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EMPIRICAL LIKELIHOOD IN BIASED SAMPLE PROBLEMS

By JiNnG QIN
University of Waterloo

It is well known that we can use the likelihood ratio statistic to test
hypotheses and to construct confidence intervals in full parametric models.
Recently, Owen introduced the empirical likelihood method in nonparamet-
ric models. In this paper, we generalize his results to biased sample
problems. A Wilks theorem leading to a likelihood ratio confidence interval
for the mean is given. Some extensions, discussion and simulations are
presented.

1. Introduction. Vardi (1982) discussed a nonparametric two-sample es-
timation problem in the presence of length bias. Consider one sample
{x,,x5,...,x,,} from F and another sample {y;,y,,...,y,} from the length-
biased distribution

1 .y
G(y)=;f0xdF(x), y = 0.

Here u = [gxdF(x), and it is assumed that u < . The basic idea of a
nonparametric maximum likelihood estimate (NPMLE) is to place mass only
at the observed points and then maximize the resulting likelihood subject to
some constraints. Vardi (1985) and Gill, Vardi and Wellner (1988) considered
more general biased sampling problems. They solved the problem of estimating
a distribution function based on several independent samples, each subject to a
different form of selection bias. It has been shown that the NPMLE for this
problem is asymptotically efficient. They also found some applications for this
biased sample problem.

The empirical likelihood method for constructing confidence regions was
introduced by Owen (1988, 1990). It is a nonparametric method of inference
that has sampling properties similar to the bootstrap, but where the bootstrap
uses resampling, it amounts to computing the profile likelihood of a general
multinomial distribution which has its atoms at data points. Properties of
empirical likelihood are described by Owen (1990) and others. Qin (1991) has
generalized Owen’s empirical likelihood to a two-sample problem, in which one
sample comes from a distribution specified up to a parameter, and the other
sample comes from a distribution which is unspecified. A likelihood-ratio-based
confidence interval is presented for the difference of two sample means. Qin
and Lawless (1991) have introduced empirical likelihood into semiparametric
models, where the number of estimating equations may be greater than the
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EMPIRICAL LIKELIHOOD 1183

number of parameters. It is shown that the maximized empirical likelihood
estimates for both parameters and distribution function are asymptotically
efficient. Many theorems for parametric likelihood have analogous versions.
In this paper, we will introduce empirical likelihood in the biased sampling
problem. A likelihood-ratio-based confidence interval for the mean is devel-
oped. In Section 2 we give our main results. Section 3 gives some simulation
results. Some discussion and further problems are presented in Section 4.

2. Main results. In this paper, since we do not wish to involve compli-
cated identification conditions [see, e.g., Vardi (1985)], we assume a two-sample
problem. One sample s; = {x;, x,,..., x,,} is taken from F and another sam-
ple sy = {y1,%s,...,,} from a weighted distribution

1
G(y) = E/Ow(x)dF(x), w(x)>=0,y>0,

where w = [fw(x)dF(x) <®. Let N=m +n, k =n/N and t,t,...,ty be
the combined set of observations. Here for convenience we assume that there
are no ties, but an argument similar to that of Owen (1988) shows that the
presence of ties does not change our results. To begin with, we are interested
in giving a confidence interval for the mean 6 = E;(x). For the time being, we
assume that w(¢) is not proportional to ¢. The case where w(¢) is proportional
to t is, however, also easily handled by the same development; see the remark
after Theorem 1.
The probability of our data is

t.)dF(t;
P(data) = tg dF(ti)t.l;Is LfUT((Jt))d%

In order to find a cumulative distribution function (cdf) that maximizes
P(data), it is not hard to see that we can restrict our search to the class of
discrete cdf’s which have positive jumps at each of the points in s, U s, and
only there. Let p, = dF(¢,),i =1,2,..., N, and

N N -
(2.1) L= {l_llpi}{ piw(ti)} -
= i=1

Vardi’s NPMLE problem is to maximize (2.1) with respect to p,,i = 1,2,..., N,
subject to the constraint LY ; p, = 1. In the following, we use I(-) to represent
log L with various types of constraints. It would be clear from the context
which arguments in log L are allowed to vary. First let /() be defined as the
maximum value of

N
(2.2) Y logp, — nlog w
i-1
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with respect to p;, i = 1,2,..., N, and w, where p; and w satisfy constraints
N N ‘

(23) Ywt)p=w, Yp=1, p;>0 i=1,2...,N.
i=1 i=1

Clearly this is equivalent to Vardi’s estimate. An explicit expression for [(iD)
can be derived by a Lagrange multiplier argument. It is easy to show that [also
see Vardi (1982)]

(2.4)  U(d) = — IZV‘,log{ kwg") . k)} —nlogd - Nlog N,
i=1

where W satisfies

1N w(t) — b
(2.5) =3 — — =
N kw(t)/w + (1 — k)

i=1

0.

To develop an empirical likelihood function for 6 = Ey(x), we let I(w, 6) be
defined as the maximum value of (2.2) with respect to p;,, i =1,2,..., N,
where p;, 6 and w now satisfy the constraints

o8

pi=17

I

N N
Z w(t)p; =w, Z tL;p; =90,
i=1 i=1

(26) i=1

D;

Again an explicit expression for /(w, §) can be derived by a Lagrange multiplier
argument. In order to get /(w, 9), let

H(py,...,py,w,0)

[\

0, i=1,2,...,N.

N

log p; —nlogw — NA, ¥ {w(t,) — w)p,
1 i=1

M=

N N
— N, Z (¢; — 0)p; +a(1 - Zpi),
i=1 i=1

where A, A, and a are Lagrange multipliers. Taking derivatives with respect
to p;, we have

i "1 NA t NA (¢ 6 0
E—E_ l{w(i)_w} 2(2; ) —a=0,
N H
Ypi—=N-a=0, > a=N
i-1 0p;
and
1 1

P N T 0 (w(t) —w) + A0, — 8)
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with restrictions

1 % w(t;)) —w 0

N2 1+ n(w(t) —w) + a5t —0)
(2.7)

1 X t;— 0

N 21+ M(w(t) —w) + Ag(t; = 0)
Hence the empirical likelihood function I(w, ) is

N
I(w,0) = — Y log{1 + A(w(t;) — w) + Ay(t; — 6)}

(28) i=1
—nlogw — Nlog N,

where A, A,, w and 0 satisfy the constraint conditions (2.7). Let I(w, 0) be the
maximum value of /(w, #) when 0 is fixed and (@, 6) be the maximum value
of I(w, 0). It is obvious that I(iD, ) = (), which is defined by (2.4). We then
define the empirical likelihood ratio statistic for 6 as

(2.9) R(6) = 2(1() - 1(,0)},
and obtain empirical likelihood confidence intervals for 6 as
#,={0: R(6) <u}.

We now develop some results that lead to a proof that when 6 = 8,, R(8,)
has a limiting X(21) distribution. For convenience, we consider minus /(w, )
without the constant term, and we let

(2.10) lg(w,0) = IZV‘, log{1 + Ay(w(t;) —w) + Ay(2; — 6)} + nlog w.
i=1

1

In the following, we reparametrize the parameters. Note that

1+ A(w(t;) — w) + Ag(2; = 6)

1+ ()\1 - g)(w(ti) -—w) + %(w(ti) —w) + Ay(t; — 0)

= 'llj—}w(ti) + (1 — k) +ay(w(;) —w) + ay(t; — 0),

T &t w)

"1+ a8, w) + aygy(t;,w) B

)

where a; = A, — k/w, ay = A,. Thus (2.7) becomes
1 N

=

i

(2411)

1 IZV: 82(t;, w)
Ni=1 1+ C“lgl(ti’w) + a2g2(ti’w)
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and
2.12 - 4 1
(2.12) pi = N kw(t)/w+ (1 —k) 1+ a18(t;, w) + aygs(t;, w)’
where
, w(t) —w

il w) = G o ¥ (1 =F)’
(2.13)

82t w) =

Rw(t,)/w + (1 — k)

We assume that the true values of w and 6 are w, and 6,,, respectively. We
now prove that (2.11) implicitly defines two functions a,(w) and ay(w).

LEMMA 1. Suppose that distribution function F is nondegenerate and
Eplxl’ <, Eglxl> <o and k=n/N - k,, as N — o, where 0<ky,<1.
Then at the true value 0 = 0, with probability 1 in the interior of the interval
lw — wol < N~'/3 for N large enough, equation (2.11) uniquely determines
a, = afw) and ay, = ay(w). Furthermore, ay(w) and a,(w) are continuous
and differentiable when w belongs to this interval.

Proor. Note that when 6 = 6, and w = w,,

ﬁ g1t wo) = [(w(t) = wo) dF(¢) + O,(N™V/2) = O,(N~1/?),
1

N
Z
N
N L &alliwo) = (&= 60) dF(t) + O,(N™V/?) = O,(N~V/2).

Using an argument similar to that of Owen (1990), when w = w, + O,(N~'/3)
and 9 = §,, from (2.11) we have a; = O,(N~'?), a, = O,(N~'/?). By the
implicit function theorem, we easily obtaln the lemma’s result D

Since, after the reparametrization, the p,’s are a product of two factors
besides a constant factor, we decompose ! ;(w, 6) into two parts. Let

(2.14) Lig(w) = IZV‘, log{kw(t;)/w + (1 — &)} + nlog w,
i=1
(2.15) lyp(w,0y) = % 108{1 + a;8,(t;, w) + aygy(t;, w)}
i=1
and
(2.16) lg(w,0,) = lig(w) + lyp(w,8).

As in Qin and Lawless (1991), we now prove that [gz(w,6,) has a local
minimum in a small neighborhood of w,.
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LEMMA 2. We assume the conditions in Lemma 1 are true. Then for N
large enough, with probability 1, lz(w, 8,) attains a local minimum value at
some point W in the interior of the interval lw — wol < N~ 18,

ProoF. This proof is similar to the proof of Theorem 4.1 in Lehmann
(1983). Let w = w, + uN~'/3, where |u| = 1. First we give a lower bound for
1(w,0,) at w=w, + uN"'/3 where u = 1 or —1. Note that

lyg(w) JZV: —kw(t;) /w* n
w | S Rw()/wr(1-k)  w
n(k-1) 1 N
= __wz—ﬁiglgl(ti’w,)
and
0*lg(w) -21 X 1 1 XN agyt;,w)
st kD) —w—aﬁiz:lgl(tww) + FNE:IT :
3%l g(wy) 1 0
dwE (k—l)w—g —w—0+o(1) a.s
where
w(?)
>~ R 7w+ (A= T
So

1821, 5(w)

5 - uZN-2/3
w

: Al (w
llE(wO + uN‘1/3) =1, (wy) + _”;EU_O)uN—l/a +
=lp(wy) + O((N log log N)l/z)uN-1/3
é
(L= B) UV +o(N'?) s,
0

> lig(wy) as,

where w* falls between w, and w, + uN~'/3. Similarly, expanding /,z(w, +
uN~1/3.9,) at w,, we can easily show that [also see Lemma 1 in Qin and
Lawless (1991)]

5 Lyg(wo + uN"13,84) > ly5(wo, 0,), a.s.

when N is large enough. Hence I (w, + uN~'/3,00) > [ z(w, 8,) a.s., and we
have proved our claim. O
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Furthermore, by (2.7) and (2.10), & satisfies

dlg(w,0,) ~ N —A N no_ 0
dw io1 LA A(w(t;) —w) + ay(¢; — 6y w ’

that is, A, = £/w, which implies that a; = 0, and by (2.11)-(2.16), we have
estimating equations

1N &1(¢;, w)
() = 5 B ety =0,
(2.17) ) 1 % 8a(t;, w) 0
Qon(w,A) = Ni=1m o
and

N
(2.18) Ig(w) =1,5(@) + lyp(w), Lyg(w) = ), 108{1 + ng(ti’ w)}»
i=1

where @& and A satisfy (2.17) and 82(¢;, w) is evaluated at 6 = 6,. In order to
get the asymptotic distribution of the empirical likelihood ratio statistic, we
need to know the asymptotic behavior of i and i.

LeEMMA 3. Under the conditions of Lemma 1, if Hy: 0 = 0, is true, then

VN (& — w,)
2.19 . - N(0,U),
(219) ( VN (X - 0) ©.9)
where
wi(wo—3)  wist
(2.20) U=|ko(1 —ky)d k262 5
0 n !

0 is defined in the proof of Lemma 2 and 01,0, and m are defined in the
following proof.

Proor. Using Taylor’s expansion for Q:n(w,N),i=12at (wy, 0), we have

o2 (4 )+%0Qi”§;"°’°)d—0)+oP<sN),

9Q; y(w
0= Quy(wg,0) + ——2— (& — w,

where ey = [0 — wyl + |A — 0]. Hence

(221) (14;\__1’;]0) = _SI\_IIQN(WO’O) + OP(EN),



QlN(w’ A)
Qan(w,A)
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where
IQ;n(wo,0) 9Q,n(w,,0) ‘
Jw dA
Sy = , Qn(w,A) =
N IQ2n(wo,0)  9Qyy(wy,0) w( ) (
dw dA
From this and @, (w,,0) = Op(N~/2), we know that ey = O,(N~'/?).
Note that
1 X agy(t;, wo) 1 X
s ﬁing _Ni=1g1(ti’wo)g2(ti,wo)
o 1 N agy(t;, wo) 1N
— o« v 7 ) 2 t
N igl ow N i§1g2( i wO)
) w0y
Wy kg
- =S,
C(A-k)h
w, 2
where
6, = dF(t), o, =
! fkow(t)/wo + (1 —ky) 2 ? fkow(t)/wo + (1 — ko)
and
VN Qn(w,,0) = N(0,V),
where
d(wy — 6) 88,
| RaT=Ro) o
58, 5 (1- ko)82
ko 2 ko

Let n = 8, + (1 — ko)82wo/ (ko 8) > 0. Then

w%(wo —9) _ wg 87 0
U=S"W(SY) = | ko(l—ke)d ki’
0 n!

Now we are ready to prove our main result.

1189

|

dF(t)
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TuEOREM 1. If the conditions in Lemma 1 are true, under Hy: 6 = 6, the
empirical likelihood statistic (2.9) satisfies
(2.22) R(6,) = x§&)-

ProOF. From (2.4), (2.5) and (2.14) it is easy to see that I(ib) = —I, () —
N log N, where  satisfies @, (0, 0) = 0. Hence

-1
W —wy = _((9QW;+’O)) Qin(wy,0) + 0p(N~1/2)

(2.23)
Wy
= —2(1,00Qu(wo,0) +0,(N1/2).

So by (2.23) and (2.21) we have

w—-w= —(1,0)(%[4— S'I)QN(wO,O) +o0,(N"1/?)

~ w3 &,
ks 1 0) 1
- -1 + ,0
O s s, (5 9)]5 " @w(wa0)
(2.24) 8 3
+0,( N~1/2)
w§ 8,

%5 (0,1)S7'Qy(w,,0) + 0,(N~1/2%)

2
wg 0q

)
where I is a 2 X 2 identity matrix. Expanding [, (%) at @ and noting that

(D 1-k
20) M g0y -0,

A+ o, (N2,

Jw
we have
; W OLg(@) 13%g(w)
Lig(w) = lig(@) = T(W -w) + 5_;w2—(w - w)2 +0,(1)
1 E(1-F)S L .2
=§_—w3 N(w — ) + 0,(1).

From Q,,(i0, A) = 0, we have
5 1 2 - X - -1/2
A= N Zg2(ti,w) N Zgz(ti’w) + op(N )
i=1 i-1

=8, 'Qp(W,0) + 0,(N~V2).
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Hence
N -~
Lyg(W,0,) = Z g{1 + Agy(t;, W)} 4
N 1
= Z gz(tl,w) -5 Z Ng (ti’w) + Op(]')
= i=1
NX 1 N ) 3 )
-5 N L 1gz(ti,w)+op( )
N 12
So by (2.24)

Lig(@) — Lig(D) + lyp(D@,0,)

LEA =R oy s Nies, 40 (1
- 5o N - 0)  GR A+ o)

k(1 — k)8 wt 82 3
0 o 2252 + 85)A% +0,(1)

ZE(w’oo) - llE(w)

N 2

Noting that YN A — N(0,n 1), we have
R(0y) = 2{l(@) — 1(@,00)} = 2{lp(®,0,) — Lig(D)} = X&) D

REMARK. When w(?) = ¢, w = 6, we replace the constraints (2.6) by

N
i=w, .Zpi=1, p;=0, i=12,..,N.

P’]Z

Using the same procedure as for the case of w(t) # t, we can check that the
empirical likelihood statistic R(w,) also asymptotically follows a X(1) distribu-
tion. We omit the details.

3. Some simulation results. Empirical likelihood ratio confidence inter-
vals make very weak distributional assumptions and are justified by having
asymptotically correct coverage levels. This method can be easily extended to
other functionals 6. We consider an example for median estimation based on
biased samples. It is a special case of the general M-estimate, which estimates
a functional 9 defined by the solution to

(3.1) [ (x,0) dF(x) = 0.

Conditions must be imposed on #(x, ) to guarantee existence of a solution to
(3.1). Using empirical likelihood in the biased sample situation, we would then
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TaBLE 1
90% confidence interval 95% confidence interval
Average Average Average Average
m n Cov. midpoint length Cov. midpoint length

(a) Exp(1), Gamma(2), true value = 0.69315

15 15 89.4 0.73023 0.68240 95.0 0.74658 0.82685
15 20 90.2 0.72214 0.65422 95.6 0.73370 0.79189
20 20 89.1 0.73335 0.58319 94.3 0.74344 0.69292
20 30 90.2 0.72910 0.56504 95.0 0.74291 0.66371
30 20 88.4 0.72486 0.51708 92.8 0.73394 0.60948
30 30 91.8 0.71772 0.49809 95.6 0.72574 0.59252

(b) Exp(1), Gamma(3), true value = 0.69315

15 15 92.1 0.78011 0.79974 95.0 0.79614 0.97175

15 20 91.2 0.74779 0.77109 95.0 0.76848 0.92859

20 20 90.4 0.75256 0.69630 96.2 0.76597 0.84085

20 30 88.2 0.75098 0.67300 93.2 0.76345 0.80121

30 20 89.2 0.74215 0.58970 94.0 0.75645 0.69848

30 30 89.6 0.73083 0.56661 94.2 0.74570 0.67123
want to maximize (2.2) with respect to p,, i = 1,2,..., N, where p, w and 6

satisfy constraints

N N N
Z {w(ti) _w}piZO, Z‘/’(tiaa)Pi=0a Zpi= 1,
i=1 i=1 i=1

2,20, i=1,2...,N.

After profiling out (i.e., maximizing over) the p,, we have the empirical
likelihood I(w, 6) as

(w,0) = — %log{l + A (w(t) —w) + A(¢,0)) —nlogw
i-1

(3.2)
— Nlog N,
where A, and A, are Lagrange multipliers and are determined by
N Ny —
%El 1+ )\l(w(Z)(t—l)w) L—i e
(3.3) LW bE0)
NEI 1+ A (w(t;) —lw) T, e 0

Then we define the empirical likelihood ratio statistic as (2.9), and we can
obtain confidence intervals for 0 via the empirical likelihood ratio statistic. If
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we let

Y(x,0) = 1(x < 0) — l—z—yux > ),

then 6 is the y quantile of F(x). Following Owen’s (1988, 1990) arguments,
we can get a confidence interval for 8. We do not give details here.

In the following, some simulations have been performed. We generated
length-biased two-sample data by using the S language, and we considered
estimation of a median. We assumed that the unbiased sample comes from the
standard exponential distribution, and the other from the length-biased expo-
nential distributions Gamma(2) and Gamma(3) which arise when w(x) = x, %2,

Q-Q plot
o
9 ]
© -
]
|5
£ ©
il
< '('.
o
e
~
s~
o« 4
o -
T T T T T T
4 0 2 4 6 8 10 12
chisq(1)
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Empirical likelihood ratio statistic
for the median based on a biased sample

20

15
L

R(theta)

10
1

0.2 0.4 0.6 0.8 1.0 1.2

theta

F1c. 2.

respectively. From each sample, the 90 and 95% empirical likelihood confi-
dence intervals were computed.

In Table 1, we report the estimated true coverage, mean value of midpoint
and mean length of the empirical likelihood confidence intervals for the
median. Each value in the table is the average of 1000 simulations. The true
coverage level is close to the nominal level. For the less biased distribution
Gamma(2) [compared with Gamma(3)], the average lengths are shorter. Figure

-1 is the @-@Q plot for the 1000 replications of R(6,) versus standard x3,. The
approximation appears satisfactory.

Figure 2 shows minus twice the log empirical likelihood ratio statistic R(6)
versus median 6 based on one sample [m =n = 30, F is exp(1) and G is
Gamma(2)].
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4. Discussion and extensions. Without essential difficulty our method
in this paper can be generalized to the case of several independent samples,
each subject to a different form of selection bias as in Vardi (1985) and Gill,
Vardi and Wellner (1988).

Observing the result in Lemma 3, we know that when 6 = 6, that is, we
know that E,(x) = 6, the asymptotic variance of the estimator @ is less than
wi(w, — 8)/{ko(1 — k,)8}, which is the asymptotic variance of the estimator
W, when 6 is unknown. Qin and Lawless (1991) have found that the distribu-
tion function estimate based on the empirical likelihood method with auxiliary
information is asymptotically equivalent to Haberman’s (1984) estimate which
minimizes the Kullback-Leibler distance measure from an empirical distribu-
tion subject to linear constraints. A generalization of this result is to consider
semiparametric models based on biased samples, where the number of estimat-
ing equations is greater than the number of parameters [see Qin and Lawless
(1991) in the unbiased sample case]. Also, in some situations, w(t) = w(¢, 0)
can depend on some additional parameters; see Vardi (1985).

Density estimation is another interesting problem. Recently, Jones (1991)
proposed a likelihood-type kernel estimate

N
f(x) = .ZlﬁiKh(x - t),

ie
where K,(x) = h"'K(h~'x) and p, = N~ Xkw(t,)/® + (1 — k)} "1, where @
satisfies (2.5). This estimator has various advantages over some alternative
estimators. It has better asymptotic mean integrated squared error properties
and it is more readily extendible to related problems such as density derivative
estimation. One point worth mentioning is that when w is known, the p, can
be obtained by maximizing (2.2) with respect to p, only, subject to (2.3). An
empirical likelihood confidence band can be considered following the work of
Hall and Owen (1989), beginning by maximizing (2.2) subject to constraints

N N N
Z plw(t;) - w} =0, Zpi{Kh(x —-t;) —f(x)} =0, ._lei =1,

i=1 i=1
p; =0, t=1,2,...,N.

Finally, higher-order expansions need to be developed to compare the
empirical likelihood confidence interval and the usual confidence interval and
to assess the difference between parametric likelihood and empirical likelihood
in the biased sample problems. We will consider these topics in future commu-
nications.
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