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PROBABILITY-CENTERED PREDICTION REGIONS!

By RubpoLr BERAN

University of California, Berkeley

Consider the problem of constructing a prediction region D, for a
potentially observable variable X on the basis of a learning sample of size
n. Usually, the requirement that D, contain X with probability «, condi-
tionally on the learning sample, does not uniquely determine D,. This
paper develops a general probability-centering concept for prediction re-
gions that extends to vector-valued or function-valued X the classical
notion of an equal-tailed prediction interval. The dual requirements of
probability centering and specified coverage probability determine D,
uniquely. Several examples illustrate the scope and consequences of the
proposed centering concept.

1. Introduction. Suppose a potentially observable variable X and a
learning sample Y, of size n have a joint distribution that depends upon an
unknown parameter 6. The future variable X can be real-valued, vector-val-
ued or function-valued, and the parameter 6 can be finite- or infinite-dimen-
sional. The problem is to construct a good prediction region D, for X on the
basis of the learning sample Y,.

A basic requirement on D, is that the conditional coverage probability for
X, given Y,, should converge in probability to a preselected value a as n
increases. Authors who have expressed this design goal include Box and
Jenkins (1976), Butler and Rothman (1980), Butler (1982), Stine (1985) and
Beran (1990). Such convergence in conditional coverage probability determines
the asymptotic form of a one-sided prediction interval D, for a real-valued X:
the critical value must estimate consistently an appropriate quantile of the
conditional distribution of X given Y,.

On the other hand, a two-sided prediction interval for real-valued X is not
determined by its coverage probability alone. An additional ‘‘centering’’ condi-
tion is needed. A familiar probability-centering concept for two-sided pre-
diction intervals specifies that the conditional probability, given Y,, of X
exceeding the upper endpoint of D, should equal the conditional probability of
X falling below the lower endpoint. This type of centering is relatively easy to
achieve, at least asymptotically, and can be generalized to prediction regions
for vector-valued or function-valued X. Such generalizations are the topic of
this paper.

Alternative centering concepts for ‘two-sided prediction intervals rely on
notions of shortest expected length or on notions of most concentrated support
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1968 R. BERAN

for the conditional distribution of X given the learning sample. Butler (1982)
gives an instructive example of the latter approach; this is extended to a
multivariate setting in Butler, Davies and Jhun (1993). Another multivariate
approach, the method of cuts of J. Tukey and D. A. S. Fraser, is described in
Section 2 of Guttman (1970).

The basic idea in this paper is to construct prediction region D, as a
collection of simultaneous one-sided prediction intervals for suitably chosen
real-valued functions of X, such as linear functionals of X. Requiring the
marginal coverage probabilities of these one-sided intervals to be equal defines
the probability-centering of D, . Section 2 gives the main theoretical results
and several illustrative examples for vector-valued and function-valued X.
Section 3 discusses numerical algorithms needed to construct probability-
centered prediction regions. Proofs are gathered in Section 4.

2. Probability centering. This section defines probability-centered pre-
diction regions quite generally and shows how to construct them when the
learning sample is moderately large. Several examples illustrate the scope of
the theory. Numerical aspects are discussed in Section 3.

2.1. Design goals. Suppose the variable X to be predicted and the learn-
ing sample Y, have a joint distribution P, ,. The unknown parameter 6 lies in
a metric space @. Associate with X a random process Z = {Z(u, X): u € U}
whose index set U is also a metric space. The prediction region D, for X is
assumed to take the form

(2.1) D,={x:Z(u,x) <c,(u,Y,),VuecU}

where the critical values c,(«,Y,) can depend on the learning sample Y.
Evidently, D, is equivalent to simultaneously asserting the prediction regions

(2.2) D, ,={x:Z(u,x) <c,(u,Y,)}, ueU.

The problem is to select the critical values {c,(«, Y,)} in a reasonable way.

Structure (2.1) for prediction regions and possible choices for the process Z
are illustrated by Example 1 and by the additional examples in subsection 2.3.
The reader may wish to glance at these before continuing any further.

The performance of prediction region D, can be assessed through the
coverage probabilities of D, and the component regions {D, ,: u € U}. Let
P,(-1Y,) denote the conditional distribution of X given Y,. The conditional
coverage probability of D, given Y, is

(2.3) CP(D,lY,,0) = P,(X € D,|Y,)
and the (unconditional) coverage probability of D, is
(2.4) CP(D,l|6) = E,CP(D,|Y,,6),

where the expectation is calculated with respect to the distribution @, , of the
learning sample Y, . The notation CP(D,, ,Y,,8) and CP(D, ,|6) will similarly
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denote the conditional and unconditional coverage probabilities of the compo-
nent prediction region D, ,,.

The two design goals for a prediction region D, that were stated in the
Introduction can now be formulated technically:

DG1 (Conditional coverage probability of D,). Choose the critical values
{c,(©,Y,)} in (2.1) so that

(2.5) CP(D,lY,,0) - a

in @, ,-probability as n increases. The value of a € (0, 1) is fixed in advance.

DG2 (Conditional probability centering of D,). Subject to DG1, choose the
critical values {c,(«, Y,)} in (2.1) so that

(2.6) sup |CP(D, ,IY,,6) — B(a,0)| > 0

uelU

in @, ,-probability for some constant B(a, 8) which does not depend on u but
can depend on («, 6).

Note that DG1 and DG2 imply the analogous convergences for uncondi-
tional coverage probabilities. The interpretation of DG2 as a probability-
centering condition requires a suitable choice of the process Z that appears in
(2.1) and (2.2). Basic is the requirement that the variables {(Z(u, X): u € U}
each measure logically similar attributes of the variable X to be predicted. The
following example illustrates this point and the link with classical normal-model
prediction ellipsoids.

ExampLE 1 (Multivariate normal model). Suppose that the {X;: i > 1} are
iid r-variate N(u,3) random column vectors, the parameter 6 = (u, 3) being
unknown, with 3 positive-definite. The learning sample is Y, = (X,,..., X,,)
and the vector to be predicted is X =X, ,,. Let 6, = (X,, S,) denote the
usual estimate of 8 = (u, 2). A classical prediction ellipsoid for X is

(2.7) D, = {x:(x - X,)S; (x - X,) <d(a)},

where the critical value d,(a) is the ath quantile of the F distribution with r
and n — r degrees of freedom multiplied by the factor (1 + 1/n)r(n — 1)/
(n — r). For the underlying distribution theory, see Theorem 5.2.2 in Ander-
son (1958). ‘

This prediction ellipsoid for X can be rewritten in the form (2.1) as follows.
Let U ={u € R": |u| = 1} be the unit sphere, and define the process Z on U
by

(2.8) Z(u,X)=uwX, ueU.

In this example, Z is a Gaussian process on the sphere U. By the derivation of
Scheffé’s method for simultaneous comparison of linear combinations [cf.
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Miller (1981), Section 2 of Chapter 2], Definition (2.7) is equivalent to
(2.9) D,={x:Z(v,X)<uX, +s,,dY*(a),VuecU},

where s2 , = 'S, u. Thus, the prediction ellipsoid (2.7) for X is the intersec-
tion of the uncountably many prediction half-spaces
(2.10) D,,={xux<uX, +s,,d/*(a)}, uel.

n,u“%n

Let ® denote the standard normal cdf and let yx, denote the cdf of the
chi-squared distribution with r degrees of freedom. By direct analysis of (2.7)
and (2.10),

CP(D,lY,,6) - a,
(2.11) sup ‘CP(Dn,u|Yn,0) - <I>{[X,“1(a)]1/2}| -0
uelU

in Q, ,-probability. Thus, the prediction ellipsoid (2.7) meets both design goals
DG1 and DG2, with Z given by (2.8) and with

(2.12) B(a,0) = o{[x7 ()]}

in (2.6).

__In what way is the prediction ellipsoid D, probability-centered? Consider
D the half-space complementary to D, ,. The boundary of D, , is a
hyperplane tangent to the ellipsoid D,,, and 5,,7 ., 1s thus a supporting half-space
for the ellipsoid D,. From (2.11), CP(E,L, .Y, 8) converges in probability to a
limit which stays the same for every u (i.e., for every supporting half-space). It
is in this sense that prediction ellipsoid D, is asymptotically probability-
centered.

For the special case of real-valued X, D, reduces to a prediction interval,
probability-centered in large samples as described in the Introduction. For
two-dimensional X, Figure 1 illustrates how the prediction ellipse D, is
probability-centered.

n,u’

2.2. Characterizing critical values. The explicit calculation of prediction
region D, in Example 1 drew on the independence and multivariate normality
of X and Y,. The Proposition stated in this section is much more general. It
characterizes the asymptotic form of critical values {c,(u,Y,)} for D, that
achieve design goals DG1 and DG2:

Let L(U) denote the space of all functions on U which take values in [0, 1],
metrized by the supremum norm || - || taken over U. Without loss of generality,
assume that the sample paths of the process Z(-, X) belong to L(U). This
property can always be achieved by a strictly monotone transformation of the
{Z(u, X): u € U} without changing the form (2.1) of D,. The following
regularity assumptions are made on the joint distribution of (X, Y, ). For ways
to handle measurability issues concerning infima, see Pollard (1984).
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Fic. 1. A probability-centered prediction ellipse. Each supporting half-plane has equal probabil-
ity content.

AssumpTioN A. There exist statistics {V, = V,(Y,): n > 1}, cdf’s {4 (-, 0, v):
v € U} and a functional B(:,0,v) on L(U) such that, for every 6, the
following hold:

() The {V,} are tight under @, ,,as elements of some metric space.
(ii) For every x € [0,1] and every u € U,

(2.13) P Z(u,X) <xlY,] =A,(x,0,V,).
(iii) For every f < L(U),
(2.14) P[Z(u,X) <f(u),YueclY,] =B(f0,V,).
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AssumpTiON B. For every 6, the cdf’s {A,(x,0,v): u € U} on [0,1] are
strictly monotone increasing in x and are continuous in (x, v) as elements of
L(U). The quantiles {A} '(x, 0, v): u € U} are continuous in (x, v) as elements
of L(U).

AssumpTiON C. For every 6, the functional B(f,#0,v) is continuous in
(f,v) and is strictly monotone increasing in f in the following sense: If
f,g& € L(U) and f(u) > g(u) for every u € U, then B(f,0,v) > B(g,0,v).

Section 2.3 gives four diverse examples that satisfy these assumptions. In
view of (2.3) and Assumption A,
CP(D,,lY,,0) = A,[c,(u),0,V,],
CP(D,I¥,,0) = Ble,(),0,V,].
Define the cdf A(-, 6,v) on [0, 1] by
(2.16) A(x,0,v) = B[AT!(x,0,v),6,v],

where A7 (x,0,v) denotes the function on U whose value at u € U is
A Y(x,0,v). It follows from (2.14) and (2.16) that

A(x,0,V,) = Py[Z(u,X) < A;%(x,0,V,),Y u € U|Y,]

(2.15)

(2.17)

- Po[supAu{Z(u, X),0,V,} < xlY,
u

By Assumptions B and C, the cdf A(x, 6, v) is strictly increasing in x and is
continuous in (x, v).

ProrosiTiON 1. Suppose Assumptions A, B and C hold. Design goals
DG1 and DG2 are met by prediction region D, if and only if the following
hold:

() there exists a cdf A(x,6) on [0,1], strictly monotone increasing and
continuous in x, such that, for every (x,0),

(2.18) A(x,0,V,) - A(x,0)

in Q, ,-probability; and
(ii) the critical values in (2.1) satisfy

(2.19) en(*Y,) = AT A (e, 0),0,V,]| - 0

in Q ,-probability.

REMARKS. Proposition 1 is proved in Section 4. The argument shows that
(2.18) and the probability-centering requirement DG2 are linked through the
equation

(2.20) B(x,0) = A"Y(x,0)
for every x € [0, 1].
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Suppose 6, = 6,(Y,) is a consistent estimator of 0. Then, the plug-in critical
values

(2.21) cn(u,Y,) = A A Ye,6,,V,),6,,V,]

yYns Vn

have property (2.19), under assumptions slightly stronger than those for
Proposition 1. Section 3 gives a general bootstrap algorithm for evaluating
these critical values.

To see heuristically why the critical values (2.21) achieve design goals DG1
and DG2 under assumption (2.18), note that

CP(D, IY,,0) = Py[Z(u, X) < c,(u,Y,)Y,]
=A"Ya,6,,V,)
= A Ya,0),
for every u, and that
CP(D,|Y,,0) = Py[Z(u, X) <c,(u,Y,),Y u € UlY,]

A[A™Y(a,6,,V,),0,V,]

Ynr "n

I

I

a.

2.3. Examples. We apply Proposition 1 to Example 1 and to three harder
examples which do not have closed-form analytical solutions. Technical details
are sketched in Section 4. For simplicity, we will write c,(«), instead of
c,(u,Y,).

ExamMPLE 1 (Continued). The process Z is defined in (2.8) and V, is
trivially constant because X and Y, are independent. Explicitly,

Ay(x,0,v) = ®[(x — un)/a,],
A(x,0,v) = X,[{q)_l(x)}z],

where 0,2 = u'3u. The assumptions for Proposition 1 hold, by the argument in
Section 4. Consequently, the prediction region

(2.22)

(2.28) D,={x:ux <c,(u),YueU}
meets design goals DG1 and DG2 if and only if
(2.24) cu(u) = wp + o fx ()}

in @, ,-probability, uniformly in «.
The obvious choice of critical values,

(2.25) () =wX, + s, fx (@),

where s2 , is the usual estimate of o2, satisfies (2.24) and yields the prediction
ellipsoid

(2.26) D,={x:(x—-X )'S_l(x -X,) <x7 ()}
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from (2.23). The refined critical values, which replace x,'(a) in (2.25) and
(2.26) with the d,(a) defined following (2.7), still satisfy (2.24) and generate
the classical prediction ellipsoid discussed earlier in subsection 2.1. The point
of the refinement is to make the unconditional coverage probability of D,
exactly a.

ExampLE 2 (Multivariate nonparametric model). Suppose the {X;: i > 1}
are iid r-variate random vectors with unknown absolutely continuous cdf F.
The support of F is R". The learning sample is Y, = (X,,..., X,) and the
vector to be predicted is X = X, , ;. If the process Z is again defined by (2.8)
and U is the unit sphere or a subset thereof, this example is a nonparametric
version of Example 1, with § = F.

Let J,(x, F) denote the cdf of u'X and let J(x, F) denote the cdf of
sup{/,(«'X): |u| = 1}. Evidently,

A (x,F,v)=dJ,(x, F),
A(x,F,v) =dJ(x,F).
By the reasoning in Section 4, the assumptions for Proposition 1 hold.
Consequently, DG1 and DG2 are met if and only if the critical values of D,
satisfy

(2.28) sup |c,(u) — I [J (e, F),F]| >0
lul=1

(2.27)

in @, ,-probability.
Let F, denote the empirical cdf of the learning sample. The plug-in critical
values

(2.29) en(u) = I [J N, ), F,]

satisfy (2.28), by a direct argument. The corresponding prediction region for
X,

(2.30) D, = {x:wx <J;{J e, F,), F,],Vue U},

is a convex set whose shape depends on the learning sample.

Note that o, (x, F ) is the empirical cdf of the {X;: 1 <i<n} while
J(x, F ) is the emplrlcal cdf of the values {sup{n ! rank(u’X ueUk1l<
i < n}. The interpretation of probability centering parallels that in Example 1,
for any reasonable choice of the subset U of the unit sphere. The following
numerical example illustrates these points.

Mardia, Kent and Bibby (1979) reported test scores for 88 college students,
each of whom took two closed-book and three open-book tests. Earlier analyses
of this data by several authors [cf. Example 2 in subsection 2.2 of Beran (1988)
for references] have established two points: (a) the data resembles a multivari-
ate normal sample in five dimensions but exhibits certain departures from
normality; (b) the closed-book test scores contain information about the stu-
dents that is not present in the open-book scores.
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Fic. 2. Probability-centered nonparametric prediction box for the closed-book test score data.
Here coverage probability a = 0.90, the centering is in directions parallel to the coordinate axes
and B(a,0) = 85/88 = 0.97.

We will consider a different aspect of the data. Figure 2 displays the
scatterplot of the closed-book scores. Taking these closed-book scores as the
learning sample, suppose that U consists of the four vectors (+1,0) and
(0,+ 1) and that a = 0.90. Then, the prediction region D, defined in (2.30) is
the box [7, 64] X [27, 72]. From Figure 2, it is evident that the plug-in estimate
of B(a, F) for this D, is B(a, ﬁn) = 85/88 = 0.966. This nonparametric pre-
diction box is probability-centered in the horizontal and vertical directions
only. It is easy to construct and easy to use in predicting how future students
may score on the same tests.

To devise a nonparametric analog to the normal-model prediction ellipse for
the closed-book test scores, take U to be all unit vectors in R? and a = 0.90.
Figure 3 displays the convex prediction set D, defined by (2. 30) for this U.
From Figure 3, the estimate of B(a, F) is now pB(a, F,) = 87/88 =
0.989—larger, as expected, than for the prediction box. This nonparametrlc
prediction set is probability-centered, asymptotically, in every direction. Conse-
quently, it reflects the shape of the scatterplot in a natural way. Constructing
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FiG. 8. Probability-centered nonparametric prediction set for the closed-book test score data. Here
coverage probability a = 0.90, the centering is in all directions and B(a, ) = 87,/88 = 0.99.

this prediction region D, amounts to the convex hull peeling of Tukey [cf.
Green (1985)].

ExampLE 3 (Gaussian autoregression). Suppose that {X;: i > 1} is a sta-
tionary sequence of random variables that satisfy the Gaussian AR(1) model

(2.31) X1 =0X; + E;,

where 6] < 1, 8 is otherwise unknown and the {E,} are independent standard
normal random variables. The learning sample is Y, = (X,,..., X,). To be
predicted are the next two observations in the sequence, X = (X, ., X, . 5).

To obtain a probability-centered prediction box for X, define the process
Z ={Z(u, X)} by setting U ={-2, —1,1,2} and

(2.32) Z(u,X) =sgn(u)X, uel.
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ThenV, = X, and
A(x,0,V,) =d(x —6X,),
A_(x,0,V,)=1-d(-x-60X,),

(2.33) Ay(%,0,V,) = q;[(l + 02)—1/2(x - 02Xn)],

A_y(%,0,V,) =1 - ®[(1+6%) *(~x - 62X,)].

Let (W, W,) denote a bivariate normal random vector with means 0, variances

1 and covariance 8(1 + 62)~'/2 Then, from (2.33) and (2.17),

A(x,0,V,) =P[O (1 —x) < W, < ® Y(x),fori =1,2]
=dJ(x,0), say.

Checkmg the assumptions for Proposition 1 is straightforward by the
arguments in Section 4. Let 0 be the least squares estimator of 6, clipped so
that |6,] < 1. The critical values

(2.34)

0,X, + @ [JY(a,4,)], u=1,

—e‘nxn—qu[l—J-l(a 6,)]. u= -1,
(2.35) ea(u) = 62X, + (1+82) o1 [gy( n)], u=2,

—02X, — (1+62) "o 11 - J- )], w=-2,

thus yield a probability-centered prediction box for X = (X,,,, X,,,) that
satisfies DG1 and DG2. Note that this box is geometrically centered at
@4, X, 02X ), the usual point predictor for X, and has sides of lengths
20~ 1[J 1(oz 6,)] and 2(1 + 62)1/2¢ " JY(a, 6,)], respectively. This is a conse-
quence of DG2 and the symmetry of the normal distribution.

A nonparametric version of this example can also be worked through, using
ideas from Example 2.

ExampLE 4 (Nonparametric prediction band). The fine discussion of gait
analysis by Olshen, Biden, Wyatt and Sutherland (1989) suggests the following
simplified model. Suppose that {X;: i > 1} are iid random processes with
continuous sample paths on the compact interval [a, b]. The distribution P of
X; is unknown. On the basis of the learning sample Y, = (X,..., X,), the
problem is to construct a centered prediction band for the process X = Xn 1

For notational convenience, assume without loss of generality that a + 0.
Define the process

X(u), ifa<ucx<b,

(2.36) Z(u, X) = -X(-u), if-b<u< —a,
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on the set U =[—b, —a] U [a, b]. In this example, the unknown parameter 6
is the distribution P of the process X. Let F, (-, P) denote the cdf of X(u).
Then

A e p F,(x, P), ifa<u<b,
(2.37) u(%, P,v) = 1-F_,(-x,P), if-b<u< —a,
=dJ(x,P), say,
and
A(x, P,v) =P[ sup max{F,[X(u),P],1 - F,[X(u),P]} <x
(238) a<u<b

=dJ(x, P), say.

Suppose that the cdf’s {/,(x, P): u € U} are equicontinuous in x and the
cdf J(x, P) is continuous and strictly monotone in x. Let P be the empirical

distribution of the learning sample. Let X,(u) < -+ < X(n)(u) denote the
order statistic of the observed processes at time u. Let r, ; and r, , denote
the integer parts of n[1 — J~Xa, P,)] and nd~Xa, P,), respectlvely "From the

argument in Section 4, the predlctlon band

(2.39) D, ={x: X, ,(u)<x(u) <X, ,(u),VYucela,b]}

n

satisfies design goals DG1 and DG2. The probability-centering of this band is
pointwise in . The width of the prediction band varies with u, to reflect the
changing distribution of X(u). The boundaries of D, are themselves continu-
ous in u.

3. Computational remarks. This section considers two practical points
that are related to Proposition 1.

3.1. Computing critical values. In general, a bootstrap algorithm can be
used to approximate the plug-in critical values (2.21) that satisfy the necessary
and sufficient condition of Proposition 1. Let P,(-|Y,) denote the conditional
distribution of X given Y,. Let X be a random variable whose conditional
distribution given Y, is P; ( 1Y,). From (2.13) and (2.17),

(3.1) A,(x,6,,v,) = Pr[Z(u, X) <«lY,]
and
(3.2) A(x,6,,V,) = Pr[supA {2(u, X),6,,V,) SxIYn].

By drawing independent realizations of X, we can construct Monte Carlo
approximations to the cdf’s A, and A and hence to the critical values (2.21).
When U is infinite, the supremum in (3.2) over all « in U may have to be
approximated numerically.
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3.2. Computing D,. When the process Z is given by (2.8), D, is a convex
set defined by the intersection of the half-spaces {x: u'x < ¢,(v), V u € U}.
Suppose X is two-dimensional. Graphing D, with ruler and pencil is straight-
forward for learning samples of moderate size. Figures 2 and 3 were drawn in
this manner. A more systematic graphing method, suitable for routine use and
for larger learning samples, would use an efficient algorithm to determine the
set intersection of an ordered set of half-spaces. See Middleditch [(1988), pages
228-231] for discussion of the problem and an algorithm. Algorithms for
identifying D, efficiently when X is high-dimensional and U is large are a
challenging problem.

4. Proofs. In this section I prove Proposition 1 and sketch how it applies
to the examples in subsection 2.3.

Proor oF ProposiTION 1. Suppose DG1 and DG2 are both met but (2.18)
or (2.19) fails. Because of Assumption A, assume without loss of generality, by
going to a subsequence, that V,, = V. From Assumption B, if v, — v, then

(4.1) sup sup |A,(x,6,v,) — A,(x,0,v)| - 0.

Consequently,

(4.2) sup|A,[c,(u),0,V,] —A,[c,(u),0,V]| -0
u

in @, ,-probability.
From DG2, (2.15) and (4.2),

(4.3) sup| A, [e,(x),0,V] - B(a,6)] > 0

in @, ,-probability. Hence, using the second part of Assumption B,
(4.9) sup|c,(u) — A;'[B(a,6),0,V]| >0
u
in @, ,-probability.
On the other hand, from DG1 and (2.15),
(4.5) Ble,(1),0,V,] > a
in @, ,-probability. By (4.3), Assumption C and (2.16),
Blc,(*),0,V,] = B[ATY{B(a,0),6,V},8,V]
= A[B(a,0),0,V].
Thus, with probability 1,
(4.7 AlB(a,0),0,V] =a,

for every « in [0, 1]. Since the cdf A(x, 6, V) is strictly monotone and continu-
ous in x, so is B(x, #) and

(4.8) A(x,8,V) = B~Y(x,0).

(4.6)
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Define A(x, 6) to be B~(x, 6). Then (2.18) is immediate, while (2.19) follows
from (4.4), the definition of A(x,6) and the second part of Assumption B.
These conclusions contradict the opening supposition at the start of the proof.

The other half of the proposition is easily verified at this point. O

4.1. Argument for Example 2. We will use repeatedly the following result:
If {G,} and G are continuous cdf’s such that G, converges weakly to G as n
increases and G is strictly monotone, then the quantiles G, (@) converge to
G~ Ya) for every a in (0, 1).

Assumption A is obvious in this example.

The function {J, (x, F): u € U} is continuous in x as an element of L(U).
Suppose not. Recall that U is compact. Then, without loss of generality, there
exist 8 > 0 and sequences x, converging to x and u, converging to u such
that

(4.9) |J, (%, F) = d, (2, F)| =8, Vn.

At the same time, u’, X — x, converges weakly to %'X — x, which has a
continuous distribution because F is absolutely continuous. Thus, both
J, (x,, F) and J, (x, F) converge to J,(x, F), contradicting (4.9) and thereby
proving the first sentence in this paragraph.

The strict monotonicity in x of <, (x, F) follows from the full support
assumption on F.

The quantile function {J '(x, F): u € U} is continuous in x as an element
of L(U). Suppose not. Then, without loss of generality, there exist 8 > 0 and
sequences x, converging to x and u, converging to « such that

(4.10) |J N, F) —d (%, F)|[ 28, Vn.

On the other hand, both J, '(x,, F) and J,, '(x, F) converge to J,; '(x, F),
because of the preceding paragraphs. The contradiction to (4.10) establishes
the first sentence in this paragraph.

The last three paragraphs show that Assumption B is satisfied.

To verify Assumption C, observe that

(4.11) B(f,F) =Pp[h(X, f) <0],

where

(4.12) A, £) = sup [wx = f(w)]
ul=1

and f is an element of L(U). Since h(x, f) is convex in x and F is absolutely
continuous, '

(4.13) Pph(X, f)=0] =0.

Continuity of B(f, F) in f now follows from the continuity of h(x, f) in f.

Strict monotonicity of B(f, F) in F is ensured by the full support of F.
Proposition 1 is thus applicable to Example 2. A triangular array extension

in F of the reasoning above shows that the critical values (2.29) satisfy (2.28),
as claimed.
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4.2. Arguments for Examples 1, 3 and 4. The reasoning for Examples 1
and 3 parallels that for Example 2. The conclusions in Example 4 follow by
minor modification of Theorem 4.1 in Beran (1988).

REFERENCES

ANnDERSON, T. W. (1958). Introduction to Multivariate Analysis. Wiley, New York.

BERrAN, R. (1988). Balanced simultaneous confidence sets. J. Amer. Statist. Assoc. 83 679—686.

BERAN, R. (1990). Calibrating prediction regions. J. Amer. Statist. Assoc. 85 715-723.

Box, G. E. P. and JENKINS, G. M. (1976). Time Series Analysis: Forecasting and Control, revised
ed. Holden-Day, Oakland, CA.

BurLer, R. W. (1982). Nonparametric interval and point prediction using data trimmed by a
Grubbs type outlier rule. Ann. Statist. 10 197-204.

BurLer, R. W., Davies, P. L. and Juun, M. (1993). Asymptotics for the minimum covariance
determinant estimator. Ann. Statist. 21 1385-1400.

BuTLER, R. and RotHMAN, E. D. (1980). Predictive intervals based on reuse of the sample. J.
Amer. Statist. Assoc. 75 881-889.

GREEN, P. J. (1985). Peeling data. In Encyclopedia of Statistical Sciences 6 660-664. Wiley, New
York.

GuTTMaN, 1. (1970). Statistical Tolerance Regions. Griffin, London.

Marpig, K. V., KenT, J. T. and BiBBy, J. M. (1979). Multivariate Analysis. Academic, New York.

MippLeEDITCH, A. E. (1988). The representation and manipulation of convex polygons. In Theoreti-
cal Foundations of Computer Graphics and CAD (R. A. Earnshaw, ed.) 211-252.
Springer, New York.

MiLLER, R. G., JR. (1981). Simultaneous Statistical Inference, 2nd ed. Springer, New York.

OusHEN, R. A, BiDEN, E. N., Wyart, M. P. and SUTHERLAND, D. H. (1989). Gait analysis and the
bootstrap. Ann. Statist. 17 1419-1440.

PoLrarD, D. (1984). Convergence of Stochastic Processes. Springer, New York.

STINE, R. A. (1985). Bootstrap prediction intervals for regression. J. Amer. Statist. Assoc. 80
1026-1031.

DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720



