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AN IMPROVED MONOTONE CONDITIONAL
QUANTILE ESTIMATOR

By HAR1I MUKERJEE
Wichita State University

Suppose that (X;,Y7),...,(X,,Y,) are ii.d. bivariate random vectors
and that ¢,(x) is the p-quantile of Y, given X; = x for 0 <p < 1. Estima-
tion of fp(x), when it is monotone in x, has been studied in the literature.
In the nonparametric conditional quantile estimation one uses only some
smoothness assumptions. The asymptotic properties are superior in the
latter case; however, monotonicity is not guaranteed. We introduce a new
estimator that enjoys both of the above properties.

1. Introduction. Let (X,Y)),...,(X,,Y,) be ii.d. random vectors dis-
tributed as (X,Y) and let £,(x) be the p-quantile of Y given X =x for
0 <p < 1. In many applications it is reasonable to assume that ¢,(x) is
nondecreasing in x, 0 < p < 1; the nonincreasing case is similar. Fix 0 <p < 1.
Let G(:|x) be the conditional d.f. of Y given X = x. For A C R let

N(n,A)=#{1<i<n: X; €A}
and, assuming N(n, A) > 0, let

1
G (y14) = N(n, A) LIY; <y, X, €A],
the e.d.f. of {Y;: X, € A} evaluated at y,
£,,(A) = the[ N(n, A) p]th order statistic of (¥;: X, € A}

= inf{t: G,(¢lA) = [N(n, A)p]/N(n, A)}.

Throughout this paper N(n, A) — « a.s. for every A C R that we consider so
that the above quantities are well defined a.s. for all large n. We will assume
that n is at least this large without explicit mention. For notational simplicity
we will omit the subscripts p and n.

In analogy with the monotone median estimator due to Robertson and
Waltman (1968) that was studied further by Cryer, Robertson, Wright and
Casady (1972), Casady and Cryer (1976) introduced the nondecreasing estima-
tor £**(x) of £&(x) by

(1.1) £ (x) = max min f([r,s]),

and studied its consistency and convergence rate. Wright (1984) showed that
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nt/3[E¥*(x) — ¢(x)] has an asymptotic nondegenerate (nonnormal) distribution
when &¢'(x) > 0.

Bhattacharya and Gangopadhyay (1990) [to be referred to as BG (1990)]
found a Bahadur-type representation of the kernel estimator é([x — h/2,
x + h/2]) under some smoothness assumptions on the distributions, where A
is the bandwidth. For the optimal bandwidth, A o n~!/? this representation
yields asymptotic normality of the estimator with the norming of n2/5. More-
over, using A(¢) = n=/5¢ with ¢ < ¢ < d for some 0 < ¢ < d < =, this repre-
sentation also yields weak convergence of the stochastic process {£(x —
h(t)/2,x + h(t)/2]): ¢ <t < d}, which in turn yields an asymptotic linear
model for the estimator as a function of ¢ that could be used to estimate the
optimal ¢ € [c, d]; see BG (1990) for details. Unfortunately, this kernel estima-
tor does not guarantee monotonicity.

The monotone estimator (1.1) is actually a kernel estimator with a random
bandwidth of O,(n~'/3) when &(x) > 0 [Wright (1984)]. As in the case of a
fixed bandwidth of the same order used by Cheng (1983) and Stute (1986), this
yields an asymptotic distribution with the norming of n'/2 only. The improved
convergence rate in BG (1990) is obtained by enlarging the bandwidth to a
multiple of n~1/5, To obtain a similar improvement in the case of monotone
estimation we introduce an estimator that adds on an additional nonrandom
band of width an™'/% Fix 0 <c<d<» and let J = J(c, d) =
[en~1/%,dn~1/%]. We now define our estimators of £(x) by

1.2 * hed,
(12) €)= max  min &rs)),
the h-dependence being suppressed in ¢*. The monotonicity of the estimators
follows from the fact that as x increases, the set of maximization is enlarged
and the set of minimization is reduced. It will be shown that asymptotically
these estimators behave exactly the same way as those of BG (1990):

(1.3) £(x) =€é([x —h/2,x+h/2]), hed.

In fact, we will show that £*(x) has the same Bahadur-type representation as
£(x), but the remainder term is O((loglog n/n)/?) as. instead of
O(n=3/51og n) a.s. due to the random bias (conditional on {X,}) introduced by
the ““max-min”’ operation [see (2.13) and Remark 4 in Section 3]. However,
the convergence rate is fast enough for the entire machinery developed for the
unconstrained estimators to be applied to our monotone estimators.

The asymptotic equivalence of the fixed and the random bandwidth estima-
tors stems from the following key observation. As mentioned earlier, Wright
(1984) showed that the random bandwidth employed by the estimator (1.1),
which is the estimator (1.2) with & = 0, is O,(n~'/3) when ¢(x) > 0. This was
obtained by a direct translation of the lemma in Wright (1981) for monotone
regression estimates that uses the H&jek-Rényi inequality assuming only
bounded conditional second moments. Using Hoeffding’s (1963) inequality for
0-1 variables the result could be strengthened to show that the random
bandwidth is O((log n/n)'/3) a.s. (see Section 3). Now, the estimator (1.2) adds
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a random, and typically asymmetric, ‘‘skin’ to the fixed band of width A.
When the band is symmetric the first order term in the bias vanishes [BG
(1990)], but this is not the case if the band is asymmetric. If the skinwidth
remained as large as in the case of & = 0, the extra (random) bias would have
been too large to establish the above asymptotic equivalence. Fortunately, as
the order of magnitude of the fixed bandwidth increases, the skinwidth
decreases until it reaches the asymptotic value of O((loglog n/n)/?) as.,
which turns out to be sufficient for our purposes. The convergence rate of
n~1/3 is typical in many other isotonic estimators, for example, estimators of
the conditional mean, the hazard rate and the density, under monotonicity
restrictions. The discussion above points out that these monotone estimators
of functionals of distributions or conditional distributions could be improved
upon (i) to obtain asymptotic normality and (ii) to use the norming of n2/%
instead of n!/3, by smoothing over wider intervals as in (1.2) when the
smoothness assumptions are valid. In Section 4 we present a kernel-smoothed
version of £* as was done in Mukerjee (1988) for isotonic conditional mean
estimators. This estimator is differentiable, and we discuss strong uniform
consistency of the estimator and its derivative on compact intervals and the
asymptotic normality of the estimator. The estimator £, of course, can be
smoothed further in the same way.

It should be pointed out that this method of improvement of convergence
rates of isotonic estimators cannot be extended to the case of partial orders in
general.

2. Main results and proofs. For the random vector (X,Y) let f be the
marginal p.d.f. of X. We wish to estimate £(x,) for some x, € R. We now
make the following assumptions:

AssuMmPTION 1. The derivative ¢'(x) exists continuously in a neighborhood
of x, and ¢'(x,) > 0.

AssumpTioN 2. (i) f(x,) > 0.
(ii) f"(x) exists in a neighborhood of x,, and there exists A; < « such that
If"(x) — f"(y)] < A;lx — y| for x and y in the neighborhood.

AssumpPTION 3. There exists a neighborhood of (x,, £(x,)) such that:

(i) The derivatives g(ylx) = G,(ylx), g,(ylx), g.(ylx), g,.(yx), G,(ylx) and
G,.(ylx) exist for (x, y) in the neighborhood.

(i1). There exists A, < © such that (x,y) and (¢,y) in the neighborhood
implies

g(&(x)lx) >0, |g,(ykk)| <Ay  |g(ylx)|<As  |gL(ylx)| <A,

|8:x(¥1%) — 8e(ylt)| < Aglx — 8], |Go(ylx) — G (yIt)| < Aglx — ¢l
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Note that Assumptions 1 and 3 imply the uniqueness of £(x) as the solution
of G(ylx) = p for |x — x,| sufficiently small. Also note that Assumptions 1-3
hold uniformly for all x in a neighborhood of x,. The results in BG (1990)
have been derived under Assumption 2 and 3, but with some of the conditions
weakened to hold pointwise at x, only. Since we need to consider their
representation of £(x) for all x in a neighborhood of x,, the uniformity
conditions have been added.

We assume that x, = 0 w.l.o.g., and, to simplify the notation, we write G(-),
g(), G(°), & &* and ¢ for G(-10), g(-10), G(-1X;), £0), £*(0) and £(0),
respectively.

THEOREM 2.1 [(BG (1990)]. Under Assumptions 2 and 3,

[nhf(0)]

Y [I(z>¢-(1-p)]+R,,

E- =BT Thro)ee) &

where
B(&) = —[F(0)G,.(&) + 2f'(0)G.(£)]/[243(0)g(&)],
{Z,} arei.i.d. random variables with the d.f. G("),
and
(2.1) sup R, =0(n"3%logn) a.s.

hed

THEOREM 2.2. Under Assumptions 1-3, £ may be replaced by &* in the
conclusion of Theorem 1 with (2.1) replaced by

(2.2) sup |IR,| = O((loglog n/n)1/2) a.s.
hed

We first prove a lemma about the a.s. bound on the random bandwidth used
by ¢*. For b > 0 let b, = b(loglog n/n)'/? and define

£*% = max min{f([r,s]): -b,—h/2<r<-h/2,

h/2<s<h/2+b,},heEd.

LeEmMA 2.3. Under Assumptions 1-3, there exists B < « such that

Pl U {e*B#¢* io0}|=0.

hed
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Proor. We first argue that P[¢*° + £*] is bounded above by the sum of

(2.3) P| _max lr,~h/2]) > min &((~h/2,s])]
and
(2.4) P[rsm_a,gzé([r,h/zn > _min &(h/2,5))].

This can be seen by taking complements of the events above. Suppose that
ro< —h/2, sq>h/2+5b, and Ery, h/2) < E(h /2, s,). Then by the
Cauchy mean value property of £ [Robertson and Wright (1974)], £( Tos Sob) <
§([h/2 So)) so that

£* = max min{g([r,s]): r<-h/2,h/2<s<h/2+ bn}.

Using a similar argument for the event in (2.3), it can now be seen that the
event {¢*° = ¢£*} is contained in the intersection of the complements of the two
events in (2.3) and (2.4), which completes the argument.

We first consider (2.4). For fixed b > 0, (2.4) is bounded above by the sum of

(2.5) P[mflx{g([r,h/Z)):rs ~h/2) zg(h/4)]
and
(2.6) P[min{é([h/z,s]):s >h/2+b,) sf(h/4)].

We derive an upper bound for (2.6). Crude estimates will be sufficient. By
Assumption 2 and the LIL for the e.d.f. there exists B < « such that

(2.7) P[hinf, N(n,[h/2,h/2 + B,]) < (n loglogn)l/zi.o.] -0,

where B, = B(loglog n/n)/2. For s > h/2 + B, let G(-) = LG,(- )I(h/2 <

s)/N(n [h/2,s], and note that, for all h €dJ and s>h/2+B,, w
have G,(&(h/4) < Gy, )3, (E(h/9) <p — Cn™'/% for some C >0, if n is
sufficiently large, by Assumptions 1, 3 and the monotonicity of the conditional
quantiles. Now, £(h /2, s]) < g(h/4) with s > h/2 + B, implies

N Ty S U1Y < E(h/D)] - Gi(ECh/))ITh/2 < X, <5]

> [N(n,[h/2,s])p]/N(n,[h/2,s]) - G,(é(h/4)) = Dn~'/?

for some D > 0, not depending on k& or s > h/2 + B,, if n is sufficiently
large, by Assumptions 1, 3 and the above. Let &= (X, X,,...), U, = I[Y, <
&(h/9)] and p,; = G,(&(h/4)) = E[U,|7]. Since {Y;} are independent given 7,
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by Hoeffding’s (1963) inequality and (2.7), for all n sufficiently large,

sup  max (U —u)I[h/2 < X; <]

P
heg s=h/2+B, | N(n,[h/2,s])

-1/5
(2.8) > Dn [K-%4

< —-2N(n,[h/2,s])D?*n"2/5
<2 s, (2N b2, s) D)

< exp[—Mnl/lo(loglog n)1/2] a.s. for some M > 0.

We now have

s>h/2+B,

PlU(, pin, &th2,0) </
hed
2.9 2 2
(2.9) <n :1;18 Szlrzr}g)iBn P[g([h/2, s]) < f(h/4)]
<n? exp[ —Mn'/(loglog n)" 2] , which is summable.

By a similar argument it can be seen that
P[ U { max &(r,h/2) 2§(h/4)}]
(2.10) heg \r=—h/2

< n? exp[ —M’n4/5(n‘1/5)2] = n? exp(—M'n?/%)

for some M’ > 0, and hence is summable. The derivation of an upper bound of
(2.5) is similar, and is omitted. The use of the Borel-Cantelli lemma now
completes the proof. O

Proor oF THEOREM 2.2. By Theorem 2.1 and Lemma 2.3 it is sufficient to
show that there exists a finite M, not depending on 4, such that

P[lf*B—f‘I zM(loglogn/n)l/zi.o.] =0, hed,
with B as in Lemma 2.3. We note that for any A

min E([-h/2,5]) < ¥ <
h/2<s<h/2+B, f([ / ]) ¢

&([r, n/2]).

max
—h/2-B,<r<-h/2

We will show that for an M as above

P ; s
. ()
(2.11)

<£&— M(loglog n/n)"?i.0.| =0, hed.

The proof of the inequality going the other way is similar, and will be omitted.
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To prove (2.11) it is sufficient to show that, for & € oJ,

2 z 1/2
(2.12) Yn . P[é([-h/2,5]) < € — M(loglog n/n)"?] < .
The easiest way to prove (2.12) is to use the representation of £(—A /2, s])
as an estimator of £(s/2 — h/4) as given by Theorem 2.1. This is permissible
since the representation holds for all & € J(c,d), ¢ and d are arbitrary with
0 <c¢<d<w»and B, = o(h), and Assumptions 1-3 hold uniformly for x, =
s/2 — h/4 in place of x, = 0 for |s/2 — h /4| sufficiently small.
Lett=s—-h/2.For0 <t <B, let

— 1
G.(1) = N(n,[-h/2,h/2 + t))

£ =E(—h/2,h/2 + t]), and let £, be the p-quantile of G,(-), which is defined
by the unique solution of G(£,) = p for all n large enough by our assump-
tions; note that this G, is not the same as the one defined in the proof of
Lemma 2.3. In the language of Theorem 2.1, £, is the kernel estimator of
&(¢/2), with Assumptions 2 and 3 being valid for x, = /2 when n is large.
Now, one may think of £, as an estimator of £,, which gives rise to a bias,
£, — &(t/2), as well as a random error in estimating £, by gt

We will be quoting results in BG (1990) that were derived for their nearest
neighbor estimator, but the corresponding results for the kernel estimator are
also valid as shown in Section 8 of that paper.

By Lemma 5 of BG (1990),

— £(2/2) = BA£(t/2)) F(/2)(h +8)° + O(n™*%) as,,
where ¢(t/2) = ¢ + O(), fAt/2) = f%0) + O@), (h + ¢)® = h% + O(ht), and
BA£(t/2)) = —[f(t/2)G..(£(t/2)It/2)
+21'(t/2)G,(£(2/2)It/2)| /(24 F3(¢/2) 8 (£(t/2)It/2)]
= B(¢£) + O(t) ast — 0 by our assumptions.

Y G()I(-h/2 <X, <h/2+1),

Hence,
(2.18) £ = ¢+ B(£) f2(0)h% + O((loglog n/n)"/?) as.for0<t<B,.

Let V, = [I(Y; > £) — {1 — G(é)}]. Assume that 0 < ¢ < B,,. By the repre-
sentation (22b) of BG (1990),

£ —&=[N(n,[-h/2,k/2 + t])g(£(t/2)It/2)]
(2.14) XY VI(-h/2<X,<h/2+t)+R,,,

where sup, . ; max,|R,,| = O(n"3/% log n) a.s. Then, noting that £, = £ and
£, = BO) FAO)R? + O(n~3/%) as. from BG (1990), (§, — &) — (£ - £,) is al-
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most surely equal to
{[N(n,[-h/2,h/2 + t])g(£(t/2)It/2)] "
—[N(n,[-h/2,h/2D)8(&)] "} LVI(~h/2 < X, < h/2)
+[N(n,[-h/2,h/2 + t]) g(£(t/2)t/2)] " L V,I(h/2 < X; < h/2 + ¢t)
+R,,

where sup,, . ; max,|R’,,| = O(n=3/%log n) as.
Now, g(&(t/2)|t/2) = g(¢€) + O((loglog n/n)'/?) and, by Lemma 10 of BG
(1990) and Assumption 2,

N(n,[-h/2,h/2 +¢t]) =n(h +t)f(t/2) + A,
= nhf(0) + O((nloglog n)"*) + A,,,

where sup, . ; max,|A,,| = O(n?/5log n) a.s. Thus, for some positive C;, C,,
C; and C,,

[N(n,[—h/2,k/2 + t])&(£(t/2)It/2)] " = N(n,[—h/2,h/2)g(£)] Y|
< C;n~1%loglog n)"? as.,
N(n,[-h/2,h/2]) < Co,n*/® as.,
[N(n,[-h/2,h/2 +t])g(£(t/2)lt/2)] ' < Cen™*® as. and
N(n,[-h/2,h/2 +t]) — N(n,[—h/2,h/2]) < Cynloglogn)'?® as.,

where we have used the LIL for the e.d.f. and Assumption 2 in the last
inequality. Since {V;} are independent given &= o({X,}) with E[V,|&/]=0
a.s., for any ¢ > 0, we have, using Hoeffding’s (1963) inequality,

P{[N(rn,[-h/2,h/2 + t]) g(£(t/2)lt/2)] "
~[N(n,[-h/2,h/2))e(£)] ")
X LVI(~h/2 < X, < h/2)| = e(loglog n/n)"*|o/ |

215 < zexp{— 2CsN(n,[~h/2, h/2])

X{|[N(n,[-h/2,h/2 + t]) g(£(2/2)lt/2)]
—[N(n,[-h/2,h/2])g(£)] |
X (loglog n/n)"?/N(n,[—h/2, h/2])}2>

< 2exp(-C4n*?®) as.
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and

P[|[N(n,[~h/2,h/2 + t]) g(£(t/2)It/2)] 7"
X LVI(h/2 <X, <h/2+1t)| = e(loglog n/n)"*|o |
(2.16) =< 2exp{— 2C,N(n,(h/2,h/2 +t])(N(n,[~h/2,h/2 + t])
X (loglog n/n)'*/N(n, (h/2, /2 + )"}

< 2exp{—-Csn1/1°(loglog n)l/z} a.s.

for some positive Cj, Cg, C; and Cg. The inequality (2.12) now follows from
the inequalities (2.13)-(2.16). This completes the proof of Theorem 2.2. [

3. Remarks. As mentioned in the introduction, the key to the proof of
Theorem 2.1 is Lemma 2.3. We can make the following additional observa-
tions.

ReEMARK 1. It may be noted that all of the a.s. order of magnitude bounds
on random variables in this paper as well as in BG (1990) were obtained by
exponential probability bounds and subsequent use of Borel-Cantelli lemma.
Using this fact it can be seen that Lemma 2.3 can be extended to hold
uniformly for all points for which Assumptions 1-3 hold uniformly; this
entails a change in the multipliers of the exponential probability bounds in
(2.9) and (2.10) from n? to n3. It is also easy to verify that the representation
of ¢* given by Theorem 2.2 holds for these points with the remainder term
bounded by (2.2) uniformly in these points. For example, Assumptions 1-3 as
stated imply this uniform representation of ¢*(x) for all x in a neighborhood
of x,.

REMARK 2. The summability of the probability bound in (2.9) simply
requires that N(n,[h/2,sDh? > Clogn and that in (2.10) requires nh® >
D log n for sufficiently large C and D. Thus, B,, will still be O((loglog n/n)*/?)
a.s. if h is reduced to const.x(log n)/?/(n loglog n)'/. If the order of
magnitude of 4 is reduced further, the random skindepth will be increased.

REMARK 3. When & = 0, corresponding to the estimator (1.1), the random
bandwidth used by the estimator is O((log n/n)'/3) a.s. This can be seen by
noting that Lemma 2.3 still holds if A = 0 and b, = b(log n/n)'/3, b > 0. The
following modifications of (2.3), (2.4), (2.6) and (2.8) should make it clear how
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to prove the result:

28 P| max &(Ir, ~b,/2) > min &((~b,/2,5])],
(2.4) P|max &(r,b,/2)) > min &(16,/2,5)|,
(2.6Y P[sn;ibn £(1b,/2,5]) < g(bn/4)],

(U —p)I(b,/2 <X;<5)

Q%P[N(n,[h/z,sl)

(2.8) > D(log n/n)1/3|43/]

< max exp[—2N(n, [h/2 + s])D?*(log n/n)2/3]
< exp[ —Mn (log n/n)l/?’(log n/n)2/3] a.s.

ReEMARK 4. For the kernel estimator £, the conditional mean, E(£|/),
depends only on {X;}. However, E(¢*|o/) adds a random component of
O((loglog n/n)'/?) a.s. due to the added random bandwidth depending on {Y}},
resulting from the isotonization process as shown in Lemma 2.3. This causes
the convergence rate in the remainder term in (2.2) to go down from that in
(2.1). This rate is still fast enough for the Bahadur-type representation to go
through. By Remark 3, if we smoothed the Casady-Cryer estimator (1.1) by a
kernel, the resulting random bias would have been O((log n/n)'/3) a.s., and
this representation would not have been possible.

REMARK 5. If ¢(x,) = 0 then this representation does not necessarily hold.
For monotone conditional mean estimators Parsons (1979) has shown that the
random bandwidth is O,(1) if ¢'(x) = 0 for all x in an open interval containing
x,. Wright (1981) has studied the means case when ¢'(x) = 0, but [£(x) —
E(xg)l = Alx — xo|“(1 + 0(1)) as x — x4, with A > 0 and « > 1. In this case
the random bandwidth is O,(n~'/®**D). It would appear that something
similar to Lemma 2.3 will hold if « is sufficiently close to 1, but the uniform
representation of £ near x, given by Theorem 2.1 will not hold, and other
methods need to be used to prove the equivalent of Theorem 2.2.

4. A smooth estimator. The estimator £* improves on the convergence
properties of ¢** in (1.1), but it is not smooth. In this section we propose a
differentiable version of ¢* using a kernel smoother the same way the mono-
tone conditional mean of the type ¢** was smoothed in Mukerjee (1988). In
the process we lose the Bahadur-type representation, but the representation of
£* will turn out to be very useful in analyzing the asymptotic properties of the
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smoothed version. We define

a

L [(e-X) €D
gs(x)_glglali ] fn(x) )

where f,(x) = (1/na)L}_8[(x — X;)/a]l, a is the band width and § is a kernel
function. By our assumptions (to be stated) f,(x) — f(x) uniformly in x in a
set of interest and thus the above quantities are well defined for all x in the
set a.s. for all large n, and we will assume that n is at least this large without
explicit mention. We now make the following assumptions.

AssumpTION 4. (1) [vé(v)dv = 0;
(i1) &” exists and is continuous;

(iii) @ = O(h) and na/log(l/a) — =;

(iv) ¢" exists and is bounded in a neighborhood of x; and
(v) & is a log-concave density kernel with compact support.

We estimate £(x) by £*(x) and £'(x) by ¢F'(x). Differentiability of é implies
& is differentiable. Log-concave kernels are continuous and bounded, and
guarantee monotonicity of ¢, if £* is, as argued in Mukerjee [(1988) page
743). Note that a kernel that is not nonnegative does not guarantee this. We
restrict our attention to compact kernels only since those with infinite support
are generally suboptimal.

We first consider the strong uniform consistency of ¢F and ¢ on a fixed
interval I.

THEOREM 4.1. Assume that Assumptions 1-3 hold uniformly in a neigh-
borhood of I. If a = 0 and na/log(1/a) - =, then sup, . [1£¥(x) — &(x)| - 0
a.s. If & exists continuously, a - 0 and na®/log(l/a) — «, then
sup,  [1€¥(x) — €(x)| = 0 a.s.

INDICATION OF PROOF. By Remark 1 of Section 3, |£*(x) — é(x)| — 0 ass.,
uniformly in a neighborhood of I. Using this result the proof of the theorem
exactly parallels the proofs of Theorem 3.3 and Theorem 3.5 in Mukerjee
(1988) for the kernel-smoothed monotone conditional mean estimator using
kernels with compact support after we note the following. Theorem 3.4, that
proves a.s. globally uniform convergence of estimators of f and f’ under
Silverman’s (1978) conditions [(3.11) in Mukerjee (1988)], was used in proving
Theorem 3.5. These conditions are very hard to verify. For this reason we have
used a slightly stronger analytic assumption on & for the second half of the
theorem. Under our assumptions, the conditions of Theorem 3.4 in the above
paper are satisfied in a neighborhood of I and the conclusions of that theorem
hold in a neighborhood of I. O

We now derive the asymptotic distribution of £¥(x,) for an x, for which
Assumptions 1-3 hold. From the indication of proof of Theorem 4.1 and
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Theorem A of Silverman (1978), under Assumptions 1-3, Assumption 4(ii) and
(iii),
(4.1) f.(x) = f(x) uniformly in x in a neighborhood of x,,.
Let @ = h/(2a) and let F; be the d.f. corresponding to the density §. Define

2a 2
- 1/[[F5(s(a +1) +a) - Fy(s(a+ 1) — a)]* ds.

Since a = O(h) and & has bounded support, («, §) is bounded away from 0.
Denote the support of & by [—s;, s,], where s; and s, are some positive
numbers. Then the integrand in the denominator of ¢(a,d) is 0 if s >
(a+sy)/(a+1)or s< —(a+s)/(a+1). If a=o0(h), that is, if a - o,
then ¢(a, §) — 1. To see this we note that —(a — s,) /(@ + 1) < s < (a — s;)/
(a + 1) implies that Fy(s(e + 1) + @) = 1 and Fy(s(a + 1) — a) = 0, and thus
the integral becomes (2a — s; — s,)/(a + 1) + y(s; + s5) /(@ + 1) for some
0<y<l1

¥(a,d) =

a

THEOREM 4.2. Under Assumptions 1-4,
Vil (a,3) { €8 (w0) = €(x0) = B(ECx0)) F(x0)H°

=1 (30)€ (30) /F (30) + € (5)/2)a* [175(0) )

- N(0,0%(x,)) in distribution,

where B(£(x,)) is defined the same way as B(¢) = B(£(0)), with 0 replaced by
%o, and

o*(x9) = p(1 = P)/[ F(26)8*(£(x)lxo)].
If a = o(h) then Y(a, 8) may be replaced by 1 and the bias term o a? may be

omitted.

Proor. From our definition of £*(x,) and the representation of ¢*(x) in a
neighborhood of x, as discussed in Remark 1 of Section 3,

(4.2) E¥(x9) = £(x0) + B(£(%0)) [2(x9) h?
' +[Un1(x0) + U,o(x9) + O(\/loglog n/n )]/fn(xo) a.s.,

where

sﬁ[m;xi) Hg,(xo)(xi g + £~ 20

1 n
Unl(xO) = ;l— ;

i=1

+o((X; - xo)z) + O(R*IX, - xol)
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and

n

1
UnZ(xO) = ; Z

i=1

5[(xo — X,) /a] [nhf(X)g(£(X)IX)]

Q|

X X [I(Zj(Xi) > §(Xi)) -(1 —P)],
j=1
where {Z,(X,)} are i.i.d. random variables with the (random) d.f. G(-1X,). Now,

)[g’(x@(u ) + L )

xo_u

E[Unl(xo)] = 2/5(

+o((u — %0)") + O(h2lu — x0|)] f(u)du

§//(xo)a2v2

= f&(v)[—f’(xo)av e o(a?v?) + O(hzalvl)]

X[ f(x0) = f'(x0)av + o(alv])] dv

) az[ FErE) f(L)j—(ﬂ]fv%(v) dv + o(a2)
and
1 - X ) . 2
E{;é[ﬁ)_a__‘)][g'(xo)(xi “xg) + § (xo)(2 %)

+o((X; — x0)*) + O(R*IX; — x,l) }
= %faz(v)[—ff(xo)av + O(az)]Z[ f(xy) + O(a)] dv = O(a).

Thus Var]ynhy(a, 8) U, (x,)] = Otah). Since o(a®)y/nhi(a, 5) = o((nh®)"/?)

= 0o(1), using (4.1) we now have

(4.3) Vrhi(a,d) {Unl(x())/fn(x()) — a®[ f'(%0) &' (%0) /f (o)

+&"(x0) /2] fv26(v) dv} — 0 in probability.
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Next we consider the term involving U, ,(x,). We start with a new represen-
tation of £*(x) for x sufficiently close to x, by replacing

1 [nhf(x)]
(4.4) ey o (=) > &) -1 -p)]
P
by
h
(4.5) hf( ) Z[IY>§(X))—(1—p)][1(ix—Xj|s5)].

[Note that p = G(£(X;)IX)) for X; in a neighborhood of x,.] Comparing the
kernel versions of (22¢) (given by Theorem 2.1 here) and (22b) in BG (1990),
the expression in (4.5) above differs from

(4.6) {[1 Y, > &(x)) - [1 - G(£()IX; )]}[I(Ix -X)| < %)]

1
nhf(x) ;2

by at most O(n =3/ log n) a.s., uniformly in x in a neighborhood of x, by our
Assumptions 1-3 and Remark 1 of Section 3. Let T, = [I(Y; > &(X))) — I(Y; >
EN(x — X;l <h/2)and 7; =[(1 —p) — [1 - G(§(x)IX 5]I(|x - X | < h/2)
Then, condltlonal on &= o-({X D, {T} are independent random varlables with
means {7,}. By expanding G(§(x)IX ) as a function of X/, about x, and using
Assumptlon 3, a little computatlon shows that Var[T IM ]< E[lT 11 = O(h?),
uniformly in x near x,. Since ITJ - ’TJ' < 1, using the same method used in
proving Lemma 7 in BG (1990), using the order of bound on E[Irjl] and
Bernstein’s inequality [Bennett (1962)], it can be seen that (4.5) and (4.6) differ
by at most O(n~3/%log n) a.s., uniformly in x in a neighborhood of x,. Let
V. = I(Y; > ¢(X;)) — (1 — p) and note that, conditional on {X,}, {V}} are i.i.d.
Bernoulli random variables with their means subtracted for {X;} sufficiently
close to x,. We can now write

“ (xg — X;) 1

Unal#a) = ;;iglg [ ]nhf(Xi)g(é:(Xi)'Xi)

X i VJ-I(IXj -X,| < g) +0(n~3%logn)

j=1
= h i lV}Qn(xa, X;)+0(n"%®logn) as.,
n =1 h
where
1r 1 (xo — X)) 1 h

We will show that Qn(xo, x) converges to a constant a.s., uniformly in x in a
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neighborhood of x,. Now,

E[Q.(xg,x)] = %/8(%; u ) f(u)g(lg(u)m) I(lx —ul < %)f(u) du
= —1 0] I h d
= fS(U){g(f( o)) + (alvl)} (v— ‘ 2a) v
0 — X h
- —g(f(xo)lxo)fa(v)l( , < %) dv

+ 0(a)Ig(xg — x),

uniformly in x in a neighborhood of x,, where S = [—as, — h /2, as, + h /2],
using the fact that the support of 8 is [—s, s,]. Similarly,

1 | (%0 —X;) 1 AlE
E{E‘S[ a ]f(X»g(f(X,-)IXi)I('x B 5)}
— l 52 1 + 0 I R md
h af (v){f(xo)gz(f(xo)'xo) (a)} ( ’

of})

uniformly in x in a neighborhood of x,. Since each summand in the definition
of @,(x,, x) has a bound and a variance of O(1/a), using Bernstein’s inequal-
ity for bounded variables [equation (8) of Bennett (1962)], we have

Y nP(|Q, (%o, x) — EQ,(x¢,%)| = Mylog n/na)
< Y 2n exp{—(naM2 log n/na)/_(2 + 2My/log n/na )}
< Y. 2nexp(—M? log n/4)

for all large n by Assumption 4(iii), and hence the sum is finite for all large M.
Thus, by Borel-Cantelli lemma and the above,

Q.(%g, ) = Q(xo, %) + {O(Vlog n/na) + O(a)}s(x, — x) as.,
uniformly in x in a neighborhood of x,, where
Xy — X h
Ao, %) = g(é(xo)l 0) f&(v)I( a ‘ 2a)dv

Note that @,(xy,x) =0 if x5 —x > as2 +h/2 0r xy—x < —as; — h/2. We
may now write

a

S| =

>

Jj=1

S|~

Unz(xO) =

VJ'[Q(xO’ Xj)
(4.7)

+ {Oals'(\/_l(;%—?) + O(a)}IS(xO - Xj)J.
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Observe that

121 xo — X; h
;ng fS(v)I( v — < %)dv
x| = é%f&(v)z( v — ! 2ha)dv]

may be looked upon as a standard kernel estimator of the mean regression
function that is identically zero at the point x,, with the kernel K given by

K(t) = fS(v)I(lav —t| < %) dv,
with the properties
[E(t)ydt = [ [6(v)I(lav - ¢ < §) dtdv = Jo(v)dv =1
and
JeK(2)dt = [ [t3(v)I(lav — ¢ < ) dtdv = [avs(v)dv =0
Thus, under our assumptions, Schuster’s (1972) central limit theorem is
applicable to
(4.8) W (x,) = % é% [a(u)z( 2h )dv

v —

after we verify the moment conditions. To compute the variance of a summand
in (4.8) we note that
h 2
< —
<o ) }

E{%f&(v)](
=%f{f§(v)l( x°‘“‘ 2’;) v}zf(u)du
=hf{f3(v)1(v——‘ Eh—) } f(xy—t)dt

) o o

a+1 2
= f(xo)—f[Fs(s(a +1) +a) — Fy(s(a+ 1) —a)]*ds + O(h)

 f(z0)
¥(a,8)
where the substitution ¢ = (a + k£ /2)s has been utilized above. Using the fact

xO_X'

J

U

v —

v —

+O(h),
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that E[V?|.e/]= p(1 — p) and the result above in (4.8) we get
Var[Vrh W,(%,)] = p(1 = p) f(%0) /¥(,8) + O(h).

The variance and the third absolute moment of each summand in (4.8) are
O(h™1) and O(h~3), respectively, from arguments similar to those above.
From this, and the fact that nh® — «, Schuster’s (1972) theorem under
Liapounov’s condition implies that

(4.9) Vnh W,(xo) = N(0, p(1 — p) f(x,)/¥(a,8)) in distribution.

For the large order terms in (4.7), it may be noticed that Ig(x, — X;) may
be written as

-X)=1
IS(xO XJ) ( 2 2

This uniform kernel could be used to estimate the same identically zero
regression function as above at the point x, + a(s; — s,)/2, yielding a central
limit theorem similar to (4.9). Thus the large order terms in (4.7) are
0,((nh)~'/%) by Assumption 4(iii) and using (4.9) in (4.7) yields

(4.10) y/nhy(a,d) U,y(xy) = N(0,03(x,) f?(%,)) in distribution.
Putting the results (4.3) and (4.10) in conjunction with (4.1), in the representa-
tion of £¥(x,) in (4.2) now completes the proof of the first half of the theorem,
noting that Vnh y/loglog n/n = o(1). The second half is a consequence of the
facts that lim _,, ¢(a, 8) = 1 and Vnh a® = o(1) if a = o(h). O

Xyt a

We also note that using the representations in (4.2) and (4.7), Hardle’s
(1984) Theorem 4 could be used to show the following:

THEOREM 4.3. Under the assumptions of Theorem 4.2, if n=3/5logn =
O(a), then

nhy(ea,d)

limnsup + Tloglogn [€¥(x9) — &(x)] = 0(xy) a.s.

ReMARKS 4.4. (i) The case a = o(h) corresponds to the interesting situa-
tion where we have smoothing over very narrow bands, but the asymptotics
are dictated by those of £.

(ii) As noted earlier, the same smoothing procedure with the same results
can be obtained for the unrestricted estimator £ of BG (1990).

(iii) The estimator £ uses & o n~'/5. The results of BG (1990) (our Theo-
rem 2.1) will still hold for somewhat smaller %, but with a remainder term of
0,.((nh)~3/*1log n). If h = o(a) (i.e., @ — 0), but large enough for Lemma 2.3
to go through (see Remark 2 in Section 3), and a = O(n~1/%), then Theorems
2.2, 4.1 and 4.2 will still hold, but another interesting limiting result comes
out of Theorem 4.2. By expanding the integrand in the definition of (a, §)
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around « = 0, we note that

2a
a+1

azfl /{[[2aa(s)]2ds + O(a)}

‘2;{;1';‘1‘)‘/{[52(8)@ + O(a)}.

Now y/nh/[2a(a + 1)] = y/na(1 + O(a)) . Thus, Theorem 4.2 in this case

could be restated with the norming of Vna instead of Vnhi(a,d) , erasing the
bias term involving A2, and redefining

¥(a,d) = /f[Fa(s(a+ 1) + @) - Fy(s(a + 1) —a)]*ds

o%(x) as p(1—p)[8°(s)ds/[ f(%0)8>((xo)lxo)],

which is exactly the result one gets in a single stage kernel estimator with
bandwidth a. If, in addition, a = o(n~1/5), but still sufficiently large, then the
remaining bias term also disappears. If % is very small then the representation
given by Theorem 2.2 does not hold [see Remarks 2—4 in Section 3] and hence
Theorem 4.2 does not necessarily hold.
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