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NONPARAMETRIC FUNCTION ESTIMATION FOR TIME
SERIES BY LOCAL AVERAGE ESTIMATORS

By LanH TaT TRAN

Indiana University

Let (X,, Y;) be a stationary time series with X, being R%-valued and Y,
real valued, and where Y, is not necessarily bounded. Let E(Y,|X,) be the
conditional mean function. Under appropriate regularity conditions, local
average estimators of this function can be chosen to achieve the optimal
rate of convergence (n™! log n)'/¢?*? in L_ norm restricted to a compact.
The result answers a question raised by Truong and Stone.

1. Introduction. Let (X,,Y,), t =0, + 1,... be a stationary time series
with X, being R%valued and Y, being real valued. Let 6(-) denote the
conditional mean function on R, which is given by 0(X,) = E(Y,|X,). Here
E(Y,|X,) denotes the mean of the conditional distribution of Y, given X,. We
will denote (X,,Y;) by L,. Let F#(L,) be the o-field generated by L,. For
o-fields % and &, define

a(F,&) =sup{lP(ANB) —P(A)P(B)l: A€ ¥, Be 4)}.
DEFINITION 1.1. Let g be a given nonnegative function defined on N X N,
where N is the set of natural numbers. The process L, is said to satisfy the

strong mixing property in the locally transitive sense (SMLT) with respect to
the function g if for all positive integers m, p,

(1.1) a(F(Lo), #(L,)) < x(p)
and
(1.2) a(m,p) =sup{|IP(ANB) - P(A)P(B)|} <g(mp,p)x(p),

for some constant C > 0 and some function x(p)|0 as p — ». The supremum
in (1.2) is taken over all sets A, B with

Ae F(L:l1<t<mp), BeF(Li(m+1p+1<t<(m+2)p),

where (L, 1<t <mp), F(L,: (m+ p + 1 <t <(m + 2)p) are, respec-
tively, the o-fields generated by L,,...,L,,, and Lionstp+1s-» Lnsoyp-

The SMLT condition is weaker than the strong mixing condition defined as
follows:

DErFINITION 1.2. Let %, and 9‘,’;” denote, respectively, the o-fields gener-
ated by L,, t < 0 and by L,, ¢ > n. Then L, is strong mixing if

a(n) = sup{lP(ANB) - P(A)P(B): Ac F°,Be F}10 asn — .

Received May 1989; revised September 1992.
AMS 1991 subject classifications. Primary 62G07; secondary 62G05, 62G20.
Key words and phrases. Nonparametric estimation, strong mixing, local mean.

1040

[
3l
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2

The Annals of Statistics. MK
WWw.jstor.org



NONPARAMETRIC ESTIMATION 1041

For more information on strong mixing processes, see Rosenblatt (1956) and
Ibragimov (1962).

Note that if L, is strong mixing, then L, satisifes the SMLT property with
respect to the function g = 1. To achieve generality of the SMLT condition the
function g(mp, p) is included to account for the cardinalities of the two groups
of r.v.’s involved in Definition 1.1. We will assume throughout that for some
constant C; > 0,

(1.3) g(mp,p) < Cy(mp +p)°
or
(1.4) g(mp, p) < Cy(mp)°p®,

where a and b are nonnegative constants. Instead of treating each case
separately, for brevity, we will simply assume throughout that

(1.5) g(mp, p) < Cy(mp + p)*(mp)°p®.

Clearly, both (1.3) and (1.4) can be, respectively, obtained from (1.5) by setting
b=0and ¢ = 0in (1.5). Let x be a real number. Occasionally, [x] will be used
to denote the integer part of x. Given positive numbers a,,b,, let a, ~ b,

mean that a,/b, is bounded away from zero and infinity. Let 6,, n > 1, be
positive numbers that tend to zero as n — «. For x € R?, define

I(x)={i:1<i<nandl|X; -x|<5,}

and let N, (x) = #1,(x) denote the number of points in I,(x). The local average
estimator of the conditional mean function is given by

6,(x) = (Ny(x)) ' LY, xeR%
I.(x)

Under appropriate regularity conditions, Truong and Stone (1992) have shown
that a local average estimator of this function based on a finite realization
X, Y),...,(X,,Y,) can be chosen to achieve the optimal rate of convergence
n~1Y@*d in L, norm restricted to a compact; and it can be chosen to achieve
the optimal rate of convergence (n~!log n)/?*?® in L_ norm restricted to a
compact. Let U c R be a bounded nonempty set containing the origin of R¢,
and let C be a fixed compact subset of U. Given a real-valued function % on C,
set ||kl = supy < clh®)|. Let

(1.6) r=1/(d +2)

and let én be local average estimators with §, ~ (n"!log n)". Under certain
regularity conditions, and under the condition

(1.7) PlY, <MX,=x] =1, xeU,
for some M > 0, Truong and Stone (1992) showed that
(1.8) lim P[1§,(-) = 6(:)ll. > Cy(n""logn)| =0,
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for some constant C, > 0. They further raised the question whether (1.8)
continues to hold if (1.7) is replaced by weaker conditions. Under conditions
weaker than (1.7), we show that indeed (1.8) continues to hold. These condi-
tions are given in Assumption 4. Details can be found in Section 2.

Asymptotic results for the conditional mean function also in the i.i.d. case
have been established by Stone (1977, 1980, 1982). Estimation of the regres-
sion function or conditional mean for time series under various settings has
been considered by Bierens (1983), Collomb (1984, 1985), Collomb and Héardle
(1986), Robinson (1983, 1986), Yakowitz (1985, 1987) and Roussas (1990).

The difficulty arising from the unboundedness of Y is handled by a trunca-
tion argument similar to those used earlier by Mack and Silverman (1982).
Relevant probability inequalities involving SMLT r.v.’s are obtained by using
approximations of SMLT r.v.’s by independent ones. In the rest of the paper,
for definiteness, we assume 8, = (n~! log n)", where r is as defined in (1.6);
however, our results would also hold if §, ~ (n~ ! log n)" as can be seen from
the relevant proofs. Our paper is organized as follows: In Section 2, the
assumptions and main results are stated. Section 3 presents preliminary
lemmas and proof of the main result (Theorem 2.1). Lemma 3.4 shows the
approximation of SMLT’s r.v.’s by independent ones. Its proof is given in a
separate appendix. Local average estimators are investigated in Section 3.
Throughout the paper, we assume that L, is SMLT with x(n) = O(n"") for
some p > 0.

The SMLT condition is weaker than many other dependence conditions, for
example, the absolute regularity condition or the ¢-mixing condition. A large
class of time series models satisfy the strong mixing condition and hence are
SMLT. Indeed, autoregressive moving average and bilinear time series models
are strong mixing under weak conditions [see Gorodetskii (1977) and Pham
(1986)]. The assumptions of the present paper are also rather weak. Thus, the
results here apply to many natural situations. An example is presented below
to illustrate the theory.

ExampLE 1.1. Let X,,¢=0,4+ 1,4+ 2... be a real valued stationary time
series. Let d, m be positive integers. Let X, = (X,.,..., X,,,) and Y, =
X gem-ThenL, =X, Y),t=0,+ 1, +2,... is a stationary time series, and

E(Y,X,) = E(Xy,,1X,,..., X,).
Suppose X, is SMLT, then L, is also SMLT. Theorem 2.1 shows that if (2.1)
and some additional regularity conditions (see Assumptions 1-4) are met, then
16,(+) — 6()ll. = O(5,) as.

If in addition, X, is strong mixing, then a and b can be zero. Then (2.1)
reduces to

(1.9) p>(9vd +2d®+ Tv+7d +6)/[2(v —d - 2)],

where v is as defined in Assumption 4. Suppose X, is an autoregressive
process or a bilinear time series model, then X, is strong mixing with
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geometric rates under weak conditions [see Gorodetskii (1977), Pham and
Tran (1985), Pham (1986) and Athreya and Pantula (1986)]. In this case p can
be chosen arbitrarily large and (1.9) is always satisfied. If Assumption 4 holds
for all v > 0, then (1.9) is satisfied if p > (9d + 7)/2.

2. Assumptions and main results. We will employ the following as-
sumptions.
AssuMpTION 1. There is a positive constant M, such that
l6(x) — 0(x)l < Myllx — x| forx,x € U,
where ||x|| = (x2 + -+ +x2)1/2 for x = (x,,...,%x,) € R
AssumpTiON 2. The distribution of X, is absolutely continuous and its

density f is bounded from zero and infinity on U. That is, there exists a
positive constant M, such that M;! < f(x) < M, for x € U.

AssumPTION 3. Let fx x denote the joint dens1ty of X; and X;. Assume
that there exists a positive constant M, such that M, ! < fx X, (x, x) <M, for
x,xX € Uand all i, j with j > i.

AssUMPTION 4. (i) There exists a constant v > d + 2 such that E|Y]" < .
(ii) Suppose sup, [lyl’f(x,y)dy < »

REMARK 2.1. Note that Assumptions 3 and 4(ii) imply that

sup E(|Y,/°IX; = x) < M, sup f\yl f(x,y) dy < .

xeU xeU

THEOREM 2.1. Suppose that (X,,Y,) satisfies the SMLT condition and
Assumptions 1-4 hold. Then:

@ 116,() — 6()ll. = 0(8,) a.s. if for some v > d + 2,
p > (2avd + 2bvd + 9vd + 4av + 6bv

(2.1)
—2bd + 2d% — 4b+ Tv + 7d + 6) /[2(v — d — 2)];

and

(i) there exists a positive constant Cg such that
lim P[118,(-) — 6(-)ll. > C48,] =0,
if for somev > d + 2,

p > (2avd + 2bvd + Tvd + 4av + 6bv

(2.2)
—2bd + 2d% — 4b + 3v + 1d + 6) /[2(v — d — 2)]
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REMARK 2.2. Our theorem applies to many general situations. First, the
SMLT condition is quite weak and is satisfied by many important time series.
Second, our approach removes the restriction that the time series is bounded,
an assumption that appears in the work of Truong and Stone (1992). One
notes that many standard time series models involve unbounded observations.

3. Preliminaries and proof of the main result. Let u(-,-)and v(-, )
be real valued, measurable funcitons on R¥*1. Set U = u(X,,Y)), V = v(X i Y)
for i #j.

LemMmA 3.1. Suppose that |u(-, )| < C, and |v(-, - )| < Cy, where C, and
C; are positive constants. Then |E(UV) — E(U)E(V)| < Cex(|j — il) for some
constant Cg > 0.

Proor. For any r.v.’s U,V with |U| < C, and |V| < C;, we have
(3.1) lcov(U,V)| < C,.C,Csa(F(U), F(V))

for some positive constant C,. For more information on this inequality, see
Deo (1973), Hall and Heyde (1980) or Lemma 1 in Nakhapetyan (1987). By
stationarity, (3.1) and (1.1),

|E(UV) - E(U)E(V)| =|COV(u(XO’ YO)’ U(Xj—i’ Y,}—l))|
< C7C4C5a(<9r(Lo), ?(Lu—q)) 5 CGX(U - “)

for some positive constant Cg;. We can choose Cq = CC,C,C5, where C is the
constant in Definition 1.1. O

Lemma 3.2. Suppose that E|UIP° < » and E|VI° <« where p,q > 1 and
p '+ q ! < 1. Then there exists a positive constant Cg such that
[E(UV) - B(U)E(V)| < CalUIIVIgx(j - i)'

Proor. By Lemma 1 in Nakhapetyan (1987), there exists a positive con-
stant Cy such that

|E(UV) — E(U)E(V)| < CollUl,IVllg(a(F(U), #(V))' P 797).

Lemma 3.2 then follows from stationarity and (1.1). O

Lemmas 3.1 and 3.2 are standard inequalities which will often be used. The
rest of the lemmas in this section provide the main tools for the proof of
Theorem 2.1. The idea is to decompose C into small subcubes. Each subcube
has length depending on §, chosen as in (3.2) below. For each x € C there is a
subcube Q,, with center w such that x € Q,,. Let C, denote the collection of
centers of these subcubes. Using Assumption 1, it is clear that to prove
Theorem 3.1, it is sufficient to prove (3.48). The general line of argument for
proving (3.48) is similar to that of Truong and Stone (1992).
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Without loss of generality we assume that U contains C = [—1/2,1/2]%.
Let s be a positive constant such that (d + 2)/v <s < 1. Let

(3.2) l,=[6;%"1ogn].

Let W, be the collection of (27, + 1) points in C each of whose coordinates is
of the form j/(2,) for some integer j such that |[j| < /,. Observe that C can
be written as the union of (2/,)? subcubes, each having length 2A, = (21,)7!
and all its vertices in W, .

Let x € R? and # > 0. Denote the sphere with center at x and radius 7 as
S(x, 7).

LeEmMMA 3.3. Assume that p > 2 and that Assumptions 2 and 3 hold. Let
F,=8,+A,d"? and r,=6,—A,d"% Let weC, and let S(w,7,) —
S(w,r,) denote the elements of R% in S(w,T,) but outside S(w,r,). Let
A C R? Define I(A,x) = 1if x € A and I(A,x) = 0 otherwise. Let

¥ = I(S(W’ Fn) - S(W’rn)’xi) and
9 7, = P[X, € S(w,7,) - S(w,1,)].

Then there exists a positive constant Cy, such that

Z E ,COV{‘/’i, l//j}| < Cyonm,.

Jj=1i=1

Proor. Let D = {x € R% x € S(w,7,) — S(w, r,)}. Assumptions 2 and 3
imply that If, . (x y) - & fy)l is bounded above for x and y in C by
M, + M?2. By Assumptlon 2,

ffDXDdx dy < M2m?

Thus there exists a positive constant C;; such that
,cov Ui Ui ,<ff x (%) — (%) f(y)ldx dy
(3.4)
< M, + M2)dxdy < C, 72,
ffDxD( 2 1) y 11

where C;; can be any number greater than or equal to (M, + MZ) M.
By Lemma 3.1, for j > 0,

(3.5) ICOV{%, ‘/’i+j}| < Cex(J)-
Since p > 2, by (3.4) and (3.5),

E E]cov Ui, ¥} |<nvar¢1+02n2m1n{)((]) }<Cl3nrrn,
Jj=1li=1 Jj=
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for some positive constants C;, and C,;. The last summation is obtained by
summing over all j’s between 1 and [1/7,] and then over all remaining j’s.
O

The following result will be needed to approximate SMLT r.v.’s by indepen-
dent ones.

Lemma 3.4. Suppose n = 2pq for some positive integer q. Suppose V,
1 <j < qis a sequence of r.v.’s with V; being measurable with respect to the

o-field
F(L:(2j-1)p+1<t<2)p).

Let ¢ and vy be positive numbers such that ¢ <||Vill, <o forall 1 <j<gq.
Then there exists a constant C,, > 0 and a sequence of independent r.v.’s W,
1 <j < q such that W; has the same distribution as V; and satisfies

(3.6) PV, - W > ¢] < Ci,(IV;ll,/€) y,,
where
(3.7) Yo = {n“(np)bx(p)}zr and T=vy/(2y +1).

The proof of Lemma 3.4 is given in the Appendix.

Let A, be an event. We denote the event that A, occurs infinitely often by
[A, io]l LeteweC, andlet I, =I(w)={i: 1 <i<n and X, € S(w,7)}.
Denote

(3.8) N,=Ny(w)=#I,(w) and N, =N,(w)=#{i:X;eS(w,r,)};
(3.9) A, = {N,(w) - N,(w) > 2nm, forsomew € C,}.

LEMmMA 3.5. Suppose that Assumptions 2 and 3 hold. Then:
(i) P[A, i.0] =0 if (2.1) holds

and
(i) lim, . P[A,]= 0 if (2.2) holds.

Proor. (i) We will employ an approximation of weakly dependent r.v.’s by
independent r.v.’s as done in Tran (1989, 1990). Let

(3.10) A=plogn(nm,)™" and p=[nm,/(2ulogn)],

where u is a large number to be specified later. Without loss of generality,
assume n = 2pq for some positive integer q. Note that N (w) — N (w) =
Y7?_1¢;, where ¢; is defined in (3.3). The random variables ¢; — E¢; can be
grouped successively into 2q blocks of size p. Write X7_ (¢, — E¢;) = S, +
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S,,,, where
q q
Sln= ZV(n’ZJ)’ S2n= ZV(n,ZJ—l),
j=1 j=1
and
Jp
V(n,j) = )y (4; — E¢;) for j=>1.
i=(j-Dp+1

Observe that
P[N,(w) - N(w) > 2nm,] < P[S,, > nm,/2] + P[S,, > nm,/2],
where N,(w) and N (w) are as defined in (3.8).
We will refer to V(n, 2;) simply as V; for simplicity. We have
2jp
Vj = Z (¢, — EY,).
i=@2j-Dp+1

By Lemma 3.4, there exists a sequence of independent r.v.’s W;,1<j <qsuch
that W, has the same distribution as V, and satisfies (3.6). Now,

P[S,, > nm,/2] <P

J

q
_IV‘G > nTrn/4]
(3.11)

+ P

q
Y (V,-W)> nwn/4].
j=1

Clearly, AlW,| < Ap < 1/2 a.s. and
(3.12) exp(AW)) < 1 + AW, + W32A%.
A simple computation using nw, ~ §,1*° shows

(3.13) R, ~ p*(log n)’(n " log n) '~

since (d + 2)/v < s < 1. By Lemma 3.3,

0,

q
(3.14) Y EW? <

Jj=1 i

™M=

Z |COV{I/Ii, l/jj}l < C10n77'n-
1j=1

Let I be an arbitrary large positive number. Using the independence of the
W;’s, Markov’s inequality and (3.12)—(3.14), we have for sufficiently large u

q q
Pl Y W, >nm,/4| < exp((—)tnwn/4) +A2Y EVij
(315 " /5 E?

<exp(—(mlogn/4) + CyAnm,) <n~".
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Next,

(3.16) P[ i (V, - W) > n'n'n/4] <gq, max P[(V, - W) > nm,/(4q)].
j=1 =7

1<)
If IIlely > nm,/(4q), then for some positive constant C,j,

q
(3.17) Pl Y (V,-W,)> nﬂ-n/4] < Cisqm, "V,

Jj=1

by (3.10), (3.6), (3.7) and (3.16) and since [|[V;[I}; <p” forall 1 <j <gq.
If ||Vﬂ|., < nmw,/(4q), then

(3.18) P

q
X (V,-w)> nﬂ-n/4] < q max P[VJ -W> ||Vj||y],

j=1 l1<j=<gq

which is again bounded by the last term of (3.17) for large n since 7, " — « as
n — o, Finally by (3.11), (3.15), (3.17), (3.18) and a simple computation
involving the last term of (3.17), there exists a positive constant C,4 such that
(3.19) P[S,, > nm,/2] <n '+ Ci(logn)m, 1 "y,.

Similarly, P[S,, > n,/2] is bounded by the right-hand side of (3.19). Hence
for some positive constant C,,

(3.20) P[A,] < C;l8n~" + Cy,1%(log n)m; 1"y,

where A, is as defined in (3.9).

By (3.2), 1% < C3(6,%*9log n)? for some positive constant C,4. Thus
12n~" < n~2 for sufficiently large / and n. Using nm, ~ 8,1+ — o and (3.7),
after some computation, it is seen that for some positive constant Ciq

(3.21) 19(log n)m; 1"y, < Cion®(log n)*,
with
a=[1+7+2ra+ 27b]
—-[(-1+s)(-1 -7+ 270 - 27p) — (2 +s)d]/(d + 2),

and where B is a constant. By (3.20)-(3.22) and Borel-Cantelli lemma, it
follows that (i) holds if &« < —1, that is,

[1+7+27ra+2rb+1)(d+2) +(1-5)(—1-17+27D)
+(2 +s)d < (1-s5)27p.

Since both quantities on the left-hand side and right-hand side of (3.23) are
functions jointly continuous in 7 and s, clearly (3.23) is satisfied for some
0<7<1/2 and some s > (d + 2)/v if it is satisfied for + =1/2 and s =
(d + 2)/v. Replace 7 and s in (3.23) by these values and simplify, to obtain
2.1).

(ii) Clearly lim, ., P[A,]=0 if a <0 for 7=1/2 and s =(d + 2)/v.
Solving for p yields (2.2). O

(3.22)

(3.23)
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LEMMA 3.6. Suppose Assumptions 2 and 3 hold. Let w e C,, and ¢; =
I(S(w, 7,),X,). Then var(L?_,¢;) < CyondZ for some positive constant Cy.

Lemma 3.6 can be obtained by the same line of argument in Lemma 3.3 and
is omitted. See also Lemma 4 of Truong and Stone (1992) for a similar result.
Let

(3.24) = [N’n(w) < (1/2)np, for somew € Cn]
with
(3.25) p, = P[X,; € S(w,F,)].

LEMMA 3.7. Let T, be as defined in (3.24) above. Suppose Assumptions 2
and 3 hold. Then:

(i) PIT, i.o.] = 0 if for some v > d + 2,
(3.26) p > [2avd + 2bvd + Yvd + 4av + 8bv + 2d* + 4d + 4v]/(4v),

and

(i) lim, ,,, P[T,] = O if for somev > d + 2,

(3.27)  p > [2avd + 2bvd + Tvd + 4av + 8bv + 2d® + 4d]/(4v).

Proor. (i) Since A, = 0(§,,), using Assumption 2 and (3.25), it is easy to
see that p, ~ 8% Let w >0 and p =[np,(2ulog n)"'l. Choose A =
wlog n(np,)~ . Then

(3.28) P[N,(w) = (1/2)np,] = P| ¥ (¢ - Eey) < —(1/2)np, .
i=1

Using Lemma 3.6 and (3.28), and following the proof of Lemma 3.5, for some
positive constant C,,,

(3.29) P[N,(w) < (1/2)np,| < Cyldn~"+ Cyldlog np; 7y

n?’

where 0 <7 < 1/2 and vy, is given in (3.7). After a simple computation, the
last term of (3.29) is bounded by C,,n*(log n)? for some positive constant C,,,

where
(3.30) a=—-[d(-1—7+276b—271p —2—35)/(d + 2)]
' + 27a + 276 + b — 27p,

and B is a constant. By the Borel-Cantelli lemma, (i) holds if « < —1 for
r=1/2 and s = (d + 2)/v. We obtain (3.26) after simplification.

(i) Part (ii) follows since (3.27) implies that « of (3.30) is negative for
r=1/2and s =(d +2)/v. O

Let ¢ be a positive number. Denote

(3.31) h(n,&) = nlog n(loglog n)"**.
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LEmMMA 3.8. Let
(3.32) B, = [h(n,&)]"".
Then, under Assumption 4(),

P[lY,| > B, i.0.] =0.

Proor. By Markov inequality and Assumption 4(i), for some positive con-

stant C3 > 0,
P[IY,| > B,] < B;°ElY,|" < Cy[h(n,e)] .

The proof follows from the Borel-Cantelli lemma and by noting that
Yo _h(n,e)l <o O

For 1 <i < n, define I(|Y;|B,) = 1if |Y;| < B, and I(|Y}| < B,) = 0 other-
wise, where B, is as defined in Lemma 3.8. Denote

(3.33) K;=I(S(w,7,),X;)
and

(3.34) Z, =Y I(Y| < B,) - 0(X,).
Let

(3.35) n, = K,Z,.

LEMMA 3.9. If Assumption 4(ii) holds, then |En,| < Co,83BL™" for some
positive constant Cy,.

Proor. Since A, = 0(8,), we have for some positive constant C,s,

(3.36) / dx < Cp7d ~ 89,

S(w, 7,)
Clearly E[60(X,)K;] = E(Y,K;). Using (3.36), there exists a positive constant
Cy such that

|ETIi| < f
S(w, 7,)

< Cyed?BLVsup [ yIf(x,y) dy.
x “{lyl>B,}

dxsup [( r(x,y) dy

lyl>B,,

(3.37)

The lemma follows from (3.37) by Assumption 4(ii) and by choosing C,,
sufficiently large. O

LEmMa 3.10. If Assumption 4(ii) hdlds, then T?_,|En;| = o(n82*1).

Proor. A simple computation shows that

(3.38) ndd = nd2*(n"'log n)—l/’(d+2)'
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Using the value of B,, in Lemma 3.8, (3.38) and Lemma 3.9,
Y |En;| < CoundiBL~" = o(ndg*),

i=1
since v > (d+ 2)/(d +1). O

LemMa 3.11. Let K, be as defined in (3.33). If Assumptions 2 and 3 are
satisfied, then for some positive constants Cy, and C.g,

E[K,K,,;] <Cy82" forj>0 and E[KK,,;| <Cyd} forj=0.

Lemma 3.11 follows easily by Assumptions 2 and 3.

LEMMA 3.12. Suppose Assumptions 2, 3 and 4 hold. Assume in addition
that p > 2v/(v — 2). Then var[L?_m;] = O(n82).

Proor. Using Lemma 3.11, Lemma 3.12 can be obtained by a slight
variation of Lemma 6 of Truong and Stone (1992). Employing Hoélder’s
inequality, Lemmas 3.3, 3.11, Assumptions 2, 3 and 4 and Remark 2.1,

(3'39) Cov{ni s n]} < C29(83)2/U{X(L] _ ll} 1-2/v)
for some positive constant Cyq.
By Hélder’s inequality and Lemma 3.11, for some positive constant Cj,, we
have
(3.40) cov{n;,m;) < 030(85)2/11{83‘1}1—(2/:;)‘

Let K = [(62)"1*@/v] By (3.39) and (8.40), for some positive constants Cj;,
and Cj;,,

IR (82’)(2/")_1{x(j)}1_(2/"))
=1

n
d
var| ). ”fli] < Cgné;
Jj= j=K+1

i=1
d
< C3ynds,

since v > 2 and —p[1 — (2/v)] + 2 < 0 by assumption. O

Let

n
welC

A =[max

i ("h’ — En;)

i=1

> /.Lnﬁff+1] .

n

LeEMMA 3.13. Suppose that Assumptions 2, 3 and 4 are satisfied and that
p > 2v/(v — 2). Then there exists a number u > 0 such that:

(i) P[A, i.0] =0 if (2.1) holds,
and

(i) lim, _,,, P[A,] = 0 if (2.2) holds.
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Proor. (i) Note that [6(X,)K;| < sup,  cl6(x)|, which is bounded above by
a positive constant since S(w, 7,) c C. Let ¢ > 0 and let B, be as in (3.32).
Let n; be as defined in (8.35). Then there exists a positive constant C,; such
that [n,| < Cy{h(n, e)}/?, where h(n,e) is as defined in (3.81). Assume
n = 2pq as in Lemma 3.5. Set the random variables n; — En, successively into
2q blocks of size p. Define S,,, S,,, V(n, j), W, as in Lemma 3.5 except with
Y; replaced by m,. Let

(3.41) A=5, and p=[8;'{h(n,&)} "],

where £ is a positive number greater than ¢. Then p — « since v > d + 2.
Now, [V(n, j)| < Cs3p{h(n, e)}/¥ and

(3.42) MV(n, j)I < Cgg(loglog n)=#X1/0),

which tends to zero as n — «.
Using (3.42), Lemma 3.12, Markov inequality and arguing as in Lemma 3.5,
we obtain that for some positive constant C,,,

q
W,

Jj=1

(3.43) P

> (p,/4)n6,‘f+1] <exp((—m/4) + Cgy)logn <n 4

by choosing u sufficiently large.

We next find an upper bound for P[IZI_(V, — W) > unsd*!/4]. If
und?*tl/aq < IV:ll,, we have by using Lemma 3.4 that for some positive
constant Cjy

x (- W)

where v, is defined in (3.7), v, = (¢/(n83*))[p{h(n,e)}/*] and 0 < 7 <
1/2.1f undg*'/4q < |V;,, then following (3.18) and (3.6),

(3.44) P

> Mn85+1/4jl =< C35anYn’

(3.45) P

X (- W)

> ﬂn65+1/4} < C14q’),n’

which is again bounded by the last term of (3.44) for sufficiently large n since
v, tends to infinity as n — «. Recall that C,, is the constant in (3.6).
Finally, using (3.43)-(3.45), for some positive constant Csg,

(3.46) P[A,] < Cylén=t + Csellqv,y,.
Using the value p in (3.41), the last term of (3.46) is bounded by Cs,n*(log n)#
for some positive constant C;;, where g is a constant and
(d+1) + (2 +s)d
d+ 2
-d-2)(27(b—-p) -1
LT )(27(b - p) )
v vd + 2v

a=1+27(a+b)+

(3.47)
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Thus P[A, i.0]=0if a < —1for 7 =1/2 and s = (d + 2)/v. Solving for p,
we obtain again (2.1).

(ii) Part (ii) follows since (2.2) ensures that a of (3.47) is negative for
r=1/2and s =(d + 2)/v. O

Proor or THEOREM 2.1. (i) Using Assumption 1 and following the proof of
Theorem 3 of Truong and Stone (1992), to complete the theorem it is sufficient
to show that

(3.48) max sup 16,(x) — 6(w)l = 0(8,) a.s.

wel, xeq,

Set 6,(w) = ave{Y;: i € I (w)}, w € C,,. Then (3.48) follows from

(3.49) max sup |6,(x) — 6,(w)l =0(5,) as.,
weC, x€Q,

and

(3.50) max 16, (w) — 8(w)l = 0(3,) as.

We now verify (3.49) and (3.50). Let C,;5 and Cj4 be positive constants. Define
E, = {N,(w) — N(w) < Cgd,'* forallw € C,},

(3.51) H,= {Nn(w) > Cyond? forallw € Cn},
G,={Y|l<B,,1<i<n} and ¥(n)=E,NnH,NnG,.

A simple computation shows that (2.1) implies (3.26). Recall from the proof of
Lemma 3.5 that §,'** ~ nm,. By Lemmas 3.6 and 3.8, there exist constants
Css and Cyq such that lim, ,, I(E,,w) = 1 as. and lim, ,, I(H,,») = 1 as.
Since B, is increasing in n, by Lemma 3.8, lim, _,, I(G,, ®) = 1 a.s. There-
fore lim,, _,,, I(¥(n), ») = 1 a.s. for some constants Cs5 and Clgg.

We now proceed to prove (3.50). Let Hf be the complement of H,. Let Z;
be as defined in (3.34). It is easy to see that for any positive constant C,,

max ITI',L(W)_1 Y. Z;| = Cyd, i0.
weC, il (w)
(3.52)
c[Hfio]U|max| ) Zil > CyyCyondd*lico.|,
wECL el (w)

where C,4 is the constant in the definition of H, in (3.51). By Lemma 3.7,
P[H{io.] =0.
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Let n; be as defined in (3.35). Then

Plmax | Y Z;|=C,Csn8%*ti0.
weCnlicl (w)
(3.53)
n n
weC,|i=1 i=1

which is equal to zero for sufficiently large C,, by Lemmas 3.10 and 3.13.
Thus, for some constant C,, > 0,

(3.54) P| max [N, (w)™" ¥ Z,|>C,s, i.o] = 0.
n iel,(w)
Clearly,
(3.55) L [%-ox)l|-| T z+ ¥ >8,)|
iel,(w) iel (w)

Note that since B,, is increasing in n,
(3.56) P[Y,I(Y;l > B,) # O for some i < ni.0.] =0,
by Lemma 3.8. Employing (3.54)-(3.56),

(3.57) P

max |N,(w)™" ¥ [Y;- 0(X,)]‘ > Cyd,1.0.| =0 as.
webln iel,(w)

By Assumption 1, and since §,, = o(1,,),

10(X;) — (W)l < M,IX, — wll < Cy8, foriel(w),

for some positive constant C,;. Let

(3.58) D, = [(Nn(w))_1 Y [6(X;) — 6(w)]l = Cy8, for some w].

iel (w)
Then for C,, in (3.58) sufficiently large,
(3.59) limI(D,,w) =0 a.s.

n—o
The proof of (3.50) now follows from (3.57) and (3.59).
Givenx € C, let N, = N,(x) and.I,, = I,(x) and choose w such that x € Q,,.
Then N, <N, <N, and following the proof of Theorem 3 of Truong and
Stone (1992), for v € ¥,,,

|<z‘v‘n)‘1 LY,

iel,

<2(N, - N,)(N,)”" max|y}

iel,

(3.60)
< 2Cy58;1*%(Caen6?) ' B, = 0(5,)
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because s > (d + 2)/v. Since lim,, _,, I(¥(n), ®) = 1 a.s., by (3.60),

(3.61) max sup

WECn XEQW

(M) ' Tv-(N)' Y Y,~l=o(6n) as.

iel, iel,

Finally (3.49) follows from (3.61).
(ii) By Assumption 1, it is sufficient to show that for some constant C,, > 0,

(3.62) lim P[ max sup |6,(x) — 6,(w)| > C426n] =0
n—o weC, xeq,,
and
(3.63) lim P| max 8,(w) — 8(w)| > 0425,,] - 0.
n—ow weC,

A simple computation shows that (2.2) is a stronger condition than (3.27).
Thus the conditions of Lemmas 3.5(ii), 3.7(ii) and 3.13(ii) are met. By Lemma
3.8,lim, . I(G,, ) = 1a.s. Therefore lim,, _,, P[¥(n)] = 1 for some C5g and
C,o. The proof of (3.62) and (3.63) can now be obtained by a slight variation of
the proof of Part (i). O

APPENDIX
We will need the following lemma of Bradley (1983):

LeEmmA A.1.  Suppose X and Y are random variables taking their values on
- and R, respectively, where . is a Borel space, and let U be a uniform-0, 1]
r.v. independent of (X,Y); furthermore, suppose ¢ and vy are positive num-
bers such that ¢ <|Y|l, <. Then there exists a real-valued r.v. Y* =
f(X,Y,U), where f is a measurable function defined on X R X [0,1], such
that:

(i) Y* is independent of X,
(ii) the probability distributions of Y and Y* are identical, and

P[lY* — Yl = £] < 18(IY Il,/¢)"®* P{a( B(X), B(Y))} /7,

where B(X) and B(Y) are the o-fields.induced by X and Y, respectively, and
IYll, = (E[Y]")!/.

Proor oF LEMMA 3.4. By enlarging the probability space if necessary,
introduce a sequence Uj,...,U, of independent uniform [0, 1] r.v.’s, this
sequence of independent r.v.’s being independent of V, ..., V,. Define W, = V.
By Lemma A.1, for each j > 1, there exists a r.v. W, which is a measurable
function of Vi,...,V,, U; such that W, is independnet of Vy,...,V,_,, has the
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same distribution as V; and satisfies
P[IV; - Wil > £] < 18(V,l,/¢) {a(F(Vas-.., V1), (W)}
< 18(IVll,/¢) {(F(Ly, .., Lg-1yp)»

?(Lm—l)pﬂv-~’L2jp))}2f
< 18(IV;ll,/¢) {«(2() = 1), p)}”
Since 2(j — 1)p < n, by (1.2) and (1.5),
a(2(j — 1),p) < Cy(n +p)“n°p".

Relation (3.6) is then obtained by choosing C,, sufficiently large.

It remains to show that W,,..., W, are independent. We will follow the
argument of (3.10) in Izenman and Tran (1990). To prove this it is sufficient to
show that W, and (W,,...,W,_;) are independent for j > 1. Note that

V..., V), Ul,.. U, are 1ndependent Thus (V,,...,V,U), Uy,...,U;_, are
independent. Since W is a measurable function of V,.. ,VJ, U, it follows

that (W, V,, ..., Vj_l), U,,...,U;_; are independent. Now W, is 1ndependent
of V;,...,V,_,. Hence W, (V,,...,V._),U,,...,U,_, are independent. Finally
W, and (W,,...,W,_,) are independent since (W,,...,W,;_;) is measurable
with respect to the o-field generated by V,...,V,_,U;,...,U;_;. O
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