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ON A CHARACTERIZATION OF THE EXPONENTIAL DISTRIBUTION
BASED ON A TYPE 2 RIGHT CENSORED SAMPLE!
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Dufour gives a conjecture concerning a characterization of the expo-
nential distribution based on type 2 right censored samples. This conjec-
ture, if true, generalizes the characterization based on complete samples of
Seshadri, Csérgé and Stephens (1969) and Dufour, Maag and van Eeden
(1984). In this paper it is shown that Dufour’s conjecture is true if the
number of censored observations is no larger than (1/3)n — 1, where n is
the sample size. The result has implications for testing fit'of censored data
to the exponential distribution.

1. Introduction. Dufour, in his 1982 Ph.D. dissertation, presents the
following conjecture concerning a characterization of the exponential distribu-
tion. Let X,, X,,..., X, be independent, identically distributed, nonnegative
random variables and let r be an integer satisfying 2 < r < n. Write Y, , <
Y,,< -+ <Y, , for the order statistics of X, X,,..., X,, with Y, , =0

and define

Di,n=(n_i+1)(Yi,n_Yi—1,n) 1=1,2,...,n,
(1.1) i -
Si,n= Zle,n l=1,2,...,n'
Jj=

The conjecture then states that, if
Sl n SZ n Sr—l n
1.2 W = - b P LR —’-
( ) r,n Sr, . S S

r,n r,n

is distributed as the vector of order statistics of a sample of size r — 1 from a
U(0, 1)-distribution [i.e., a uniform distribution on the interval (0, 1)], then X,
has an exponential distribution. That this result, if true, characterizes the
exponential distribution follows from the fact that W, ., has this uniform-
order-statistics distribution when X, is exponentially distributed.

For the uncensored case (n = r) a proof of the characterization for the case
where n > 3 was given by Dufour, Maag and van Eeden (1984) [see also
Seshadri, Cs6rgé and Stephens (1969)]; Menon and Seshadri (1975) show that,
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for the case n = 2, the uniform distribution of W, , does not characterize the
exponential distribution.

The problem of whether the uniform-order-statistics distribution of W, ,
characterizes the exponential distribution arises, for example, when one bases
a test of the hypothesis that X, is exponentially distributed on the statistic
W, .. If the conjecture is true, then the hypothesis that X, is exponential is
equlvalent to the hypothesis that W, is distributed as the vector of order
statistics of a sample of size r — 1 from a U(0, 1)-distribution. There are of
course numerous tests of uniformity available and this result offers a natural
way of testing the exponentiality of a sequence of ordered observations before
the complete set of observations has been collected. However, if the conjecture
is false, then there exists at least one alternative distribution for X, for which
the power of the test equals the size.

In this paper it will be shown that Dufour’s conjecture is true if r >
(2/3)n + 1. We do not know whether it is true for the case where n > 3 and
r<(@/3)n + 1.

Section 2 contains the main result and its proof. Some lemmas, needed for
the proof in Section 2, are given in Section 3. The vector of order statistics of a
sample of size j from a U(0, 1)-distribution will be denoted by U.(j) =
(U4, Ugys - --» U, ;)) and Z, ~ Z, will be used to denote that the random vectors
Z, and Z2 have the same distribution. Finally, F(x) = 1 — F(x), —» < x < =,
where F is the distribution function of Xj,.

Under the assumption that the density of X, exists, the proof of the main
theorem is relatively straightforward. In avoiding that assumption the proof
has had to become somewhat more complicated.

2. The main result. This section contains the proof of the following
theorem.

THEOREM 2.1. Letr >(2/3)n + 1. Then X, is exponentially distributed if
and only if

Wr,n ~ (](,)(T' - 1)

ProOF. As already mentioned above, W, , ~ U.,(r — 1) when X, is expo-
nentially distributed. We show that the reverse also holds, namely

(2.1) W.,~U.,(r—1) = X isexponentially distributed.
By Lemma 3.9, W, , ~ U, (r — 1) implies
Z, 1

2.2 P Z
. _— > =
(2.2) 1 52 1+s, +sy

7 A §1, 89 =0,

where Z, Z, and Z, are independent random variables each distributed as
min( X, X,,..., X, _,,1)-
We apply the following key theorem from Kotlarski (1967).
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THEOREM A (Kotlarski). Let W,,W,, Wy be independent positive random
variables, and set Y, = W,/W,, Y, = W,/W,. The necessary and sufficient
condition for W,, k = 1,2, 3, to be identically and exponentially distributed is
that the joint distribution of (Y,,Y,) has density

8(y1,2) =2(1+y1+y2)_3’ ¥1>0,y,>0.

From (2.2) and Theorem A it follows that Z, has an exponential distribu-
tion and from

(2.3) P(Z,>t)=F""(t) t>0

it then follows that X, has an exponential distribution. O

REMARK 2.2. Lemma 3.9 is essentially Lemma 3.8 extended to include s,
and/or s, greater than 1. The argument justifying this extension only works
so long as the number of X’s in each minimum term, and in the definition of
the distribution of Z, are equal. In order for this to be true it is necessary that
r>(2/3)n + 1. Although Lemma 3.7 tells us more about the joint distribu-
tions of the ratios X,/Z than does Lemma 3.8, where we only look at two
minima among these ratios, we do not see how to exploit this extra informa-
tion to obtain a more general result than the one we have.

3. Some lemmas. In this section we develop a sequence of lemmas which
lead ultimately to a proof of Lemma 3.9.

LemMa 3.1 [Dufour (1982), pages 146-151]. For 2 <j < n, let

Vl,j,n = Yl,n/Yj,n’ V2,j,n = Y2,n/Yj,n"""/j~1,j,n = Yj~1,n/Y},n
then W, , ~ U.(j — D ifand only if (V, ; ,,Vy ; n,...,V,_1 j ») has density
nl(j = D! K
(31) WLZIU +n—-j+1 , 0<01SU2S"'SUJ-‘1<1
0, otherwise.

REMARK 3.2. Note that if (V, ; ,,V, SPRRRY V._1 ;. ») has a density, then F
must be continuous. For if F has a jump at x, (say) of size p, then
Vi 52 Vo jns---»Vi_1, j ) can take the value (1,1,...,1) with probability at
least p™.

For 2<j<nlet X,;,,X;5;,,.---»X;_1;, be random variables which
are, conditionally on Y, , =y, independent and identically distributed with
distribution function F(x)/F(y) 0 <x <y. (Note that the X, ;, should, in
fact, carry an extra subscript, namely Y; ,).

Let

s n

Tosn =X/ Yms =120~ 1

LJn
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and set
TJ n= (Tl,j,n’Tz,j,n""’Tj—l,j,n)‘
The following is an immediate consequence of Lemma 3.1.

Lemma 33. For 2<j<n, W, ~U.(j— 1 if and only if T;, has
density

j-1

-J
(3.2) [n‘/(n—j)‘](zt +n—J+1) , 0<¢<1,i=1,2,...,5 -1
i=1

We can further simplify the joint distribution of T , by representing it in
terms of the original independent X’s.

LEMMA 3.4. For 2 <j<nand t =(t;,ty...,t;_1), t €10, 11
n
P(T;,<t)= (j = 1)P(X1 <t,Z,X,<t,Z,....X;_; <t; \Z),
where Z is independent of X;, X, ..., X;_1 and distributed as

min(Xj,X~+1,...,Xn).

J

Proor. From the definition of T} ,,
P(T; , <t}
=P{X,;,<tY;,, X5 .=t oYinseor Xjo1 0 S 1Y), o}

Jj-1 F( xt ol o »
_[0 i- 1[Ff(xx))}(j—1)!(n_j)![F(x)]J [F(z)]" " dF(x)

(] ~ 1)/ [HFW )](n —j+ D[ F(x)]" 7 dF(x).
The second equality follows from the fact that, for j = 1,2,...,n
Fl;j,n(x) = ( )(n -Jj+ 1)fF(x)tJ (1 - t)”'j dt

and that F is uniformly continuous, so that for any measurable function A,

[hdFy, (x)
(3.3) . .
= e (; 7)o =g DIFY T F] R ).

The lemma now follows. O
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The next result will be useful in an induction argument needed later on.

LEmma 35. For 0<k<r-2<n-2,
(34) if W.,~Us(r—1), then W,_, , , ~U.(r—k—-1).
Proor. The result is trivial when r = 2, so assume r > 2.

Using standard properties of uniform order statistics we have that for
2<j<r,

(35) Won~Uy(r=-1) = W, ,~U,(-1).

Further we have that for any A € %;_,, the o-algebra of Borel sets of
[0’ l]j_z’ )

P(T; oy 1€A)=(n—j+1)n"'P(T;_,, €A)
3.6 )
(3.8) +(j - Dn"'P(T; , € A x [0,1]).

This can be seen as follows. From Lemma 3.4 one obtains

-1
P(Ty a2 4) = (523K Ko X, ) €42, X, > 2)
n—1
+(j _ 2 )P((Xl’ X2,...,Xj_2) EAZ, Xj—l SZ)’

where Z ~ min(X;, X;,4,..., X,) and independent of (X;, X,,..., X;_;). Us-
ing (3.3) and noting that Z ~ Y, ,,_.,,

P((Xy, Xy,..., X;_,) €AZ, X,_, > Z)
= B,{[P((Xy, Xy, X,_,) € AZIZ)| F(2))
={(n—Jj+1)/(n—Jj+2)}P((X,, Xy,..., X;_,) € AZ*),
where Z* ~ Y, ,_;., and is independent of (X,, X,,..., X;_,), and E, indi-

cates expectation with respect to Z. A second application of Lemma 3.4 yields
the first term on the right of (3.6). The second term follows since

(578) = (557 o

P((Xy, X5,...,X;_5) €AZ, X, | <Z)

= P((Xy, X5,..., X; 1) € (A% [0,1])Z).

From (3.5) with j =r — 1, (3.6) with j = r and Lemma 3.3 with j = r and
with j =r — 1, we have that W, , ~ U_(r — 1) implies that for all A € &, _,
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and t = (tl’ t2, ceey tr_2),
P(Tr—l,n—l <€ A)

n—-r+1 r-2 —r+l
= —r+2
ftEAf(n_r+1)'(Zt +n-—-r
th]. A dtr_z
3.7 r—1 n! -
(3.7) + e ———7(Et+n—r+q
noYyen’ oz (M)
Xdty <+ dt,_4
n—l' —-r+1
=ff( ) Zt+n—r+1 dt; -+ dt,_,.
tea” (n—r1)!

From Lemma 3.3 with j =r — 1 and n replaced by n — 1, we have that
W, _1 n—1~ U.(r — 2). This establishes the case £ = 1. The other cases follow
by repeated application of the £ = 1 case. O

From Lemma 3.3 and Lemma 3.5 one immediately obtains the following:

Lemma 36. For 2<j<r<n, W, ~U.(r—1) implies that T; ,_,.;
has density

(n —r+J)'(

(38)

-J
Zt+n—r+q , 0<¢;<1,i=1,2,...,j—1.
i=1

The following is an immediate consequence of Lemmas 3.4 and 3.6.

Lemma 3.7. For 2 <j <r <n, W, , ~ U(r — 1) implies
P(Xl < 31Z’ Xz < SZZ,..., Xj—l < sj—IZ)

s Si 1 Jj-1 I
=(n—-r+ 1)(1—1)![01-~f0’ (Zti+n—r+ 1) dt, -+ dt;_y,
i=1

0<s;<1,i=1,2,...,j—1,
where Z ~ min(X;, X,,..., X, _, ) and independent of (X;, X,,..., X;_1).
We assume from now on that
Z ~ min(X,, X,,..., X, _,,;) independently of (X;, X,,..., X;_;).

We are in a position to state the key lemma on which Lemma 3.9 depends and
hence on which the main result of the paper rests.
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LEmMMA 38. For2<j<r<n,0<l<j-2

P( min X, > s,Z, min Xi>32Z) :

1<i<l I+1<i<j-1

(8.9) n—r+1

= ) 0 < ;] — 1, | = 1’2‘
n—r+1+Is;+(j—-1-1)s, Si= 5

Proor. Using induction arguments [the full details of which can be found
in Leslie and van Eeden (1991) which is available from the authors on request]
expressions for the following probabilities can be derived in sequence. The
expressions involve integrals having a form similar to the one in Lemma 3.7.

() For 2<j<r<nand 0<l<j—1, with s,5,€[0,1], i =1,2,...,
j_l_l’

P(XiSSiZ,i=1,2,...,j—l—1, min Xi>sZ).

J-l<i<j—-1

(i) For 3<j<r<n, 1>0, k>0, l+k<j—2 a=j—-1l—-Fk and
s,s,8;,€[0,1], i =1,2,...,a — 1,

P(XissiZ,i=1,2,...,a—1, min X, >sZ, min X,.>s'z).

a<i<j—-l-1 J-l<i<j—-1

(i) For3<j<r<n,0<l<j—2and0<s;,<1,i=12,

P(X, <52, min X,>s,Z, min Xi>31Z).

2<i<i+1 I+2<i<j—-1

Using the expression for (iii) we derive the result of the lemma. O
LemMma 3.9. Ifr>(2/3)n + 1, then W, , ~ U.(r — 1) implies
P(Z,> 8,2, Zy>5,Z) = (5, +85+ 1), 51,8,>0,
where Z,, Z,, Z are independent and identically distributed as

min( Xy, Xy, -, Xy rr1)-

ProoF. In Lemma 3.8 we make sure that the number of variables involved
in the two minimum terms as well as in the minimum expression defining the
distribution of Z, are all equal. We thusset [ =j — ! —1=n —r + 1. Clearly
j=2l+1landas j <rso2l+1<r.But!/ alsoequals n —r + 1sowe need
2(n —r + 1) + 1 < r. This is equivalent to r > (2/3)n + 1. Lemma 3.8 then
states that

(3.10) P(Z,>8,Z,Zy>s,Z) = (s, +s,+1) ", 0<s;<1,i=1,2,

where Z, Z,, Z, are i.i.d. as min(X,, X,,..., X, .. 1)
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We now show that (3.10) holds for all s;,s, > 0.LetV, =Z,/Z,V,=Z,/Z
and let gy y(v;,v,) denote the density of (V,V,) on [0, 1]2. Then, by (3.10),

(3.11) gy, y(v,v5) =2(1+ v, +vy) %, 0=y <li=12

Now set W, = V;'L, W, = V,/V,, then W, = Z/Z,, W, = Z,/Z, and from (3.11)
it follows that the density of (W;, W,) is

- _ 1\ -3
hyw Wy, wy) = 2w, (1 +wit + wowi?)
=2(1+w1+w2)_3, w;>1,0 <w, <w;.

The lemma then follows from the fact that W, and W, are exchangeable and
that V;,V, have the same distribution. O

S

Acknowledgments. The authors wish to thank a referee who made a
number of valuable suggestions. J. Leslie would also like to thank M. A.
Stephens for having drawn his attention to the problem considered in the

paper.
REFERENCES

DUFOUR, R. (1982). Tests d’ajustement pour des échantillons tronqués ou censurés, Ph.D. disser-
tation, Montréal.

DUFOUR, R., MaaG, U. R. and van EEpEN, C. (1984). Correcting a proof of a characterization of the
exponential distribution, J. Roy. Statist. Soc. Ser. B 46 238-241.

KoTLagsK, 1. (1967). On characterizing the gamma and the normal distribution. Pacific J. Math.
20 69-76.

Lesuig, J. R. and van EEpeN, C. (1991). On a characterization of the exponential distribution
based on a type 2 right censored sample. Technical Report 107, Dept. Statistics, Univ.
British Columbia.

MENON, M. V. and SesHADRI, V. (1975). A characterization theorem useful in hypothesis testing.
In Contributed papers, 40th Session of the International Statistical Institute 586-590.
ISI, Voorburg.

SEsHADRI, V., CsOrGS, M. and STEPHENS, M. A. (1969). Tests for the exponential distribution using
Kolmogorov-type statistics. J. Roy. Statist. Soc. Ser. B 31 499-509.

ScHooL oF Economic MOERLAND 19

AND FINANCIAL STUDIES 1151 BH
MacQuARIE UNIVERSITY BROEK IN WATERLAND
SypNEY 2109 THE NETHERLANDS

AUSTRALIA



