adding these general projection terms, with fitting performed by
the IPS algorithm.

3. Generalized projection pursuit regression. Generalized Linear
Models (Nelder and Wedderburn, 1972) are a class of likelihood based linear
regression models defined in particular for the exponential family. The mean u
is linked to the vector of covariates x via the link function g: g(u) = 8’x. An
example is logistic regression in which the mean is p, the probability of success,
and g(p) = logit(p) = log(p/(1 — p)) = B8’x. The models are fit by maximum
likelihood. Hastie and Tibshirani (1984) generalize this class to include additive
models of the form g(x) = Y s;(x;) where s;(*) are general smooth functions. The
functions are estimated using the Local Scoring procedure, which stated simply
amounts to using the Fisher Scoring procedure to minimize the expected log-
likelihood. They also discuss the simple modifications needed to fit generalized
projection pursuit models of the form

_ &) = Xt se(aix)
using local scoring. This allows us to do PPR in a large class of problems that
include logistic regression, the Cox regression model for censored data, constant
CV models and the whole class of Quasi-Likelihood models as discussed in

McCullagh and Nelder (1983).

Acknowledgements. We thank Leo Breiman for allowing us to use his air
pollution data, and Jerry Friedman for the use of his PPR program SMART and

helpful discussion.
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Professor Huber presents a most interesting paper reviewing the broad area
within multivariate data analysis now encompassed by the term “projection
pursuit.” My own comments relate to recent research in this field undertaken at
the University of Bath, UK, by myself and Professor Robin Sibson. Our work
focussed on the basic projection pursuit algorithm thought of as an exploratory
tool applied to point clouds—as a method for finding “interesting” low-dimen-
sional “views” of a multivariate data set—in the spirit of Friedman and Tukey
(1974); as such, these comments are most relevant to Section II of the current
paper.

Initially, we had access only to Friedman and Tukey’s pioneering paper and
during much of the course of our work remained unaware of the more recent
work by Professors Huber, Friedman and others. Bearing this in mind, the close
agreement between many of Professor Huber’s ideas and our own, which are
outlined below, seems quite remarkable.

The particular implementation of the projection pursuit method described by
Friedman and Tukey allowed considerable scope for improvement on both
theoretical and practical grounds. Consequently our aim was to provide a new



