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This paper is mainly devoted to the following statistical problem: in the
case of random variables of any finite dimension and both simple or
parametric hypotheses, how to construct convenient ‘“empirical”’ processes
which could provide the basis for goodness of fit tests—more or less in the
same way as the uniform empirical process does in the case of simple
hypothesis and scalar random variables.

The solution of this problem is connected here with the theory of
multiparameter martingales and the theory of function-parametric pro-
cesses. Namely, for the limiting Gaussian processes some kind of filtration
is introduced and so-called scanning innovation processes are constructed
—the adapted standard Wiener processes in one-to-one correspondence
with initial Gaussian processes. This is done for the function-parametric
versions of the processes.

1. Introduction. This paper deals with three topics that usually are not
very much associated: goodness of fit theory; innovation martingales for
Gaussian processes with m-dimensional time parameter; theory of function-
parametric empirical processes.

Namely, consider i.i.d. random vectors X,,..., X, taking values in m-
dimensional Euclidean space R™, and denote by F = {F(-,8), 6 € ®} a para-
metric family of distributions in R™. If ® contains only one point 6, let us
write F, instead of F. Denote by F' the unknown distribution of each X;. It is
well known that the so-called uniform empirical process (1.1) plays a funda-
mental role in the theory of goodness of fit tests for testing hypotheses
concerning F. However, it does so only in the case of testing a simple
hypothesis F = F, for scalar random variables (m = 1). The first and main
aim of this paper is to introduce an empirical process of some kind, which can
play a role similar to that of the uniform empirical process but for both simple
(F = F,) and parametric (F € F) hypotheses and for any finite-dimensional
random vectors (1 < m < o).

This empirical process is derived on the basis of some ‘“‘innovation’ reason-
ing for the ‘““usual’’ empirical process v,,,

v,(x) = Vn [Fy(x) — Fo(x)]
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GOODNESS OF FIT PROBLEM 799

and for the parametric empirical process
v,(x,0) = V[ F(x) — F(x,6)].

In connection with this the second aim of the paper is to discuss what could be
understood as innovation martingale processes with multidimensional time
parameter. We will see that these innovation martingales—we call them
scanning innovations—can be introduced even in the case of an infinite-
dimensional time parameter, that is, for function-parametric processes.

The formal setting of the problem will be given in Section 3. Here in the
introduction we will continue with an informal discussion of both aims.

Goodness of fit theory. Somewhere in the beginning of the thirties,
Kolmogorov realized that if the scalar random variable X has continuous
distribution function F, then the random variable F(X) has the uniform
distribution on [0, 1]. He used this observation in the lemma of his well-known
1933 paper: Let ¢,(A) denote the probability of the inequality

suplF,(x) — F(x)l <A/Vn.

LEmMA [Kolmogorov (1933) or (1986)]. The distribution function ¢,(A)
does not depend on F if F is continuous.

The eventual logical mastering of the transformation U = F(X) is con-
nected with Doob (1949), where the uniform empirical process «, appeared to
everyone’s sight:

(1.1) u,(t) =v,(x), ¢ =Fo(x).

Since the process u, can be viewed as an empirical process based on indepen-
dent uniformly distributed random variables U, = F(X,), i = 1,...,n, the
distribution of u, does not depend on F,. Therefore if one chooses as the test
statistic a functional y[v,, F,] of v, and F,, which could be represented as a
functional ¢[u,] of u, only,

¢lv,, Fo] = ¢lu,],

the distribution of such a statistic is free from F,. In the whole subsequent
development of the theory of goodness of fit tests, such a choice of test statistic
became the universal principle.

Why is it so important to use distribution-free—hence, asymptotically
distribution free—statistics? To clarify this let us remark that there are two
different kinds of tests. The tests of the first kind are based on one or a ‘“‘few”
linear functionals of v,. Examples are the Neyman—Pearson statistic

n [ dA A
;ln——(X)—Eln FO(Xi)] fln (x)vn(dx)



800 E. V. KHMALADZE

(where A denotes the alternative distribution of X,), Student’s statistic

Vn (X - EX,) 1
__(__é__) ~ ;fxvn(dx),

statistics of the F-test, statistics of C_ -tests and so on. The asymptotic
distribution of a linear statistic is ‘‘usually’”’ the normal distribution and the
calculation of asymptotic levels of such tests is simple. Therefore it is com-
pletely unimportant whether we represent these statistics as functionals of «,
or not.

Tests based on one or a “few’” linear functionals are particularly sensitive
to deviations from F, in one or a ‘“few” directions, but they are very
insensitive to deviations in all other directions (see Section 2 for a precise
statement for contiguous alternatives). Tests of the second kind—the goodness
of fit tests—are of different behavior. These tests are usually not most
sensitive to any particular deviation from F, but they have at least “some”
sensitivity to “‘all” deviations from F|,.

Statistics of these tests are essentially nonlinear functionals of v,. The
calculation of the limit distribution of these functionals is a serious
and complicated mathematical problem. Examples like the (weighted)
Kolmogorov—Smirnov statistic or (weighted) Cramér-von Mises statistic are
well known. Recall that it was quite a difficult task to derive and to calculate
the limit distribution of each of these statistics. It is hard even now to
calculate the limit distributions of weighted Kolmogorov—Smirnov or weighted
w? statistics except for a few special weight functions.

Because of this it is of prime practical importance that we must calculate
the limit distribution of each functional ¢[v,, Fy] = ¢[u,] only once for all
continuous distribution functions F,.

However, since Simpson (1951) and Rosenblatt (1952) it became clear that
the transformation (1.1) does not lead to distribution-free processes if the X,’s
are m-dimensional random vectors with m > 2. After the work of Gikhman
(1953, 1954) and Kac, Kiefer and Wolfowitz (1955) it became clear that, in the
case of a parametric hypothesis F € F and m = 1, if we consider the natural
analogue of (1.1)

n

4,(t) =v,(x,0), ¢t=F(x,0),

where 6 = 6(X,,..., X,) is an estimator of the unknown value of the parame-
ter 6, it does not lead to distribution-free or asymptotically distribution-free
processes as well (see Section 2). As a consequence, the classical statistics like

suplv,(x,8)l or [vX(x,0)F(dx,0)
x

have limit distributions depending on [F (and even on the true parameter value
0, in general).

Because of these difficulties there were few, if any, attempts to develop
systematically asymptotically distribution-free goodness of fit tests for testing
a parametric hypothesis in R™, m > 2.
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The main purposes of this paper are (a) to formulate the mathematical
problem of finding ““proper’ asymptotically distribution-free processes which
can play a role similar to that of the uniform empirical process « , (see Section
3), and then (b) to propose one solution of this problem for all four cases:
m =1, F =F, (simple hypothesis); m = 1, F € F (parametric hypothesis);
m=2 F=F;m=>2,Fekl.

Innovation for function-parametric processes. Under the hypothesis F € F,
the limit distribution of the parametric empirical process v,(-, 6) is some
0-mean Gaussian process 0 (see Section 2). Put m = 1 and transform the
process U to its innovation martingale @ [see definitions in, e.g., Lipzer and
Shiryayev (1977)], which is a Gaussian process with independent increments
and covariance function F(x A v, 8), where 6 denotes the ‘“‘true value” of the
parameter. Now transform @ to the standard Wiener process w, which is an
easy step. In the resulting transformation of 0 to w substitute v,(-, 6) instead
of 0. What we get will be a process w, which converges in distribution under
the hypothesis to a standard Wiener process w. Hence w,, is an asymptotically
distribution-free process (and possesses other desired properties). Just this was
the solution described in Khmaladze (1981) for the case m = 1, F € F.

However, attempts to develop a similar approach in the case m > 2, even
for the simple hypothesis F = F,,, did not have success for quite a long time
[until as late as Khmaladze (1987) and Nikabadze and Khmaladze (1987)]. The
problem is that it is not clear how to construct and even what to call an
innovation process for processes with multidimensional time parameter x.

This problem was illustrated to some extent in Khmaladze [(1988), Example
3]. In the present paper we want to construct a scanning innovation process
not only for finite-dimensional x, but also when we use functions f or sets A
in place of a time parameter. We do this not for the sake of formal generality,
but to see better the true nature of scanning innovations and to serve some
practical needs explained in Section 3. Our starting point could be illustrated
even in the one-dimensional case and very simple limiting Gaussian
process—Ilet it be just Brownian bridge u = {u(#), ¢ € [0, 1]}. Let us equip it
with filtration &= {F(¢), ¢t €[0,1]} which is formed by o-algebras & =
o{u(s), s <t}). Now the process {u, ¥} is F-adapted [i.e., each u(¢) is a
Z,-measurable random variable] and possesses the innovation Wiener process
{w, )

w() = u(®) + [ ;‘(_s)s ds.

But along with {z, &} one may consider function-parametric or set-parametric
versions of Brownian bridge :

(1.2) u(f) =[01f(t)du(t), fedcL,o,1],

(1.3) u(A) =[011{teA} du(t), Aex.
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Although to a great extent the processes «, (1.2) and (1.3) represent equivalent
objects, the adapted process {u, &} differs, say, from {u(A), A € &/} in two
points: the range &7 of time parameter A should not be necessarily a linearly
ordered class of sets, and {u(A), A € &/} is not Fadapted.

Nevertheless the natural desire is to call the process

w(A) = [I{te Ay duw(t), Acw,
0

the innovation of {u(A), A € &7, #}. Hence we have process {u(A), A € &7}
with more or less general range of time parameter which is equipped with
linearly ordered filtration % and which, presumably, possesses sensible inno-
vation process {w(A), A € &7}.

In Section 3 we will see how to transform {u(A), A € &7, ¥} to {w(A),
A € o7, ¥} without intermediate mention of the adapted process {u(?), ¢t €
[0,1], #} (see Example 2). More generally, we consider the function-paramet-
ric process

o(f) = [Rmf(x)ﬁ(dx), feo,

along with linearly ordered filtration % and construct for it a scanning
innovation.

Two more things should be noted.

First, for the convenience of a reader familiar with existing theory of
martingales with multidimensional time parameter, one should remark that
the important condition (F4) of the basic paper by Cairoli and Walsh (1975)
[see also Wong and Zakai (1974)] is satisfied neither for empirical processes
v,(+) and v (-, 6) nor for limiting Gaussian processes v and 0.

Second, starting with Lévy (1948) one of the main questions in innovation
theory of Gaussian processes was this: What are the conditions on the covari-
ance function R of a Gaussian process which guarantee the existence of
innovation of this process? In well-known papers [Shepp (1966) and Hitsuda
(1968)] one can find necessary and sufficient condition for the one-dimensional
time case:

(1.4) R(t,5) =t As — [ [k(r,0) drdo,
00

with (-, - ) being a Hilbert—Schmidt kernel which has no eigenvalue equal to
1. Our processes v and ¢ have covariance functions of just this form for any
m > 1, and they do possess scanning innovation martingales as we shall see in
Section 3. However, the author believes that, for m > 2, condition (1.4) is
sufficient for existence of scanning innovation for a Gaussian process, but it is
not necessary any more. This was demonstrated recently by McKeague,
Nikabadze and Sun (1992)—they constructed scanning innovations for pro-
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cesses with covariance function

(tns)F(x ny) —(tAs) [ [ k(¢ ) dedn,

t,s €[0,1],x',y € R™ L,

and to similar processes. '
Several useful references in innovation theory are Cramér (1964), Rozanov
(1974), Lipzer and Shiryayev (1977) and Gohberg and Krein (1967).

2. Convergence in distribution of the parametric empirical pro-
cesses 0,(:,0); the description of limiting process © as a projection;
consequences and remarks. In this section we collect some of the defini-
tions, assumptions and statements used throughout the paper. We avoid all
proofs—partly because many of these statements are known, partly to make
the paper shorter. The longer version of this section with proofs is given in
Section 2 of Khmaladze (1989).

The parametric family F. Suppose the range ® of 6 to be an open subset of
R*. Assume that each F(-, 6) is absolutely continuous w.r.t. Lebesgue measure
and the corresponding densities f(-, 8) have the following regularity proper-
ties.

ConpITION 1. The k-dimensional vector function

a
q(x,0) = - In f(x,0)

is square integrable:

[a%(x,0)q(x,0) F(dx,0) < .

As a consequence, the Fisher information matrix

B(6) = [q(x,0)q" (x,0)F(dx, 6)

T

is finite. Here and throughout this paper ¢ means the transpose of the

column vector «a.

ConpITION 2. If a k-dimensional véctor function ¢ has coordinates

fm(x,O,s) = sup |qm(x7 ﬁ) _qm(x70)|,
O:||O0-0l<e

where ¢, is the mth coordinate of the vector function g, then

ng(x,B,a)g(x,B,e)F(dx, 9) >0 ase — 0.
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A family F with these properties (Conditions 1 and 2) we will call regular.

Condition 2 is more or less traditionally used in asymptotic statistics [cf.
condition c of Ibragimov and Has’minskii (1981), Chapter 1, Section 7, or
Definition 2 of Pollard (1984), Chapter VII]. We need it to estimate the
remainder in Lemma 2.1.

As test statistics for testing the parametric hypothesis F € F, let us consider
functionals of the so-called parametric empirical process

0.(,0) = Vi [B(x) = F( 0], B(o) = BIX <),

where § = 6(X,,..., X,) is an estimate of the unknown parameter value. Let
us clarify the asymptotic behavior of v, (-, 6) as n — ». To do this we need
some assumption on the asymptotic behavior of 8.

The estimator 6. Suppose the following condition holds:

ConpiTiON 3. There exists a k-dimensional vector function I(:,0) such
that for each 8 € ©

flT(x,a)l(x,o)F(dx,a) < oo,
and
(2.1) fg(x,o)lT(x,o)F(dx,a) =1, /l(x,o)F(dx,o) =0,
where I, is the k& X k identity matrix and

Vn (6 — 0) = fl(x,@)vn(dx,O) +0,(1), n oo

An estimator 6, which satisfies Condition 3 we call projective [cf. Khmaladze
(1979)]. The reason for this definition is explained by Lemma 2.2.

We will formulate limit theorems for v, both under the hypothesis and
under contiguous alternatives. Let us describe the alternative sequences of
distributions precisely.

The alternatives A,. Under the alternative assume that for each n =
1,2,... the random vectors X;,..., X, are again i.i.d. with distribution A,
which has the following properties.

ConpITION 4. There exists F(-,8) € F such that if A, = A° + A% is the
Lebesgue decomposition of A, into absolutely continuous and singular parts
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w.r.t. F(-,0), then

(2.2) nvar(A3) >0, n-o
(2.3) [j—;(%r/z =1+ W—n—hn(')
and

(2.4) JIRo(x) = h(2)]*F(dx,0) > 0

for some function A(-), such that

(2.5) [r2(x) F(dx,0) < =,
(2.6) [h(x)F(dx,o) =0
and

(2.7) Jh(x)a(x,6)F(dx,8) = 0.

Hence, under the hypothesis, the distribution of the sample X,,..., X, is
the n-fold direct product P,, = F(-,6) X --- X F(-, ) with some F(-,0) € F,
while under each particular sequence of alternatives the distribution of this
sample is P,,(h) = A, X --+ X A,. Condition 4 guarantees that the sequence
{B,,(h)} is contiguous w.r.t. the sequence {P,e}: B,, < P,, [cf. Oosterhoff and
van Zwet (1979)]. The function ~ which participates in these conditions can be
viewed as a function which determines from what “direction” the alternative

distribution A, approaches some hypothetical distribution F(-, 6).

REMARK. Any function A which satisfies (2.4) and (2.5) must satisfy condi-
tion (2.6), but the orthogonality condition (2.7) is an additional requirement on
h. This requirement is convenient and natural, as can be seen later, but is not
necessary for further development.

Function-parametric processes. From now on we will systematically adopt

function-parametric versions of the processes involved, which we introduce
here formally. Denote by L,(6) the space of functions with norm

171=110 = |7 Pz, 0)] 7,

and scalar product

(frd) = (f,8)s = [F(x)(x)F(dx,0).
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For any f e L,(0) let
1 n
(28) u(f) = [F(2)odz,0) = 7= 2| A(X) - [£x)F(ax,0)]

Clearly v,(f) for each f & L,(6) is a random variable with finite variance,

EvX(f) = (f. f) = (£, D)%
Moreover,
Evn( f)vn(d)) = (f’ d)) - (f? 1)(¢’1)

If f is a vector function, then clearly v,(f) is a random vector. In particular,
Condition 3 says that

Vn (8, — 6) = v,(1(+,8)) + 0,(1).
Similarly for any f € N,ceL(0) let

8,(f) = [f(x)va(dx, ).

Notice that N ,ceL4(0) is frequently quite a rich set. If, for example, F is
the family of normal distributions with shift parameter 6, this set contains all
functions with finite variance under normal distribution with any mean 6.
Also, all indicator functions as well as all bounded functions belong to L, for
any [F.

Now let

(2.9) W, () = v.(F) = (£,a7(-,0))va(1(-,9)),

which is the expansion of #,(f) in 6 up to the linear term.

LemMA 2.1. Let F be a regular parametric family (of distributions). Then

10,(f) — D, (£l <e,llflle, with e, —>p 0,
both under P,, and P, ,(h).

It is not difficult to observe that

(2.10) w,(f) = v,(II¥f)
where
Iif=f-(f,q"(-,90))i(-,0).
Notice that v,(f) is a bilinear functional—for each f it is a linear functional
of the trajectories of the empirical process v,(-, ), and for each trajectory of

v,(+, 0) it is a linear functional of f. Then the equality (2.10) simply says that
IT¥ is the adjoint projector of the projector IT; in the bilinear functional (2.8).

The limiting Gaussian processes v and 0. Denote by b(-, 8) the Gaussian
process with mean 0 and covariance function F(x A y,0), and, for each
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f € Ly0), let
(2.11) b(f) = [f(x)b(dx,9),
(2.12)  w(f) =b(f) = (f,1)b(1),
(2.18)  8(f) =v(f) = (£,47(,8))v(I(-,0)) = Tu(f).

It is convenient to introduce extended vector functions

1 1
(2:14) q(x) = (q(x,@))’ I(x) = (l(x,@))
and to substitute (2.12) in (2.13)—if (2.1) is satisfied, then

(2.15) 8(f) =Tb(f) = b(f) = (f,q")b(}) = b(II*f)
with
(2.16) m*f=f-(f,q")l.

LEmMA 2.2. The transformation (2.12) of b to v is a projection. If (2.1) is
satisfied, then the transformation 11, defined by (2.9) is a projection: 11,11, =
I1,. Consequently, if (2.1) is satisfied, then the transformation (2.15) of b to ¥
is a projection: ITI1 = TI.

REMARK. The study of 0 as a projection of b does not lie in the main
stream of this paper. That is why we avoid here a more rigorous description of
1. More precise discussion can be found, for example, in Khmaladze (1979).
Earlier the description of 0 as a projection of v in the case of the maximum
likelihood estimator § was mentioned in Tyurin (1970).

Denote by C the extended Fisher information matrix

~@a)={o sl

A condition given later (4, Section 3) will guarantee that C has the unique
inverse C~1. Let us consider then the special choice of the function I:

(2.17) I=CYq
and denote '
(2.18) o(f) =0b(f) - (f,q")C 'b(q).

Remark that v is the orthogonal projection of b while 0 is, in general, a skew
projection. The choice of I corresponds to the case when 6 is the maximum
likelihood estimator.

We are ready now to formulate the statement concerning convergence in
distribution of v, and 0,. Let .# be some subset of L,(6), and denote by
2(#) the space of bounded functions x(f), f< #, with the norm
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sups ¢ |x(f)I [cf. Section VIL5 of Pollard (1984)]. Let H(f) = (f, h) and
H(f)=TH(f)=H(f) - (f,q")H(I) = H(II*f).

THEOREM 2.3. Suppose & is a compact subset in L,(0) such that |[f(x)| < c
for the same constant ¢ for all f € &, and that in the space 2" as n —

Uy Po@,,) V and U, Dgep U+ H.
If T is regular and 6 is projective, then

Op 2@, ny 0 and 0, 2o,y 0 + H.

REMARK. Convergence in distribution of the parametric empirical process
0,, as well as of the scanning innovation process w, of Section 3, is the
consequence of the convergence of v, and regularity of F. To make it clearer,
we kept convergence of v, as a condition of the theorem. [The convergence is
true, e.g., if = {I{- <x}, x € R*} and {A} satisfies conditions (2.1)-(2.6).]

The assumption of the pointwise boundedness of functions is rather specific.
But for the purposes of the present paper, this is sufficient and will help in the
proof of the convergence theorem of Section 3.

REMARK. If the function f is fixed (the condition of boundedness is then
not necessary), we get from Theorem 2.3 some support for the informal
reasoning in the introduction: v,(f) and 0,(f) are asymptotically Gaussian
indeed, and for all sequences of alternatives I, ,(h) such that

(f,h) =0 [and(f,q) =0],

the limiting distribution of these linear statistics is the same as under the
hypothesis. Hence, these statistics cannot distinguish between P, , and all such
P,,(h), although they are asymptotically most ‘‘sensitive’” to specific A =
const. f (cf. next subsection).

Distance in variation. We will need also statements to judge how ‘‘sensi-
tive” the processes v, and 0, are to the alternatives P ,(h). First let us see
“how far” the sequences {P,,} and {P ,(h)} are from each other. Denote
d(P, @) the distance in variation between distributions P and @:

d(P,Q) = :u%IP(B) - Q(B)|,

where % is the o-algebra, on which P and Q@ are defined. Let ® be the
standard normal distribution function and

AR) = 20(IRl/2) =1, Ikl = (h, h)"2.

LEMMA 2.4. If the sequence {A,)} satisfies conditions (2.2)—(2.6), then
d(P,o(h),P,y) = A(R), 1 —o.
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Now turn to the processes v,(+, 6) and v,(-, ). Let P¢ denote the distribu-
tion of a process ¢ (a random variable £).

For two Gaussian processes & = {£(f), f€ #}and n = {n(f), fe 7}, let
us define the distance in variation between P* and P" as

d(P¢, P") = max{d( P, P"D), fe A(F))

where A(_#) denotes the closed linear span of .# and P*/) and P"" are
Gaussian distributions of random variables ¢(f) and n(f), respectively.

Lemma 2.5, d(P?, P**H) = A(h). If (2.7) is satisfied, then d(P?, P?*¥) =
ACh).

Now we have prepared everything we will need in Section 3.

3. Formulation of the problem; scanning innovations; function-
parametric version. Let us consider again the classical transformation of
the empirical process v,, based on scalar random variables (i.e., m = 1), to the
uniform empirical process « ,:

(3.1) u,(t) = Hv,, Fol(t) = v,(F5'(t)).

It is common knowledge that % transforms v, to a distribution-free—hence,
asymptotically distribution-free—process, but this cannot be the only impor-
tant property of the transformation .#. An alternative property of % is that
in the process u, ‘“the whole information is preserved” that helps “to
distinguish” between the hypothesis and alternatives. If we focus on contigu-
ous alternatives, this property formally can be expressed by Lemmas 2.4 and
3.1.

LeEmmMA 3.1. Let u be a standard Brownian bridge. Then
Up Po@,) by Up Po@,myt+ HFT),
and

v(P¥, P**H 7Y = \(h).

Proor. The convergence in distribution of u, is an old and well-known
fact [see Gaenssler and Stute (1979) or Shorack and Wellner (1986)]. The last
equality follows from Lemma 2.5 and the fact that the transformation
H# (v, Fy) = u is one-to-one. O

Formulation of the problem. The transformation ¥ cannot be extended
directly to the case of a parametric hypothesis and of a simple hypothesis for
random vectors (m = 2), but one does not have to copy % in-all cases.
Instead, one can try to find another transformation which may differ from %
in form but will lead to the same goal.
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Let us now formalize this goal for the case of simple hypothesis [cf.
Khmaladze (1988)]: To find a transformation wlv,, F,,] which may depend also
on the hypothetical distribution F, = F(-, 6,), with the following properties:

(al) wlv,, Fy] > 4p,, w and the distribution P* of w does not depend on
F, for any absolutely continuous F,.

(a2) For any sequence of alternatives {A,} satisfying conditions (2.2)-(2.6),
wlv,, Fyl = 9@, ) w' such that d(P¥, P*) = A(h).

As the test statistics one can choose now functionals ¢lwlv,, F]] of the
process wlv,, F]in the same way as they choose functionals of «, in classical
goodness of fit theory.

For practical convenience we find it proper to add two additional heuristic
requirements:

(b1) The transformation wlv,, F] must be simple enough to make the
calculation of test statistics simple.

(b2) The distribution P* must be convenient to make the simple calcula-
tion of the null distribution of test statistics feasible.

In the case of parametric hypotheses one can formulate a similar problem.
Now, we want to find a transformation w[?,,F] which may depend on hypo-
thetical parametric family F with the following properties:

(al) For each 6, w(0,,F] —o@,,) W and PY does not depend on [ if [ is
regular.

(a2) For any sequence of alternatives {A,} satisfying (2.2)-(2.7),
wld,,Fl = 9@ iy w such that d(P¥, P*") = A(h).

Notice that now condition (2.7) is required—this seems natural in view of
Lemma 2.5.

Conditions (b1) and (b2) are exactly the same as above and we will not write
them down anew. l

Our plan in what follows is this: We construct the one-to-one correspon-
dence between the limiting Gaussian process © and some Gaussian process
with independent increments—the scanning innovation of 0. This is the first
and the main step. Then we normalize @ and get the standard Wiener process.
In the resulting transformation of 0 to w we will substitute 0, (and even
simply Vn F,) instead of & and prove that this is a transformation with
desirable properties.
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Function-parametric innovation process w,(f). For any two orthogonal
projectors 7' and 7" we call 7" larger than =/, and denote this 7' < 7", if
! "

w'7" = 7' Let {m}, 0 <A < 1, be a family of orthogonal projectors, defined on
each L,(6). Assume that {w,} has the following properties:

1. AN =7 <my.
2. my = 0, m; = I, I denotes the identity operator.
3. For any f, ¢ € Ly(8), the function (f, m,¢) is absolutely continuous in A.

We recall for the reader’s convenience some identities, which we will use later
without comment: for orthoprojectors =, ', 7", @' < =", we have

(’1Tf,17q§) = (f"n'd’)’ (77If777”¢) =(Trlf,¢)'

One can imagine the family {w,} to be constructed as follows. Let {A,},
0 <A <1, be a family of measurable subsets of R™ with the following
properties:

1. A<X=A,CA,;

2. w(Ay) =0, u(A) =1;

3. u(AyNA) > 0if XA

where u(A) denotes Lebesgue measure of a set A. Then put
mf(x) = Kx € A} f(x).

If 7, are defined in this way then a projector 7,"=1I — m, is, obviously,
defined as

mif(x) = Hx & A} f(x).
Now consider the following specific condition on the function g and the
family {m,}:
4. For any A € [0, 1], the matrix

C,=(miq,mq")
is nondegenerate, that is, for any A € [0, 1) the inverse matrix C; ' exists.

Obviously C, = C. Condition 4 here is convenient rather then necessary,
but we will use it for simplicity.

Now we are going to construct the process w(f) which could be viewed as
an innovation process for 7( f). Associate with each A the o-algebra

FY = o{o(m,f), f € Ly(6)}.

Let us understand this o-algebra as the one containing ‘the past” of o(f) up
to “the moment”’ A. Let us understand u( f) as an increment forward at A if
m, f =0, so that for any f € L,(0) the random variable v(Aw, f) with A, =
T, s — 7, is “a small increment forward” if AX is “small.” What we want to
do is to construct the innovation of {v(w, f), %"}. Let us replace this (still
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uncertain) problem by another: Consider the o-algebras

Gl =al{b(m f), f € Ly(0)}
and
F= FVvolb(q)) = F°Valb(mq)}

and consider what could be called an innovation of {b(w, f), #},0 <A <1. A
“small” increment of an innovation process should be defined as

(3.2) (Am, f) = b(Am, f) — E[b(Am, f) F].
Since
Eb(Am, f)o(m, f) = (Amyf,m, ) =0,
the Gaussian random variable b(Am, f) is independent of %,°. Hence

E[b(am, f)IF] = E[b(am, f)lb( q)]
(3.3) = (Am f,mq")Cb(mit q)
= (f,amq")C (i q).
Expressions (3.2) and (3.3) lead to the following expression
(34) b(f) =b(f) = [(f,dmg”)Cib(miq),
which still needs precise definition. .*

LemMa 3.2. If 1-3 are satisfied, then almost all trajectories of the process
b(m-f), A €10,1], are continuous in A.

Let 0 = Ay <A; < -+ <Ay =1 be a partition of [0, 1] and let
N-1
en(f) = )y (f, A”T)‘iqT)C,\_,lb("T,\lLQ), Ay, =my,,, — T,
i=0

LEmMmA 3.3. If 1-4 are satisfied, then for any f such that =,__f = f for
some & > 0, the sequences of random variables c(f) converges with probabil-
ity 1 as N - w and max;(A;,; —A;) =8y — 0.

Let us denote this limit as
(3.4) o(f) = [(f dma")C7 b(mi q).
LemMmA 3.4. If 1-4 are satisfied and f = m,_, f for some ¢ > 0, then
E[b(f) = c(H]* = (f. f).

Hence, for any f € L,(0) the random variables c(w;_, f) converge in mean
square as ¢ — 0.
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Let us denote this limit again as the integral (3.4'). Now the right-hand side
of (3.4) exists for all f e Ly(6).

ProoF oF LEMMA 3.2. The (k + 1)-dimensional Gaussian process b(w"q)
has covariance function C,, ,. Consequently, for any a € R**1 the process
aTb(m q) is a Wiener process w.r.t. the time ¢t = a”C,a. Therefore, for any
a € R**! almost all trajectories of a’b(wq) are continuous in A, which
proves the lemma. O

REMARK. Another proof of this lemma follows from Theorem 13 of Pollard
[(1984), Chapter VIL.3]. Indeed the set of functions {a”7* q}, 0 < A < 1, forms
a subset in L,(8) with e-net containing no more than 1 + (a”Ca)'/2/¢ points
and hence the covering integral for this subset is finite. According to the
theorem mentioned above the process b(a”,' q) indexed by functions a7 " q
is continuous w.r.t. the L,(6)-norm. However, according to condition 3 the
norm |la”m} qll = (aTC,a@)*/? is continuous in A. Therefore, b(a”7* q) and,
hence, b(m;" q) is continuous in A.

Proor oF LEMMA 3.3. Let {A;}}Y, and {u;}}, be two partitions of [0,1 — £].
Assume for simplicity that each A; € {u J-}}‘io. Consider points w; which are
contained between A; and A,, ;. The corresponding sums in expression of
cn(f) and c,,(f) are, respectively,

Y (f.am, q7)Ci (it q)
A Spy<Apgg
and

Y (f,Aw#JqT)Cﬁfjlb(w;q).

)‘tS/“'1<)‘z+1

Consider the difference

A= X (fama7)[Cotb(mba) - Cb(mitq)]-

ASpy <Ay

For any vector £ = (51’--"§k+1)T € R let P1(§) = |§1| + o +|§k+1| and
p.(&) = max, |¢,|. Then clearly

1€E™] < py(€)pd(m)-

Apply this inequality to &= (f,Am,q) and n =n(u,A) =C, 'b(mq) -
C; (' q). The matrix C; ! is continuous on [0,1 — ¢] for any ¢ > 0. Since
b(mr,- q) is also continuous in A with probability 1, we can get

ps= sup  pn(p,r)) >0
[A—pl<é
O<A,u<l-e¢

with probability 1 for any fixed ¢ > 0 and 8 — 0. Since p(n(A;, ;) < p; with
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& = by, we get

Ai =< Z pl(f’ A?lejq)pgN,

Alsl“"]</\l+l

and consequently

M-1
(3.5) len(F) —en(F) = X oo fr A, )5y
j=0
From (3.5) the statement of the lemma will follow if we can prove that
M-1
(3.6) Y oy f, A, q) < const.
j=0

Denote by q, the rth coordinate of the vector function g. Then
1/2 1/2
|(f’ Aﬂ.ujqr)| < (AWM' f, f) (Aﬂu,qr’ qr)

and as a consequence

M-1 k+1M—-1 p e
Y o((fAm,q)) < ¥ X (Am,f, )’ (A7, 4,,49,)
j=0 r=1 j=0
E+1[M—1 2rm—1 172
< z[z (am, 1, f)] ) (Am,,q,)} .
=1] j=o0 j=0

However,
M-1 M-1
Z (A'Tr#jf’f)=(f’f)7 Z (AW q9-,9 ) (qwq)
Jj=0 Jj=0

Therefore (3.6) is correct with

k+1
const. = || Il Y lig,ll. 0

r=1

Proor oF LEMMA 3.4. Using the formula

Eb(f)b(e) = (f,¢),

we can obtain by direct calculation: If f= ,__ f, then

E[b(f) ~ (D)= (1, 1) - 2] Y, dmg T (g, f)

l1-¢ rl-¢
[T dma")C O (d g f).

Under conditions 3 and 4 both integrals exist and are the usual Stieltjes
integrals. The function under the double integral sign is symmetric in A and
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u; therefore the integral is equal to
1-¢ _ 1-¢ 1-¢ _
2 (f,dma)C; [ dma, 1) =2[ " (f,dma)Ci (mi"q, ).
This equality and the previous one lead to
E[b(f) = e()]* = (f, ). D

Now we can turn back to the process {0(m, ), %"}). Since the process
(f,q")C~'b(q) is F,-measurable for all A we can subtract the identity

0 = (Am, f,q7)C™'(q) — E[(Am, f,q7)Cb(q)| F]
from (3.2) and get

(3.7) o(Am, f) = (A, f) - E[5(Am, ) A].
What we finally get from (3.4) and (3.7) is the expression
(3.8) d(f) =3(f) ~ [(f,dmaq")C B(miq).

Let us call & the scanning innovation of v and let us call the integral term in
(3.8) the compensator of {v(f), %,"}. The adjective “scanning” is clarified by
Example 1.

REMARK. Since #(q) = 0, we have v(m,q) = —0(m' ¢). Hence v(wq) is
Fmeasurable.

Let us call, following Pollard (1984), the function-parametric process {b( f),
f € #} a Wiener process w.r.t. (f, f)'/? if for any finite number r, the random
variables b(f,),...,b(f,), f; € #, have a joint normal distribution with mean
0 and covariance matrix ((f;, f;)), i, j = 1,...,r, and if almost all trajectories
of {b(f), f € #} are bounded and uniformly continuous on .#. Consider also
another scalar product:

(f,¢>= [ f(x)$(x) dax.
x<[0,1]™

Let us call the Wiener process w.r.t. { f, f)'/ the standard Wiener process.
The following very simple lemma shows the transformation of a Wiener
process to the standard Wiener process.

LemMA 3.5.  Suppose F((0,1]™,0) = 1 for all 6. If the density f(-, 0) of the
distribution F(-,0) is positive a.e. on [0,1]™ and {0(f), f € £} is a Wiener
process w.r.t. (f, f)/2, then {w(¢), ¢ € #'} with w(p) = w(d/f/%(-,0)) and
F' ={¢p: ¢/f/%(-0) € £} is a standard Wiener process.

The condition that F(-,6) is nested on [0, 1]™ could be satisfied in many
ways. If, for example, distributions F(-,8) are absolutely continuous w.r.t.
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some distribution ® for all § € ©, and ®,,...,d,, denote marginal distribu-
tions of ® we could transform original random vectors X; = (X;,,..., X;,,)
into Y; = (Y;y,...,Y;,) with Y;; = ®,(X,,). However, one has to remark that
this condition is of no direct need in Lemma 3.5. It will play a role only for
convergence (3.27). That is, if we want to have factual convergence under
normalization f~/2(:,0) we need our observation to be distributed on a
compact set and not to be ‘“‘smeared’ over a whole space. From now on we will
always assume that conditions 1-4 are satisfied. The notion of covering
integral used below can be found in Pollard [(1984), Chapter VII].

THEOREM 3.6. Let # be a subset of L,(0) with a finite covering integral.
Then the process {W(f), f € #}, defined by (3.8), is a Wiener process w.r.t.
(f,f)'/2. For any subset # such that the closed linear span of # is L,(8), the
relation between the processes {0(f), f € £} and {UV(f), f € #} is one-to-one.

ReEMARK 1. Since {0(f), f€ £} and {0(f), f € #)} can be extended in a
one-to-one way to corresponding processes with # replaced by its closed
linear span, the one-to-one correspondence between {(f), f € L,(0)} and

{o(f), f€ Ly8)} is equivalent to the one-to-one correspondence stated in
Theorem 3.6.

REMARK 2. This statement of the theorem can be refined as follows: For
any subset .# the relation between the processes {0(f), [ 2, W(w; q),
A €[0,1]) and {o(f), f € ~Z v(mq), A €[0,1]} is one-to-one.

REMARK 3. The set £= {[{* < x}, x € [0, 1]™} of functions f(y) = [y < x}
satisfies the conditions of Theorem 3.6 for any finite m.

ProoF oF THEOREM 3.6. Since @ is the linear transformation of the
Gaussian process U, it is a Gaussian process as well. The equality

Eb(f)a(¢) = (f.¢)

can be derived from

ED%(f+ ¢) — E0®(f) — ER*(¢) = 2E0( f) ()
and from the equality

E®*(f) = (f, 1),

already proved in Lemma 3.4. ‘

The boundedness and uniform continuity of trajectories of W(f) on .# is
proved in Theorem 13 of Pollard (1984), Chapter VII [For the reader not quite
involved in the theory of function-parametric processes, let us remark that for
w( f) the modulus of continuity is derived in exactly the same way as it is for
the Wiener process on [0, 1]—see, e.g., It6 and McKean (1965).]

What remains is to prove the one-to-one correspondence between @ and v.
We will prove it through the following lemmas. Reformulate first Lemma 3.4.
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LemMA 3.4'.  The linear operator Z,

(3.9) Zf=f~ [(f,dmq")Ci miq,
is a norm-preserving operator on L,(6).

Let us now rewrite (3.8) as
(3.10) w(f) =0(Zf).

Consider the adjoint [in the scalar product (£, ¢)] operator Z’ of the opera-
tor Z:

(3.11) Z'¢ = ¢~ [dmq” CT(miq, $).
Since Z is norm-preserving, Z’ is its unique inverse on the subspace
Im Z = {¢: Zf = ¢ for some f € Ly(9)}.

One can expect now that the inverse of (3.11) is
(3.12) D(Z'f) =5 f).
The next lemma proves that this is true on the whole L,(6).

LemMa 3.7. Im Z = {¢ € L,(0): (¢,q) = 0}. Besides, Z'q = 0.

Now, (3.12) is correct on the subspace {¢ € L,(8): (¢, q) = 0} since Z' is the

inverse of Z, and (3.12) is correct for f = a”q as well, since 7(q) = 0 = W(Z'q).
Theorem 3.6 is proved. O

Proor or LEMMA 3.7. Let us prove first that (3.11) can be determined for
all ¢ € L,(0). Clearly the right-hand side of (3.11) exists for all ¢ such that
¢ =m,_.¢ for some ¢ > 0. For all such ¢ let us prove that

(313) (Z,¢7 Zld)) = (d) - (¢7qT)C_1q’ ¢)

and then let ¢ — 0. However,
(Z'9,2'¢) = (6,4) — 2[($,dm\q")C; (miq, )
(3.14) + [ (¢, mkq™)C 1 dC, CT (g, b)

1
=(6,9) — (¢, mq")CT N (miq, b)), -
The last equality is true because of the following ones:

dCy' = -Ctde, C;t
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[consider the identity C; !, — C;' = C;1.(C, — C,,.)C; '] and
d[(¢,miqT)CrY(mia, ¢)] = —2(¢, dmqT)Cy (miq, d)
—(¢,miq") dCy (miq, ¢)

(which is correct because of condition 3). Finally, from Lemma 3.8 it follows
that (¢, 7 ¢)C; (it q, ) = 0 at A = 1. Hence (38.14) gives (3.13).

Now, it is clear that (g, Zf) = 0, which implies Im Z c {¢ € L,(0): (¢,q) =
0}. Now let ¢ # 0 belong to the last subspace. Then (3.13) implies (Z'¢, Z'¢) =
(¢, ) and, hence, there exists f+# 0 such that Z'¢ = f and clearly Zf = ¢.
This implies Im Z > {¢ € L,(6): (¢,q) = 0}. D

LeEmMaA 3.8. The following inequality is true:
(¢, miq")Cr (mia, ¢) < (7id, ¢).

Proor. ¢ = miiqTCr Yt q, $) is the projection of ;"¢ on the subspace
spanned on ;" q. Consequently

> (&,8) = (mid, €)= (4,¢). 0

It might seem natural and unavoidable that the possible transformation of

0 to its scanning innovation for arbitrary choice of the function [ (which
corresponds to arbitrary choice of the projective estimator ) should depend on
this /. If so, it will be a bit inconvenient and somewhat tiring. Fortunately, the

transformation (3.8) is valid for any process ¢ and the choice of U was simply a
convenient way to derive (3.8).

THEOREM 3.9. Let # be a subset of L(0), and let the process 0(f) be
defined by (2.13). Then the processes W( f) defined by (3.8) and by

D(f) =0(f) ~ [(f dmiq")Ci 0(miq)
(3.15)
= () = [(f,dmiq")Ci v(miq)

coincide.

Proor. Rewrite (3.15) as @w(f) = 6(Zf) = v(Zf). According to definitions
(2.15) and (2.18)

8(£) = o(f) = (f.a™)[b(1) - b(D)].
However, since (Zf, q) = 0 this implies

0(Zf) —v(Zf) = 0.
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Similarly the difference v( f) — 0(f) can be written as

o(f) = 0(f) = (f,qT)[(b(Ol)) - b(l)],

where b(1) stands for b( f) with the function f identically equal to 1 and 0 is
the k-dimensional vector 0. Hence, again

v(Zf) = 0(Zf).
That is, the equality in (8.15) is correct, and the processes (3.8) and (3.15)
coincide. O

Now it is quite clear that Theorem 3.9 jointly with Lemma 3.5 gives the
transformation of ¢ to the standard Wiener process:

. ¢

Examples; comparison with some of previous results. Consider one exam-
ple which shows the origin of the term scanning innovation.

ExampLE 1. Let x,y,(s,¢) €[0,1]? and 7(x) f(y) = {y < x}f(y). Consider
a partition of the range of ¢ by points 0 = ¢, < ¢, < --- <?¢y =1 and intro-
duce the o-algebras

Fa,y = o{o(m(1, ;) ), f € Ly(6)},
G,y = o{0(7(s, AL) ), € Ly(6)},

where
(s, At;) = m(s,t,1) — 7(s, L),
and
Histp = Taep V Cs,tye

Clearly the family {#(, , ), s €[0,1], ¢, € {¢ j}f’ }— the row-wise scanning fam-
ily for —is linearly ordered w.r.t. inclusion: for any two (s, t;) and (s',¢;)
either ¥, ,, € H(y,,, or H(y ) C H,,) Because of this the increments

(8.2) w(m(As,At,) f) = (w(As,At,) f) — E[6(m(As, At) [ H, 1]

where m(As, At,) = w(s + A, At;) — (s, At;), are independent of previous in-
crements. Hence, if the partition becomes finer, that is, if max|¢t;, ., — ¢,/ = 0
as N — «, one can hope to glue these increments and get as a limit a Gaussian
process with independent increments. The only delicate question is whether
one can neglect the o-algebras <, ,, and consider only % ¢, 1If yes, then
{w(1,t), t € [0, 1]} is just an example of a family{sm,} with propertles 1-3 and
the rectangles {[0,(1,#)], ¢ €[0,1]} are an example of the family {A,} with
properties 1'-3". Theorem 3.6 proves that in the case of v the o-algebras ¢, ,,
really can be neglected.
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However, the recent research of McKeague, Nikabadze and Sun (1992)
shows that €/, , ) cannot always be neglected although a scanning innovation
as the limit of (3.2) exists.

Consider particular cases of (3.8) and (3.15).

ExaMPLE 2. Suppose f(y) = I{y < x}. Let x, y € [0, 1], that is, let m = 1.
Then

Zf(y) =y <z} ~ [I{z < x}q"(2)C; 'F(dz, 0)q(y) {y > 2)

= Iy <z} - | 47(2)C;F(dz,6)4(3)-

z<(xAy

Consequently,

N — 1 (1 —
(317 d(x) =0(x) ~ [ q"(2)C:* [ q(y)B(dy) F(dz, 6).
The Wiener process {i(x), x €[0,1]} defined by (3.17) is just what was
considered in Khmaladze (1981), and (8.17) is simply the Doob—Meyer decom-
position of {t(x), Z,*}.

ExaMPLE 3. Again for one-dimensional time parameter consider the case of
simple hypothesis F' = F,. In this case vector function q [see (2.14)] is equal to
1. Then C, = 1 — Fy(A) and v(wit q) = —v(mr,q) = —v(I{- < A}). Hence

a(f) =o(f) + [ (dmtf, 1)1 = Fy()] oI < A})

1 _
= vo(F) + [T Fo(dA)[1 = Fo(0)] " o(I{- < 1)),
In the set-parametric version, that is, for f(y) = Iy € A}, we get
(A) = v(A) + [ Fy(d)[1 = Fy(1)] ""0((0,4])
and for the “usual” time parameter, that is, for f(y) = I{y < x}, we get
(x) =v(x) + [ Fo(dA)[1 = Fy(A)] "v(2),
which is the well-known Doob-Meyer decomposition of Brownian bridge v(x).

ExampLE 4. Now let m > 2 and consider still the case of simple hypothe-
sis. Let {A,} be just some family of sets, satisfying conditions 1'-3'. Then
(dmif,1) =Ef(X){X € A,,}
and for f(y) = I{y € A}
(dmif,1) = F,(ANAg,).
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Hence

R 1 _

D(f) =v(f) + [ BF(X)HX € Ap}[1 - Fo(4))] (4,
and in set-parametric version

R 1 _
(318)  @(A) =v(A) + [ Fo(A N AL)[1 = Fo(4)] v(A4).
This last equality gives the transformation of the Gaussian measure v(A) into
its scanning innovation measure @W(A), and this without much respect to
dimension m of space, where the A’s lie.
ExampLE 5. Many choices of {A,} are possible, as is especially clear in the

case m > 2. Consider one particular choice. Let x, y € [0,1]",1=(,...,1)
R™~! and put A, =[0,(A,D]. For this choice of A, and for f(y) = Iy < x},

(dmif,1) = Ef(X)I{X,, € dA} = Fo(xlX(l) = )\)fm()\) da,

where X, denotes the first coordinate of random vector X and fj; is its
density. Hence

(3.19) @(x) = v(x) + fOlFO(xIX(l) = 2) Far(M[1 = Foy(V)] ""v(A, 1) d.

If we assume that the marginal distribution of X, is uniform (on [0, 1]), we
get an even simpler expression,

B(x) = v(x) + j:FO(xIX(D = A)(1 =) ""o(A, 1) dA.

In the case of a parametric hypothesis we get

(320) @(x) =0(x) - [ q"(2)Cq,,,F(dz,6) [ q(y)0(dy),
z<x (o,D<y<(1,D
where o is the first coordinate of z, and
Coy= | a(y)a" (y)F(dy,9).

y€l0, 11™\[0, (o, D

ReEMARK. The processes (3.19) and (3.20), suggested in earlier papers,
Khmaladze (1988) and Nikabadze and Khmaladze (1987), respectively, left the
impression of an essentially nonsymmetric solution—the choice of the rectan-
gles [0, (1, ¢)] paid, by some arbitrary reason, too much attention to one of the
coordinates. Unsatisfied with this we looked for a more symmetric construc-
tion. Now, first, we are practically free in our choice of {A,} and, second, it is
now obvious that for m = 1 (on the real line) we have the same variety of
choices.
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Distance in variation; condition a2. Our further program is clear; in the
next subsection we will consider the empirical analogue of {w(¢), ¢ € £}, the
process {w,(¢), ¢ € #'} with w,($) = 0,(Z($/f'/?(-,6))) and will prove that
this process gives a solution of the problem, stated at the beginning of this
section. In the present subsection we will prove that the provisional limiting
processes of {w,(¢), & € #'} under the hypothesis and alternative satisfy
condition a2.

Recall that H = H(f), f € #, is the function on £ defined by H(f) =
(h, ) and denote by J = J(¢), ¢ € £, the transformation of the function H
similar to (3.16):

¢
6 = {273t )

LEMMA 3.10. Let # be a subset of Ly(0) with the following properties:
A(F) = L,(0), where A(F) is the closed linear span of &, and the set
S ={¢: ¢/f1/%(-,0) € #} has finite covering integral in the norm (¢, )"/
If the function h satisfies conditions (2.5)—(2.7), then

d(P¥, Pe+7) = d(P?, P**H) = A(h).

The process w has a standard distribution not depending on F, hence it is a
good candidate for the limiting process of condition al. Lemma 3.10 says that
the process w + J is a good candidate for the limiting process w’ of the
condition a2.

Proor oF LEMMA 3.10. The second equality in the assertion of the lemma
is already proved in Lemma 2.5. The first equality follows from the one-to-one
correspondence between w and U and, similarly, between J and H. It could be
also easily seen directly:

d(Pw(d)), Pw(¢)+J(¢)) =2

(h,Zw[fl/z(»m])) 1
1/2 -
(¢, )

_ <f1/2(',0)Z'h, d’>

_ch( 2, p)? )_1

and the maximum of the argument of ® is reached at ¢ = f/%(-,0)Z’h and is
equal to

L PV, 0)Z'h, FY2(-,0) 2R = X(Z'h, Z'h) " = L(h, h)'?,

where the equality follows from Lemma 3.4". Hence

( )1/2
max d( P¥®), p+I®) = 2@(’—2~) - 1=A(h). 0O
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Convergence in distribution. Let us turn now to the empirical analogues of
w and w and consider the problem of convergence in distribution. For any
f €Ly = NyeceLy(0) introduce the random variable

(3.21) Do(f) = 0,(F) = [(f,dmaT)Ci 0, (miq),
or, in short,
@,(f) = 0,(2f).
It is not difficult to prove that w,(f) exists for all » = 1,2,... and all fekL,

[cf. formula (3.26)] and we will not dwell on this problem. It is technically
convenient to get a little simpler approximation of ,,.

LEMMA 3.11. Let F be a regular parametric family. Let S be any bounded
subset of L, that is, for some cand forall f € S, || flls < c for all 6. Then both
under P,, and under P,,

sup|d,( f) — v,(Zf)| =5 0, n — o,
fes

Hence without loss of generality we can replace @,(f) by v,(Zf) if we are
about to study the convergence in distribution of w,,.

Proor oF LEMMma 3.11.  Using the property Zg = 0, one can write

0.(Zf) — vu(2Zf) = (2f,&,),

where r, = v,(-,0) — T,(-, ), and £, (x) = ar,(x)/3F(x,6). Now Lemma 3.4’
leads to

I(Zf, &) < 1ZFllolé,llo = I FlslIE, o

and, hence,
sup|(Zf,&,)| <clé,lle —»p 0
fes

under P,,. However, [|£,ll; >p 0 under P, , as well because of contiguity of
{P,o) to {P,,). O

Denote

ea( ) = [(f,dmg")Ci v (miq).

LEMMA 3.12. Let S, be a bounded subset of L, of functions f such that
mi_.f=f. Then for each 7 > 0 and A > 0, there exists 6 > 0 for which

lim sup Pno{ sup le.(f—g)|> A} <.
n—o f.8€8.:1If-gllo<d

The same statement is true with P,, replaced by P,
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ProoF oF LEMMA 3.12. Apply to the scalar product

el 1) = (1. [ dm a"CT e (i)
Schwarz’s inequality:

lea( £ < (Fy F) (25 20),

where

(zm20) = [ Y (mitqT)Cr Y (dm, g, dm, g7 )Cr v, (7).

However, (z,, 2,,) is bounded in probability because it has finite expectation.
Hence, it is bounded in P, ,-probability as well. Now Lemma 3.12 follows from
the inclusion

{ s lc,,(f—g)|>A}z{(zn,zn)>5}. D

f,g<s,, Ilf-gll<s &

The reader can guess now that the convergence in distribution of ¢,(f) on a
set of functions f = 7 _,f is an easy matter: Convergence in distribution at
each f is easy to prove and tightness is granted by Lemma 3.12.

Denote by 2(.#) the space of bounded functions x(f), f < #, with the
norm sup; . x(f)| [cf. Pollard (1984), Section VII.5].

THEOREM 3.13. Suppose # is a subset of L, such that |f| < c for the same
constant ¢ for all f and that in 2(.#)
(3.22) Uy 2 o@,, Us Uy 2o,y Ut H
with H(f) = (f, h). Suppose also that the family F is regular and that the
function
_ 1/2
a) = [(1, dw,\qT)CA Y(dmq, 1)] /d)‘

(where 1 stands for the function which is identically equal to the number 1) is
integrable. Then in Z(.#)

W, =@, W, W, = g@,,) W + H(Z).

ReMARk. The condition of integrability of «, is mild but nevertheless an
additional restriction on g—it is not satisfied for all ¢ € L,(6). If, in particu-
lar, ¢ is a one-dimensional function of the scalar variable x € [0, 1], then

R ()]
Y (g¥(x) dx)'*

is not integrable for ¢, — 0 ‘“‘too quickly” as A — 1. If, for example, q(x) =
exp[—1/(1 — x)], then «, ~ 1/(1 — A). However, if g(x) = exp[—1/(1 — x)#],
with B < 1, then a, ~ 1/(1 — A)? is integrable. Obviously «, is integrable for
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q(x) ~ (1 — x)P, B < », and for any g(x) bounded away from 0 at a neighbor-
hood of x = 1: If |g(x)| > 6 for x > 1 — ¢, then

Y e q*(A)
"7 8(fig¥(x) dx)

and the right-hand side is integrable. The condition of integrability of «, which
we did not need in previous papers [Khmaladze (1981, 1986)], is the price we
pay for the extension to ‘“‘very large” .#—as will be clear from the proof of
Theorem 3.13 [see (3.20)]: If «, is integrable in a neighborhood of 1, then ¢,(+)
converges in distribution in Z(.#) for .# being the set of all pointwise
bounded functions, for example, the indicator functions of all measurable
subsets of [0, 1]™.

% A>1—c¢,

Proor or THEOREM 3.13. Replace &,(f) by v, (Zf). One can do this
because [ is regular (Lemma 3.11). It is clear that for any square-integrable
function f the sequence {v,(Zf)} converges in distribution under P,, to v(Zf)
[under P,, to v(Zf) + H(Zf)] simply as a consequence of the CLT. Let us
verify tightness. Since v, = {v,(f), f € £} converges in distribution the se-
quence {v,} is tight, and Lemma 3.12 asserts that the sequence {c,(r;_,)} is
also tight. Since addition is a continuous operation in 2(.#) the sequence
{v, — ¢, (m,_,)} is also tight. What remains is to consider the difference

ValZf) = vu(f) + en(m1_. f) = ca(mi. f)-
Let us show that for any A > 0 and n > 0 there exists £ > 0 such that

(8.23) lim sup [P’no{ sup le, (7, f) > A} <,
n—o fes
but
(3.24) ?up)cn(wf_e fl < c-[11_6|(1’ dm,qT)C; v, (mitq)|
and ‘
1/2

E/:_ |(1,d1TAqT)CA_10n(7T,€'q)| < ,[11_ [E'(l,d'n'AqT)CA_lvn(’tTAiq)F]

(3.25) = fll_ [(1,dmq")Cr Y (dmgq, 1)]"*
= /1 a,dAX.
l-¢

Since «, is integrable, the last integral can be made arbitrarily small if ¢ is
small. Hence, the random variable in the right-hand side of (3.24) is small in
probability for £ small, and (3.23) is proved. O
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ReEMARK. The approximation v,(Zf) of the empirical scanning innovation
w,(f) can be replaced by a simpler expression since

v.(Zf) = Vn F,(Zf),
namely, the &,(f) can be approximated by

(326)  VnE(2f) = | FL() — [(£.dma™)C; F(mia)].

Clearly F,(f) denotes the sum
1
F(f) = — LX) = [f(x)F,(dx).
1

By the way, for the function-parametric point process F,( f) expression (3.26)
gives in a good sense its Doob—Meyer decomposition w.r.t. the filtration {%,"},

Zn = O'{Fn(’TT,\f), fe L27 Fn(q)}

The increments of F,(Zf) are not independent, of course, but they are
uncorrelated [cf. the definition of innovation processes in Rozanov (1974)].

Theorem 3.13 is adjusted to the possibility of choosing as f the indicator
functions f(x) = I{x < z} and, hence, to prove convergence in distribution for
W, regarded as a process with the “usual” time parameter z € [0, 1]™. A more
schematic formulation of the theorem is as follows: Let .# be such that
conditions (3.22) and (3.23) are fulfilled. Then the assertion of Theorem 3.13
is correct.

One can adopt this formulation and state the following theorem concerning
w,: Let £ = {¢: ¢ /f}/%(-) € £} and let for .# conditions (3.22) and (3.23) be
fulﬁlled. Then in 2(.#")

(3.27) W, 2 gp,,) W, W, 2gp W +dJ.

This formulation can help in a search for sets .# different from the one
described in Theorem 3.13, but we prefer to formulate our last theorem in the
same fashion as Theorem 3.13.

THEOREM 3.14. Let F(+, 0) be nested on [0, 1]™. Suppose #' is a subset of
L,[0,1]™ such that the following hold:

() |¢| < c for the same constant ¢ for all p € 77,
(i) A(#) = L,0,1]™;
(iii) in the space Q’(J), where F={f: f=¢¢/f*),¢ € £} conver-
gence (3.22) holds.

Suppose also that [ is a regular family and the function
a, = [(f}/2,dmqT)Cr Kdm,gq, f/2]"*/dA
is integrable. Then in 2(#") (3.27) holds, where w is the standard Wiener
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process and the shift function J is defined just before Lemma 3.10. The
assertion of Lemma 3.10 is correct.

REMARK. Since the matrix C, can be defined as C, = (f,}*wiq,
fa/2mt qT) for one-dimensional ¢ the function o' has the form

f372(M)lg (1)l
1 2 12"
(L\ fo(x)q*(x) dx)
Hence the previous remark can be applied to the function f£;/2(-)q(-).
According to Theorem 3.14 the process w, is the desirable transformation

wl0,,F] with properties al and a2. In our view this transformation possesses
properties bl and b2 as well.

L

Proor oF THEOREM 3.14. This proof is in fact contained in the proofs of
Theorem 3.13 and Lemma 3.10, but let us repeat it for the reader’s conve-
nience. Since [ is regular, one can replace w,(¢) by v,(Zf) with f= ¢/f}/?
(cf. Lemma 3.11). Since v,(Zf) is a normalized sum of i.i.d. random variables,
EvX(Zf) = (¢, ¢, its convergence in distribution under P,, to w(¢) = v(Zf)
and under P,, to w(¢) + J(¢) for each given ¢ is a consequence of CLT.
According to condition 3 and Lemma 3.12, the sequences {v,(- /f;/?)} and
{c,(m _ (- /f/®)} are tight in 2(_#"). Consider the difference

é ¢ ¢ ¢
v, Zfal/z -v, _—fol/z +ec, WI_E? =c, 171_3? .
However,
¢
I e R R L ]
(S
and

172
Efll_ |<f91/2’quT>C{1vn(fn'A*q)| < flt_ (E|<f01/2,dw,\qT>C{1vn(7r)fq)|2)

= fll_ea',‘ dA.

Hence, the upper bound in the left-hand side of (3.28) can be made arbitrarily
small in probability for sufficiently small ¢ > 0. This means that the sequence
{v,(Z(- /f,/®)} is tight in 2(#"). Convergence (3.27) follows. Since (¢, ) =
(f, f) we get A(#') = L,[0, 1]™ iff A(#) = L,(8). Hence condition 2 allows us
to apply Lemma 3.10 and to conclude the proof. O
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