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A simple and tractable iterative least squares estimation procedure for
censored regression models with known error distributions is analyzed. It is
found to be equivalent to a well-defined Huber type M-estimate. Under a
regularity condition, the algorithm converges geometrically to a unique
solution. The resulting estimate is VN -consistent and asymptotically nor-
mal.

1. Introduction. An important virtue of least squares (LS) estimates is
their desirable large sample properties for a wide variety of error distribution
functions. For regression models with incomplete data on the dependent
variable (censored regression models), LS methods cannot be directly applied
without first correcting for the potential bias inherent in the missing data.
Bias correction procedures depend on the pattern of the missing data and on
the error distribution. The pattern of missing data is usually assumed known,
and the various estimation procedures differ mainly with respect to the level of
knowledge assumed about the error distribution. In the simplest case, the
complete knowledge of the error distribution is assumed. While this is not a
very general situation, it is sometimes encountered: In the physical sciences,
for example, the errors are often mainly due to inaccuracies of some measuring
device and can be studied in the course of a calibration procedure.

In principle, an “optimal’’ solution to the problem is always available: The
maximum likelihood estimator (MLE) is well known to be consistent and
efficient. However, depending on the pattern of missing data and on the form
of the error distribution, the likelihood function may turn out to be quite
complicated and the associated normal equations may possess multiple roots.
When this is indeed the case, the task of maximizing the likelihood function
may become tedious, requiring an exhaustive search over all possible local
maxima until the global maximum is found. In such cases it may be preferable
to consider an alternative simple estimation which requires a few fast compu-
tations and converges rapidly to a unique solution. In the following, a simple
and tractable iterative algorithm to estimate the coefficients of a censored
regression model is analyzed. ‘

The algorithm is based on an old and simple idea [Orchard and Woodbury,
(1972)]: First, one fills in the missing data using predictors based on the
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observations and current parameter estimates; using these data, improved
parameter estimators are obtained by applying LS methods as if no data are
missing. These two steps are iterated until the procedure converges. Interest-
ingly, this algorithm yields the MLE when the errors are normally distributed.
This is so because, with normal errors, the present algorithm coincides with
the EM algorithm of Dempster, Laird and Rubin (1977), which is known to
yield the MLE [see Wu (1983) and Louis (1982) for more on the properties of
the EM algorithm and Tsur (1983) for an account of the EM in the context of
censored regression models]. With nonnormal errors, the present estimator
differs from the MLE (and from EM) and the choice between the two entails a
trade-off between the desirable (finite sample) computation properties of the
proposed estimator versus the desirable (large sample) efficiency of the MLE.
However, since we show VN -consistency, a single Newton-Raphson step
achieves efficiency.

Any limit point of the algorithm satisfies a fixed point equation. From this,
we show that the estimate is also the minimizer of a convex function which is a
sum of convex error terms. This is used to uniquely define the estimate. We
then show, under a regularity condition on the error distribution, that the
sequence of iterates converges geometrically to the limit. Finally, using the
fixed point equation we give simple proofs of VNN -consistency and asymptotic
normality.

Similar procedures were proposed by Schmee and Hahn (1979) and by
Buckley and James (1979): The former employed simulation methods to
investigate the case of normal errors with an unknown scale; the latter
considered the case of an unknown error distribution. Several estimators of
this type were described by Chatterjee and McLeish (1986), who compared
their numerical performance using empirical heart transplant data. Extensions
and further properties of the Buckley and James procedure were investigated
by James and Smith (1984) and by Ritov (1990). In assuming a known
distribution, we are tackling a simpler problem. The payoff is that the frame-
work is more transparent, the derivations simple and illuminating and the
conclusions much stronger. In particular, the connection to the minimization
of a sum of convex error functions leading to an M-estimate gives an interest-
ing alternative way of looking at the estimate.

The usefulness of the analysis described here extends, however, beyond the
simple case of a known error distribution. In a recent study, Tsur and Zemel
(1990) extended the estimation procedure proposed here to the case of un-
known error distributions by employing new (distribution-free) estimates of
the conditional expectations of the errors. Their analysis has been motivated to
a large extent by the present study [in particular, see the discussion following
(5.6)]. Obviously, the results derived by Tsur and Zemel (1990) are weaker and
rely on restrictive assumptions, but the study here presented proves an
important intermediate step from the uncensored regression model to the
general censored case.

The paper is organized as follows: Section 2 describes the iterative method
for computing the estimate. Section 3 gives the equivalence to the minimiza-
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tion of a sum of convex error terms. The convergence of the algorithm is
studied in Section 4. Section 5 establishes consistency and asymptotic normal-
ity.

2. The Iterative procedure. We observe data (y,,x;) where y, are
scalars and the x; are K-dimensional vectors. The value {y, = 0} is taken to
indicate that the value of y; is missing, otherwise y; > 0. Define M*=
{i; y, > 0} and M~ = {i; y, = 0}. The data are generated by the mechanism

y; = max{0, x;B, + u,}, i=1,...,N,

where the {u,} are i.i.d. zero-mean error terms with known distribution and 3,
is an unknown K-dimensional parameter. Consider the following iterative
procedure for estimating B,. Each iteration consists of two steps: An expecta-
tion (E) step and a projection (P) step. The idea is to replace the missing values
¥i» L € M7, by their expectations, using available information including the
estimate for B, obtained in the previous iteration. These filled in values for y,
are then used to find an improved estimator for g,.

E-step. Given the value B of the rth iteration, the next values of the
dependent variable are calculated as:

(r) Yis e M,
(2.1) y:i(B7) = 2B + E(ulu < -xjp"), ieM".

P-step. In this step B“*P is found by projecting Y(B”) on the space
spanned by the columns of X:

(2.2) BUHY = (X'X) T X'Y(B?),

where Y(B) is the N-dimensional vector whose elements are y,(8) of (2.1).
Equation (2.2) is the usual LS formula for uncensored observations.
The implementation of the algorithm proceeds as follows:

1. Set B, an initial value for the parameter vector.
2. E-step: Fill in the missing y; values as given by (2.1) using E(ulu < z) with
= —«'B calculated at the current B-estimate.

3. P-step: Calculate a new B-estimate according to (2.2).

4. Return to 2 unless the norm of the difference vector |3+ — ™| de-
creases below some predetermined convergence requirement.

5. Once the convergence criterion is satisfied, adopt the last value of B as the
final estimate.

Assuming this process converges, the limit v is the estimator and satisfies
the fixed point equation (FPE)

(2.3) By = (X'X)'X'Y(By).
The difficulty is that this is not, at this point, a satisfactory definition. The
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estimate S ~ 1s defined only if the iterative process converges to the same limit
for all starting values. We fix this up in the following section.

3. A unique definition. An obvious question is whether the FPE (2.3)
has a unique solution. Assume E(u|u < s) is continuously differentiable in s
and let

G(z) = [ E(ulu <) ds.
0
As G"(2) = 0, G(—x!B) is convex in B. Define
QB =% L (n-xB)"+ L G(-xB).

ieM* ieM-

Then Q(B) is smoothly convex in 8 and has a unique minimum g*. [It is easily
verified that @(B) — « as ||B|l = «.] The role of the G(—x}B) terms becomes
clearer when one notes that G(z) is nonincreasing, hence these terms tend to
adjust B so as to achieve low x]8 values for the missing data. This is in accord
with our convention that the data are left-censored at zero.

Let X'X*=1%,cp+x;x; and X'X = ¥, _ 5-x;x, be the matrices formed by
partitioning X'X according to i € M* and i € M, respectively, and assume
that X’'X™ is positive definite (pd). We can now show:

ProposITION 3.1. B* is the unique solution of the fixed point equation
(2.3).

The proof is a simple verification that setting the partial derivatives of @(B8)
equal to zero gives (2.3). (The pd nature of X'X" ensures that M* is not
empty and that X'X is pd.) A consequence of this proposition is that if the EP
algorithm converges, its limit does not depend on the starting value. Other
algorithms, such as Newton-Raphson, could be used to directly minimize
Q(B), but they do not have the attractive simplicity of the EP method.

We can also write Q(8) in the form

Q(B) = Lo(y;,%iB),

(¥, %B) = 5(3; — %iB)*1(3; > 0) + G(~x/B) (3, = 0),
where I(-) denotes the indicator function. The estimate we want minimizes
Q(B) and therefore is an M-estimate of the type proposed and studied by
Huber (1981). Thus, we can define B, either as the unique minimizer of Q(8)
or the unique solution of (2.3).

4. Convergence of the EP algorithm. The convergence analysis be-
comes particularly simple when the error distribution F(-) satisfies the condi-
tion

(R) l/fz F(s)ds isconvexin z.
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We call distributions satisfying (R) regular cdf and note that a number of well
known cdf, including the normal, fall into this category. For a regular cdf the
stronger condition 0 < dE(ulu < 2)/dz < 2 replaces the inequality 0 <
dE(ulu < z)/dz which holds for any distribution. We begin by proving a
convergence theorem for regular distributions.

THEOREM 4.1 (Geometrical convergence). If F is regular and X'X" is pd,
then the EP algorithm converges geometrically to a unique fixed point .

Let B be the symmetric positive definite square root of X'X. Take {8},
r=1,2,...,to be the sequence of iterates produced by the algorithm from any
starting point, then Theorem 4.1 is a direct consequence of the following.

ProposITION 4.2. There is an L,0 < L < 1, such that for all r,

|B(87*> = B < L] B(B” - p~7)].

Proor. Write (2.2) for 8 and B *"; subtracting gives
(43) B 0= (XX) T X[¥(80) - V(8.
Define

%:(B) =1 —I(y; = 0)[1 - dE(ulu < z)/de],

where the derivative is evaluated at z = —xB, and let I'(8) be the N by N
diagonal matrix with elements vy,. Using definition (2.1) we can write

(44)  Y(B7) = ¥(BUV) = (I~ TV)X (" - p*D),

where T'") is the matrix I' evaluated at some intermediate point on the line
joining B and BV, Substituting (4.4) into (4.3) gives

(4.5) B(r+1) — 3(r) = A(r)(B(r) — B(r—l))

with AV = (X'X)"IX'(J] - T)X = (X'X)~1C™. Write (4.5) as
B(ﬁ(”'l) — B(r)) = B—lc(r)B—lB(B(r) _ B(r—l)).

Since B~ !1C™B™! is a symmetric matrix

| B8 - )| < ¥ B(8® - 9],

where A7) is the maximum of the absolute values of the eigenvalues of
B~!C™B~!. Then
- wX'(I - T) Xw
e w' X' Xw
Using the regularity condition (R), [1 -yl <1, i€M™ and |1 -1,/ =0,
i € M7, so that .

lwX'(I -TO)Xw| < wX'X w.
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Let A}, be the minimum eigenvalue of X'X* and A_, the maximum
eigenvalue of X'X~. Then,

A7) < max =L <1.

w

wX'X w A max
<
{w’X’X+w + w’X’X'w} A

min + A;lax

Now, the proposition implies that there is limit 8 with ||[3® — 8| < aL",
and proves the theorem. O

Condition (R) is sufficient, but far from necessary, for convergence. If M is
the upper bound on dE(ulu < z)/dz of an irregular cdf, then arguments
similar to the above show that Theorem 4.1 holds for all samples with
Ain/Amax > M — 2, and even this weaker condition is far from necessary.

5. Asymptotic behavior. We consider in this section the solutions B, of
the fixed point equation (2.3) and look at their large N behavior. We make the
following assumptions:

Al. ANy=86>0, for all N sufficiently large, where A, is the minimum
eigenvalue of X'X*/N.

A2, Trace(X'X/N) = O(1).

A3. max,_yllx]I?/N > 0.

A4, Elu,® <=

A5. E(ulu < z) has a uniformly continuous bounded derivative.

The {x;} can either be considered nonstochastic, satisfying the above as-

sumptions, or stochastic independent of the {«;}. In the latter case, all our
results are conditional on fixed {x;}.

The following notation will be used: 2 = —x!8,, 2; = —x/B8, I, = I(u; < 2?),
E(I) = F(2?), E, = E(ulu < 2?) and
(5.1) si=u; —I(u;—E;), S=(81,82,---,8y)
With the above notation it can be verified that
(5.2) Y(Bo) = XBy + 5.

As (5.2) suggests, the quantities s; play in the present model the role of the
errors u; in the uncensored case. The variables s; have zero means and
variances given by

(5.3) r1?=Var{s;}) =0f - Var{ulu <2}}F(2})) i=12,...,N,

where o§ is the variance of u;.



CENSORED REGRESSION ESTIMATION 1717

As in Section 4, take
(5.4) v(B) =1-I[1 - dE(ulu < 2)/dz],

where the derivative is evaluated at z = z;, and let T'(B) be the N by N
diagonal matrix with elements v,(B). Consider the two difference vectors
AB =By — By and AY = Y(By) — Y(B,). Using (2.1) we get

(5.5) AY = (I - T) XAB,

where the matrix [ is I'(8) with § an intermediate value between Bo and B N
Being a solution to the FPE (2.3),

By = (X'X)'X'Y(By) = (X'X) 'X'(Y(B,) + AY).
Hence, using (5.2) and (5.5), we obtain
(5.6) (X'TX/N)/NAB = (X'S/VN).

Note the similarity between this equation and the standard result for uncen-
sored regression, with X'T'X replacing X’X and S replacing the error vector
(uy,uy,...,uy). A corresponding expression has been derived in the un-
known error distribution case [Tsur and Zemel (1990)], with X'T'X and S
replaced by closely related, albeit more complicated, quantities.

Partitioning according to the index sets M* and M~ gives

XTxX=xx"+XTx".
Because dE(ulu < 2)/dz > 0 for any 2z, X'T' X~ is positive semidefinite. This

implies that the minimum eigenvalue of X'TX/N is not smaller than Ay.
Hence, from (5.6),

lABl < AN'IX'SII/N.
Because of (5.3),

2

EIX'S/N|? < %" Trace( X'X/N),

and this leads to
ElABI* > 0;  E(NIABIP) = 0(1).

This result, which relies only on Al and A2, establishes consistency for the
estimate and also shows that VN AB is an L,-bounded sequence of random
vectors.

It is now possible to derive the limiting distribution of the estimator.

THEOREM 5.1. Let V and ) be the respective probability limits of
X'3X/N and X'T*X/N, where 3 and T* are the N by N diagonal matrices
with elements 12 and v} = E{y/(B,)}, respectively. Then

VNAB -5 N(0,Q°VQ~1).
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Proor. Let fy be the characteristic function of VN AB and f the charac-
teristic function of a N(0, Q~'VQ™1) variate (it is verified below that Q is
nonsingular), then it is sufficient to show that fy — f— 0 uniformly in a
neighborhood of zero. Let T, = I'(8,). Then, [(X'(I' — T))X/N)WN ABIl <
aylVN AB|| where ay is the maximum of the absolute values of the eigenval-
ues of X'(I" — T))X/N:

ay = max [wX'([' = To) Xuw/N| < max|y(6) - 7.(8o) | Trace(X'X/N).
wll=1 i

Denoting 6(z) = dE(ulu < 2)/dz,

0( _x;éN) — 0(—x;Bo) l

ay < ¢y max
Let 2 be the modulus of continuity of 6, then
xi(By — Bo)|)
<cy max h(ll\/IVAﬁﬂ . ||x,-||/\/ﬁ)

13

= cyh(IVN ABIl - max|x,ll/VN ).
Now, ¢y = O(1) and &5 = max(||x,|/ VYN) — 0, and we assert that

k(e VN ABI) - IVN ABI -, 0,

because for any random variable X > 0, P(h(eX)X > d) = P(g(eX) = &d)
where g(v) = vh(v), and

P(g(eX) >ed) =P(eX > g (ed)) < E(X2)[e/g‘1(sd)]2.
Finally, for d fixed and ¢ — 0, the ratio ¢/g~(ed) — 0. Then we claim that
(5.7) l(x'(r, - T*)X/N)VN Ag|| -, 0.

To see this, let A,,,,,
every vector 7 € RX,

(5.8) I(X'(Ty — T*) X/N)m | < ( Y IAzmm/)Ilﬂ'IIZ.

be the m, m’' element of X'(I'y — I'*)X/N. Then, for

Now,
1
Ay = — N Z(ximxim')qi[‘[(yi =0) - P(y; = 0)],

where q;, = 1 — 6(z,). By A5, |q,| <4, so

=2

q _ 1
L E(Nn) < 33 Yl ll* < g2 maX(IIinIZ/N)N Y Il 112,
m,m i t i
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Hence, E(L,, ,, mm) — 0. Since E[VN ABII* = 0Q1), (5.8) implies (5.7). Fur-

thermore, if A% is the minimum eigenvalue of X'T*X/N and = is the

corresponding eigenvector, we use (5.8) again to show that A, > A, —

(Z,,, wA2, )"/ Hence, for large enough N, X% > §/2 and Q is nonsingular.
Rewrite (5.6) as

(5.9) (X'T*X/N)VNAB = (X'S/VN) + &y

where [|£xll =, 0. Therefore
VNAB = (X'T*X/N) ' ((X'S/VN) + &y).

The second term is dominated by 26~ 1||£,|| and hence can be 1gnored The first
term is of the form (1/ VYN)IN ;a,,s;, with E(s,) = 0, E(s?) < ¢2 and, by A4,
Els; P <e <. By standard characteristic functlon expansions, the theorem
follows if

1 1
N Z a?,=0(1) and N3/2 Z la> = 0.

i=1
Now, the latter follows from the former if max,_y(la;,l/ VN) > 0. So we
need (a) (1/N)ZN .lla; ||2 O(1) and (b) max;_ y(la,l?/N) - 0.
By (56.9), a, = (X'T*X/N) ™ x,, hence |la; ||2 < 457 2x,||%. It therefore suffices
if 1/N)Z¥ 1I|x I? = 0(1) and max,sN(ux [2/N) - 0. The latter holds by A3,
and (1/N)ZN |lx;l|> = Trace(X'X/N) = O(1) by A2. O

Note that the unknowns in computing the asymptotic covariance matrix are
3% and I'*; by arguments similar to the above, they can be estimated by the
corresponding matrices with diagonal elements 72(By) and v,(By).
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