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ASYMPTOTICS FOR THE MINIMUM COVARIANCE
DETERMINANT ESTIMATOR

By R. W. BUTLER,! P. L. DavVIES AND M. JHUN

Colorado State University, Universitiat Gesamthochschule Essen
and Korea University

Consistency is shown for the minimum covariance determinant (MCD)
estimators of multivariate location and scale and asymptotic normality is
shown for the former. The proofs are made possible by showing a separat-
ing ellipsoid property for the MCD subset of observations. An analogous
property is shown for the MCD subset computed from the population
distribution.

1. Introduction. Let (X,)] be independently and identically distributed

random variables in R* and S, be an arbitrary subset of {1,...,n} of size

=[ny], 0 <y <1 We denote the empirical mean and matrlx covariance
based on this subset by M(S,) and &(S,), respectively,

N 1 A A T
M(S,) = — L X, &(S,) == L (X-R(S,))(X - s,))".

nzeS niesS,

Consider the subset S of {1,...,n} for which the determinant of &(S,),
|@(S )|, attains its minimum value over all subsets S, of {1,...,n} of size s,
In the univariate case, £ = 1, the mean M(S,) and the variance &(S, )
correspond to the least trimmed squares (LTS) estimator. The asymptotics of
this case have been given by Butler (1982) and Rousseeuw (1983); see also
Rousseeuw and Leroy (1987). The general case corresponds to the minimum
covariance determinant (MCD) estimate of Rousseeuw (1983). We will show
that there exists a separating ellipsoid containing all data points X; with
J IS gn and excluding all those with j ¢ S , that the center of the ellipsoid is
EIR(S )+ O,(1/n) and that the shape is given by a matrix of the form
&(S,) + o, (1 /n).

In Sectlon 2 we define the corresponding problem for the common distribu-
tion P of the X;’s. We show that if P is a unimodal elliptical distribution with a
density, then the solution is an ellipsoid whose center is the point of symmetry
of P and whose shape is that of P. It will turn out that the empirical
counterparts converge at the rate of n~!/2 to the population values. The MCD
estimator is affinely equivariant. It is a further example of estimators with a
high breakdown point and n~1/2 rate of convergence. Other examples are the
S-estimator of Rousseeuw and Yohai (1984) and Davies (1987) and k-step
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1386 R. W. BUTLER, P. L. DAVIES AND M. JHUN

M-estimators based on the minimum volume ellipsoid [Rousseeuw (1983)
treated by Davies (1992a)]. The MVE estimator itself has an n~1/3 rate of
convergence [Davies (1992b) and Nolan (1991)].

The separating ellipsoids for the empirical distribution provide a natural
methodology for constructing robust multivariate tolerance regions for the
next X, ., observation. The ellipsoid can be blown up to give and approximate
95% guarantee of 90% coverage for X, ., thus extending the univariate
methodology of Butler (1982) and Cho and Miller (1987). Example 2 in Section
4 has further details.

2. The MCD problem for the theoretical distribution. We assume
that the common distribution P of the random variables (X )7 has a density of
the form

1

s = w27 - ),

where u € R* and 3 is a symmetric positive definite & X 2 matrix. As the
estimators we consider are affinely equivariant, we may assume without loss of
generality that u = 0 and X = I,. The function f: R, > R, is assumed to be
nonincreasing so that P is a unimodal distribution.

For any bounded Borel set B in R* with P(B) = vy, we define

1
M(B) = ;/Bxdlp(x)
and
1 T
&(B) = — [ (x — M(B))(x — M(B))" dP(x).
Y“’B

The restriction to bounded sets is simply to ensure the existence of the
relevant moments. It could be weakened to those sets with well-defined second
moments but the gain in generality is only slight. We denote the family of all
such sets by C(y).

For B € €(y) we define an ellipsoid &(B) by

£(B) = {x: (x - M(B))"&(B) !(x — M(B)) < r¥(B)},
where r%(B) is chosen so that P(&(B)) = v.
We write

(2.1) D= inf |&(B)|.
BeC(y)

Let K(x,r) denote the ball with center x and radius r. On choosing r so
that K(0,r) € €(y), we see that

(2.2) D <|S(K(0,r))| < =.

The ball K(0, r(y)) with P(K(0, r(y))) = y will turn out to be the solution
of the MCD problem for the population distribution P. The value of r(y) is
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determined by

27k /2

T(k/2)

(2.3) [[Preip(r?y dr = y.
0
We require the following result.

LEmMA 1. Forall n > 0 and 6,y € R*, we have

(1) P({x: llxll < m}) = P({x: llx = yll < n})
and
(ii) P({x: 167 < n}) = P({x: |67 (x —y)‘| <n}).

Proor. We have

Sl =yl <} = {ll=ll <)) ( f(llx = yII) = F(Ix]?)) dx = 0

as the expressions in the products are either both positive or both nega-
tive. This may be seen as follows. If [lx — yll < |lx||, then {|lx — yll < n} —
{lxll < m) > 0 and f(lx — yII>) — f(lx/|*) > 0 showing

({le =yl < m} = {lIxll < n})(F(lIlx = ¥1I%) = F(lIxlI*)) > 0.

Similarly, if [lx|| < llx — y|l, then both terms in the product are nonpositive.
On multiplying out we obtain

2P({llxll < n}) = P(llx — yll <m) + P(llx + yll <m) = 2P(llx — ¥yl < n),

proving ().
To prove (i), we note that if 8 # 0 the distribution of #7X is unimodal and
the result follows from (i) for the special case 2 = 1. O

The smallest and largest eigenvalues of a matrix X will be denoted by
Amin(Z) and A, (3), respectively.

LEmMA 2. Let (B,) be a sequence of sets in C(y) with
lim |&(B,)| =D.
n—o

Then
(i) lim inf A,;,(&(B,)) > 0,
(ii) limsup A, (&(B,)) <
and

(i) lim sup | (B,)| < .
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Proor. Let 6,, [6,l = 1, denote the eigenvector associated with
Amin(®(B,)). We have

Ml S(B) = L 0z - (B ae)
> %P(Bn N {le7(x - M(B,))| = 1))
> %(p(Bn) - IP({IBnT(x - M(B,))| < ’7}))

> %2(@(3,,) - P({|6x] < n}))

by (ii) of Lemma 1. We may choose 7 so small that P{16%x| < n}) < y/2. This
gives

/\min(@(Bn)) = %772,

proving (i).
(i) follows from (i) and (2.2).
To prove (iii), we set 6, = M(B,)/IIM(B,)|l. Then

Amax(©(B,)) = %an(ef(x - M(B,)))*dP

1 2
- [B (Im(B,)| - 67x)* ap.

Let r be such that P(K(0,7)) = 1 — y/2 implying P(B,, N K(0, 7)) > y/2. We
have

1 5
Anax(S(B,)) = — M(B,)| - 6%x)" dP
ma(@(B)) = 2 f o (19(B,) ] - 67x)

> (I1R(B)I - 2| M(B,) |r)P(B, 0 K(0,r))/y
= 3(Im(B)I* - 2l:m(B,)|r).
This together with (ii) proves (iii). O

LEMma 3. Let E € G(y) be an ellipsoid with &(E)=E. Then E —
K(0, r(y)), where r(y) is given by (2.3).

PROOF. Let E ={x: (x —m)"T Y x—m) < 1}. Then

_1 2
m = y[Eyf(IlyH ) dy,
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which gives
/E,yf(lly +ml®)dy = 0,

with E' = {x: x"T~'x < 1}. In particular,

[ 2"y F(ly + mI*)dy = 0

and hence

ElmTy{mTy > 0}f(lly + ml®) dy = [E - mTy{mTy < 0}f(lly + m?) dy

- [E,mTy{mTy > 0}/ (lly — mll®) dy.

We obtain
[y (mTy = 0)(f(lly + mI®) = £(ly = mI®)) dy = o.

If m"y >0, then lly + m|®> > [ly — m|* so that the integrand is always non-
positive and strictly negative for some y unless m = 0. This proves m = 0.

We have shown E = {x: x"T~'x < 1}. By an orthogonal transformation if
necessary, we may assume that I' is a diagonal matrix A with diagonal
elements A;,..., A,. We have

A=A xxTf(lxl1?) dx,
}

{(xTA " x<1

for some A > 0. On writing y = A~"2, it is sufficient to show that all
solutions of

k
I, =/\’f xxTf| Y Ax2 )| dx,
lxll< 1) T

for some X' > 0 satisfy A, = -+ = A,.
We have
k k
(2.4) j xff(ZAix?) dx = j ng( ZAixf) dx
{lxll<1) 1 {llxll<1} 1
and hence

' 3
[ (xf - xZZ)( f(Ale + Agxd + Eijjz)
{llxll<1} 3
(25) k |
—f(Azxf + Al + EAJxJZ)) dx =0
3

as may be seen by interchanging the roles of x, and Xg. Suppose A; > A,.
Then if x{ >} it follows that A;x? + Ayx? > A,x2 + Ayx2. Similarly, if
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x2 <x2, then A;xf + Ayx? < Ayx? + AyxZ. Thus if A, > A, the integral in
(2.5) is always nonpositive and strictly negatlve at some x,, x,. This contra-
dicts (2.4) showing A; = A, and in general A, = -+ = A, =A. O

We are now in a position to prove the main theorem of this section.

THEOREM 1. The ball K(0, r(y)) solves the MCD problem, that is,
P(K(0,r(y))) =v and [&(K(0,r(y)))|= inf |&(B)|.
BeE(y)

Furthermore, K(0, r(y)) is essentially unique in that for any B € C(y) with
P(K(0, r(y)) a B) > 0 we have

©(B)| >|S(K(0,r(v)))l.

Proor. Let (B,)] be a sequence of sets in €(y) with
lim |&(B,)| =D = inf |@(B)|.
n— o Be((y

It follows from Lemma 2 that the sequence of ellipsoids (£(B,)); lies in a
compact subset of R*+(1/2k*+1 We choose a subsequence which we continue
to denote by (B,)} such that lim, _, &(B,) = E. As &(B,) € C(y) for all n,
it follows that E € E(y).

Suppose that liminf, ., P(B,AE)=mn>0 and let n, be such that
P(B,AE)> 217 for all n > n,. As P(B,) = P(E) = y, we have P(B,\ E) =
IP(E\B ) > In forall n = n.

Let &, 0 < £ < g7, be given. We choose points x, € B - \E and x,, e E\ B,
and balls K, (x,,r,) and K (xn, r;) such that IP(K R (B,\E) =PK, N
(E\B,)) =¢ As (B, \ E) > 17, we may choose the sequence (x,);, in such
a manner that it is bounded away from the ellipsoid E. It is clear that both r,
and r, are of order o(1) as ¢ tends to 0. We write N, =K, N (B, \E)
N/ = K; N(E\B,)and B, =(B,\N,) + N.. By construction IP(B;) =1y so
that B! € G(y).

A straightforward calculation gives

&(B;,) = &(B,) — (i, — n) (K — )"

1 T
[, (2 = M(B) (=~ M(B,))" P

+ %/Nn,(x ~M(B,))(x - M(B,))" dP,

where
1

1
p,=—[ xdP(x) and pu, = —[ deP’(x)
Y ’N, Y
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This implies
&
(B;) < &(B,) = — (%, = M(B,))(x, = W(B,))" (1 +0(1))
€ ’ ’ T
+;(xn - M(B,))(x, — M(B,)) (1+0(1)),
where A < B means that B — A is nonnegative definite. We may deduce

©(BL)| <[8(B,) = = (2, ~ M(B,))(x, ~ M(B,))

+ (%, ~ M(B,))(x, = B(B,))"

(1+0(1))
=|@<Bn>|(1 - S (50 = (B S(B,) (2, ~ W(B,)

+ %(x'n - M(B,))" &(B,) (x, - 2’JE(Bn)))

X(1+0(1)).
By construction x/, € E and x,, is bounded away from E so that
(x, - W(B,)"&(B,) (%, - M(B,))
< (%, — M(B,)) &(B,) '(x, ~ M(B,)) — 5,
for all n sufficiently large with & > 0. It follows that
|©(B;)| <|&(B,)|(1 =),
for all n sufficiently large with n > 0. This yields

liminf|&(B,)| <D(1 —n) <D= inf |&(B)],
BeG(y)

contradicting B/, € €(y). We have therefore shown that
(2.6) lim P(B, a E) = 0.

n—oo
Because of Lemma 3 it is sufficient to show that £(E) = E. Let
E={x:(x- m) T} (x +m) < 1}.
Then

1 T
©(B,) = = [ (x = D(B,))(x ~ M(B,))" dP

|\

1
;[Ean(x — M(B,))(x - M(B,))" aP,
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which implies

. 1 T
D =1im|&(B,)| =|— E(x —m)(x —m) dIP‘

M(E))(x — sm(E))Tdn»{

= |&(E)|.

From this it is seen that
S(E)| = inf |S(B)|.
|S(E)| Bg&(y)l (B)]

As E € €(y) we may choose B, = E for all n. Then ¥(B,) = &(E) = E' and
from (2.6) we have P(E a E') = 0 giving E = E’ as was to be shown. O

3. Consistency and weak convergence. The empirical distribution as-
sociated with (X )¢ will be denoted by IP A finite subset S, of {1,...,n} will
be called a local minimum if |&(S,,)| cannot be reduced by 1nterchang1ng a
point of S, with a point in {1,...,n}\ S,,.

THEOREM 2. If S¥ is a local minimum, then there exists an ellipsoid E*
containing all points X with j € S; and excluding all points X; with j & S}\. *
Furthermore, the elllpsozd E} may be chosen to be of the form

= {x: (2 = m%)TF (2 — mk) <12,

where m*, = P(SH\ {j*)), T* = &(S*\ (j*)) for some j* € S¥ and r*? =
(Xjx — m¥)'TF (X« — m*). The integer j* may be taken to be any j € S¥
which maximizes

” Y N — ~ .
(X = R(SIND) SN (X - RS2\ ()).
Proor. We show first that E; contains all the points in {X: j € S}}. We
write
. A T A e N .
d(i,j) = (X = R(SEN () S(SEN U (X - V(S (4)).
It is shown in the Appendix that
(3.1) max d(i, j*) = d(j*,j*) = ;"

_ Let [ ¢ S and suppose we interchange X, and an X, with j € S*. Let
=S*\{ j} + {{}. Then [see, e.g., Butler (1983), equatlon 3.13]

" 5,8(8F) = (s, - DE(SE\ (4})
3.2) . R
( HL = s7)(X, - RSN UD)(X; - Te(sp\ 1)
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where s, is the size of S}. This gives

(33)  |&(sH)] = (1 -1 16(SEN DI +d (. 5)/50)-

Similarly,
&(S,) = (1 -s:1)"

As S} is a local minimum

E(SNAMI( +d(,))/54)-

d(l,j)=d(j,J)
and on putting j =j*, we see that X, must lie on the surface or outside of E;.
As E} is defined solely in terms of X, j € S, and P has a density function, it
is clear that no X; with j & S lies on the surface of E; with probability 1.
’ O

In the case & = 1 the ellipsoids become intervals and it is possible to show
that all locally minimal intervals remain bounded as n increases. We indicate a
proof which can be made precise. If the interval becomes arbitrarily large, then
one endpoint becomes large whilst the other must remain bounded. Theorem 2
shows that if we exclude one of the endpoints, then the remaining s, — 1
observations are contained in an interval whose midpoint is the mean of the
observations in it. This is not possible as the observations will be concentrated
in that part of the interval nearest the origin. The boundedness of the
intervals together with the argument used for the global minimum to be given
in Theorem 3 shows that all local minima will yield consistent estimates for
the location and spread of P in the one-dimensional case. This is an improve-
ment of the corresponding result in Butler (1982) where it was assumed that
the observations have a finite mean.

The argument collapses for £ > 2 but can be rescued by assuming that P
has finite second moments. As this is at odds with the spirit of robustness, we
do not pursue the problem of locally minimal ellipsoids further.

The situation is different for globally minimal ellipsoids. As we now show
they remain bounded as n tends to » and provide consistent estimators of the
location and shape of P.

Let (E, )7 denote the sequence of globally minimal ellipsoids. We require the
following result.

_ LEMMma 4. ’With probability 1 there exists a compact set C of R* such that
E, c C for all n sufficiently large.
Proor. According to Theorem 2, we can write
By = {x: (x = ) T2 = ) < 72,
where I, = &(E.), &, = M(E,) and E,, = E, \ {X} for some X; € E,.

Consider a ball K(0, ) with P(K(0, r)) > y. It follows that P (K(0,r)) > vy
for all » sufficiently large. For any set S, of size s, = [ny] with X; € K(0,r)



1394 R. W. BUTLER, P. L. DAVIES AND M. JHUN

for j € S,,, we have

1 n N T
&(8) = o~ L (%~ D(S,))(X; - ()
nJES,
< 31 [ (2= B8 (x - (8,))" ab,
<cr?l,,

for all n sufficiently large. Thus |&(S,)| < ¢ < « for all n and we may deduce

(3.4) limsupl@(En)| < o,
For the sequence (A, (S(E,))?, we have
A oa n Aoa T 2
bl (8] = 2, (1=~ ()0 .

where 6, [0, || = 1, is an eigenvector associated with A _; (&(E,)). This gives

A n A 2 A
Ao (B)) = [, o (08— R(E,))) a,
> (07 (x — M(E, n K(0, r))))2duﬁ>n.

S, 'E,nK(,r)

Using the fact that ellipsoids form a class with polynomial discrimination or
a Vapnic-Cervonenkis class, standard results in the theory of empirical pro-
cesses [Pollard (1984), Chapter 2] give
A R 2
Amin( G(E,)) (67(x — M(E, N K(0,7)))) dP +0,(1).

min(

n
> —
S, '/;fnﬂK(O,r)
We choose r sufficiently large so that P(K(0,r)) > 1 — y/2. Now
n
G(E.)) > —inf 0T (x — 2dl]3°+ol,
(B.) > Sinf [ (07(x =) ¢y

where the infimum is taken over all E € €(y), y € R* and all 6, [|18]| = 1. As P
has a density we have

A

min (

inf (67(x —))*dP >0
YENK(Q,r)
and consequently
. liminfA , (&(E,)) > 0.
(3.5) iminfA . (&(E,))

From (3.4) and (3.5) we have immediately
(3.6) limsupA . (@(En)) < o,

n—o
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Let S be the set of indices of those X;, 1<j<n, with X; € En. By
Theorem 2 there exists a j, € S, such that

A

E, {x:(x—ﬁzn) F‘l(x—ﬁzn) sff},
with 7, = M(S, \ (7,.), T, = &S, \ {j,)) and
P2 = (X, — ) DX —hy).

Jn Jn

The proof leading to (3.4) also shows that
(8.7) liminfA,;, (f,,) > 0.

n—ow

From (3.3) we have

and hence

(3.8) lim sup/\max(f‘n) < o,

n—o

From (3.7) and (3.8) it is clear that the trace of [, is bounded giving

o > lim sup trace( f, )

n—o

n a2 A
= — lx — e, |I° dP,
Sn 'E\NIX;)

n L2
— . lx — m,lI° dP,
Sn (En\(Xj"})ﬁK(o, r)

v

n
— (132, 017 = 2l N )P ((E, N K(0,
> (Il = 2, )8, (B, (X)) 0 K(0,)).
By choosing r so large that liminf, I]S’n((EAn \{X; ) nK(,r)) > 0, we
obtain

(3.9 . lim sup||/2 || < o.
n—o
Finally, from (3.7) through (3.9) and P(E,) = s, /n — vy, we see that
(3.10) limsup#?2 < o,
n—o

which completes the proof of the lemma. O
"TrEorEM 3. With probability 1,
lim ((E, ), &(E,)) = (0, p(7) 1)

n—>w



1396 R. W. BUTLER, P. L. DAVIES AND M. JHUN

and
Lim (1, 77, 5,) = (0,7%(), p(v) 1),

n—oo

where
E, = {x: (x = m,) T (x - m,) <72},
r(y) is given by (2.3) and
21 k/2 (y)
— r k+1 2
°() = D [ty ar

Proor. It follows from Lemmas 3 and 4 that it is sufficient to prove the
first statement of the theorem. o . '

By Lemma 4 the sequence (M(E,), &(E, )7 is contained in a compact
subset of R**(/?**+1 Therefore, there exists a convergent subsequence
which we continue to denote by (0(E), S(E,))7 such that

lim (0(E,), &(E,)) = (1, 3),

n—ooo

for some p and 3. By Theorem 2

A A n 1
Em(En)= i den+o(—)
Sn NN —PUENTS(E,) (x—D(E, ) <72 n
and
&(B,) = — (x - ®(E,))

Sn Hx—PUENTEE,) Y x~TUE,) <72}
A a T 4 1
Xlx —I(E dP +o|—].
(e~ B(E,))" b, + o[
By empirical process theory the integrals on the right converge to

1 1 r
~[xdP and = [ (x—p)(x-p)"dPp,
Y’E YE

respectively, where
E={(x-p) "3 Y(x-p)=r?
and r is such that P(E) = y.
We obtain ‘

u=%j;3xdﬂ3",

1
%= ;fE(x—M)(x—M)TdP,

so that £(E) = E. From Lemma 3 we deduce (1, 3) = (0, p(y)I,) and, as this
holds for every convergent subsequence, the claim of the theorem follows. O
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4. Central limit theorem. We revert to the general case where P has a
density of the form

1
S ((x—w)'s" 1(x—M))

for u in R* and 3 some positive definite symmetric £ X & matrix.

We shall restrict attention to the asymptotic distribution of vn (i, — u)
and Vn (M(E,) — ). The distributions of Vn (i, — ) and Vn(&(E,) -
p(y)2) can be shown to be asymptotically independent. The latter distribution
is rather complex and will be reported elsewhere.

THEOREM 4. Suppose that f has a continuous first derivative f D which is
strictly negative and let r(y) be as in (2.3).
Then Vn (i, — w) and Vn (M(E,) — u) both converge weakly to a Gaussian
random variable with mean 0 and covariance matrix k(y)3, where
kT (k/2)[¢Or* 1 (r?) dr

8,n.k/2([0r(y)rk+1f(1)(r2) dr)2 ’

k(y) =

Proor. Suppose without loss of generality that u = 0 and X =I,. Let C
be a compact set such that the sequence of ellipsoids (E,)7 is eventually
contained in C with probability 1. The class of functions & = {x{x € E n C}:
E ellipsoid} has graphs with polynomial discrimination [Pollard (1984), page
27]. For g € & we write & = {x{x € E N C}: E ellipsoid},

P(g) = [gdP(x).

Standard empirical process theory [Pollard (1984), page 27, Sections 7.4 and
7.5] gives Vn (B (g) — P(g)) = Z(g), g € ®, where Z is a continuous Gauss-
ian process with mean 0 and covariance structure given by

E(Z(g)Z(g')) = P(gg') — P(g)P(g").
Aslim, ,, E, = E the continuity of Z gives
Vn(P.(g,) — P(2,)) = Z(g),

where g,(x) = x{x €EE,N C} and g(x) =x{x € EN C}=x{x € E}. From
eorem 2 we have P (gn) = 1, + O,(1/n) and consequently

Vo (v, — P(g,)) = Z(g).
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Furthermore,

P(g,) = fEde(x)

= xf (Ilxl|?) dx

{x: (x—mm )T Nx—1h,)<r2}
and as E, — E almost surely a Taylor expansion gives
P(g,) = ¥(M, + {(y)1h,)(1 + 0,(1)),

where
4 k/2

{(v) = kF(k/2)/

r(y) k+1f(1)(7‘2,) dr.

We therefore obtain
Vnyi(y)m, = Z(g),
where Z(g) is a normal random variable with mean 0 and covariance matrix
E(Z(g)Z(g)") = f xx” dP(x)
' 27
kT (k/2) /

This proves the first statement of the theorem. The second follows from
Theorem 2 as IM(E,) = i, + O,(1/n) and &(E,))=E&(E,NnC)+ 0,(1). O

r(y) k+1f(r2) dl”Ik

ExampLE 1. Suppose P is Ny(0, I,). Then with y = 0.9, £, = 1.493 and 7,
and EDB(E ) are 67.0% asymptotically efficient relative to the sample mean.

ExampLE 2. Ellipsoid En provides a robust predictive region for observable
X, 1. In such usage it may be of interest to have some prescribed assurance
(0.95 say) about a particular amount of predictive coverage (0.90 say). This is
achieved by choosing y so that

P [ dP <0.9] > 0.95.
E,

Such assurance can in general be achieved asymptotically by considering the
limiting distribution of probability coverage. Since

0 =Vn(y—v) = Vn(B,(E,) - P(K(0,r(7)))),
then adding and subtracting P(E,) we have
0= Vn(B(E,) - P(E,)) + Vn(P(E,) - 7)

) )
= Z(K(0,7(7))) + 0,(1) + Va (P(B,) - 7).
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As Z(K(0,r(y)) ~ N(0,y(1 — y)) the approximation (4.1) with n = 100 al-
lows one to choose y = 0.939 to have approximately 95% assurance of 90%
predictive coverage. :

APPENDIX

Proor oF (3.1) IN THE PROOF OF THEOREM 2. We show that
max; . g« d(i, j*) = d(j*, j*) by computing d(i, j*) and d(j*, j*) directly. It
can be shown that

A%, %) =13 = s,(s, = 1) dp/[1 - (5, - 1) ],
where
d; = (X, - :(sp) &(57)7Y(X, - Dusy)).

Thus, not only does j* maximize d(j, j) over j € Sk, it also maximizes d ’

over j € Sy. In computing d(i, j*) use the identity
X = RSING) = [ X = RSH] + (5, = 1) 7 [ X0 - (8]
and invert @(S,"j \ {/*}) using (3.2) to derive that
(i, j*) = 5.5, = D{d, + 25, — 1) ' dje + (5, - 1) 2d,s
+(sn =DM A2+ 2(s, — 1) 2 d, nd s

+(s, = 1) di]/[1 - (s, - 1)‘1dj*]},
where
di; = (X, - ®(sp)) &(87) 7!(x, - De(sy)).

Now max, ¢ gxd; = d;» and max, g« d, » = djijx = djx s0o max, g« d(i, j*) is
the expression above for d(i, j*) with d; replaced with d j* and d; ;« with d «.
Upon simplification,
max d(i, j*) = s,(s, = 1)~ dpu/[1 = (s, = 1) du] = d(5%, %)
ieSk )

as was to be shown. O
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