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OPTIMAL RATES OF CONVERGENCE FOR NONPARAMETRIC
STATISTICAL INVERSE PROBLEMS

By Ja-Yong Koot

Hallym University

Consider an unknown regression function f of the response Y on a
d-dimensional measurement variable X. It is assumed that f belongs to a
class of functions having a smoothness measure p. Let T denote a known
linear operator of order ¢ which maps f to another function T(f) in a
space G. Let T, denote an estimator of T'(f) based on a random sample of
size n from the distribution of (X,Y), and let (|IT,, — T(f)ll¢ be a norm of
f‘n — T(f). Under appropriate regularity conditions, it is shown that the
optimal rate of convergence for [T, — T(fllg is n~ @~ D/@P+d The
result is applied to differentiation, fractional differentiation and deconvolu-
tion.

1. Introduction. Consider a regression function f of the response Y on
the measurement variable X so that E(Y|X) = f(X). It is assumed that f
belongs to % which is a class of functions. Let T' be a known linear operator
which maps f to another function T'(f). A statistical inverse problem is to
estimate T'(f) based on a random sample (X,,Y)),...,(X,,Y,) of size n from
the distribution of (X,Y). The statistical inverse problem is said to be
parametric if & is a collection of functions which are defined in terms of a
finite number of unknown parameters. Otherwise the statistical inverse prob-
lem is said to be nonparametric, which makes the estimation problem some-
what more difficult.

The following examples are considered as statistical inverse problems, where
¥(x) = p;j(x) = e>/* for x €[0,1] and j € Z and ( -, - ) is the usual inner
product.

ExampLE 1 (Differentiation). Let T'(f) be a derivative of f so that T(f) =
Ti_ieh f® =Ei_ el c ,@mi)D*(f,¥;)0;} with ¢, being a nonzero con-
stant.

ExampLE 2 (Fractional differentiation). The fractional differential T'(f) is
defined by T(f) = ¥, ;2w i) f,¢;)¢; for 0 < g < 1.

ExamPLE 3 (Deconvolution). Given a known filter w, a deconvolution
operator T is defined by T(f) = X, ,{f,¥;>/{w, ¢;)¢,. If the functions f,
T(f) and w are periodic, then f(x) = [fw(x — s)T(fXs)ds.
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The main interest of this paper is to study asymptotic properties of estima-
tors of T(f) as n — . In particular, we will show that there is a lower bound
on the rates of convergence for the function T'(f). Le Cam (1986) discussed
the general idea that the difficulty to estimate f versus %, ¢ & — {f} where
. consists of functions close to [ is reflected in the lower bound of the
minimax risk. This approach, using Fano’s lemma, has been used to obtain
lower bounds for minimax risks by Ibragimov and Has’minskii (1980) in
classical regression estimation with equidistant design and by Birgé (1983) in
density estimation and by Yatracos (1988) in the regression type problems and
by Johnstone and Silverman (1990) in positron emission tomography. Stone
(1982) has considered the estimation of ordinary derivative of regression
function and Donoho and Liu (1991) developed a method of computing lower
bound on the rate of convergence from the geometric viewpoint. To handle the
statistical inverse problems, we will use Le Cam’s idea with Fano’s lemma. A
modification of the result of Birgé helps to obtain the best lower bound when
Z 1is an ellipsoid in a space with an inner product. We use the properties of %
and the operator T to construct a subset %, of & such that the number of
elements in &, is large and the norm of T'(f;) — T(fy) for f; # f, in &, is
large.

A type of estimator which may be considered is the method of regularization
(MOR) estimator, which was first proposed in the integral equation context by
Tikhonov (1963). Refer to Wahba (1977), Rice and Rosenblatt (1983),
O’Sullivan (1986) and Nychka and Cox (1989) for more details on MOR
estimators.

To find an estimator achieving the lower bound on the rates of convergence,
we will consider the method of presmoothing (MOP) estimator. This method of
estimation is characterized by the following two steps.

SMOOTHING STEP. Find an estimator fn of f based on a random sample of
size n.

INVERSION STEP. Find an estimator f‘n of T(f) corresponding to fn

Then T is called a MOP estimator of the function T( f ). In this paper, the
function T( f) will be estimated by T(f,), where f. is the least squares
estimator of f based on a finite number J, of basis functions. To achieve the
lower bound on the rates of convergence, the number of basis functions should
be increased in an appropriate rate. Determination of J, in a data-dependent
way is another important issue.

The main result is stated as a theorem in Section 2. In Section 3, the proof
of the main theorem is given.

2. Main result. Let % denote a collection of functions on a subset of R?
and let T(f), f€ &, be a function defined on R?. Consider an unknown
distribution P, which depends on f € &. Let T , n > 1, denote estimators of
T(f), T being based on a random sample of size n from the unknown
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distribution P;. Let {b,} be a sequence of positive constants. It is called a
lower rate of convergence for the function T'( f) if
c—0 n

lim liminf inf sup Pf(”T T(f) ||G > cbn) =
f, fe

n

here 1nfT denotes the 1nﬁmum over all possible estimators T and IIT -
Tl denotes a norm of T — T(f). The sequence is sa1d to be an achiev-
able rate of convergence for T( f) if there is a sequence {T } of estimators such
that

(2.1) lim limsup sup Pf(”’f’n -T( f)”a > cbn) =0
¢ fe s

n

It is called an optimal rate of convergence for T'(f) if it is both a lower and an
achievable rate of convergence. If {6,} is the optimal rate of convergence and
{’f’n} satisfies (2.1), the estimators ’f’n, n > 1, are said to be asymptotically
optimal.

Consider a distribution of (X,Y), where X is a R¢ valued measurement
and Y is the corresponding response such that E(Y|X) = f(X) with f in a
space Z. Conditionally on X = x, the response Y has a distribution of the
form h(ylx, f(x))dy = Py (dy). This regression model was particularly con-
sidered by Stone (1982) and Yatracos (1988). An example of the conditional
distribution is the normal distribution which is given by

(22)  h(ylx, f(2)) = {2mo?(x)} " exp{~ (v - f(x))*/20%(x)).

For other examples of conditional distributions, see Stone [(1980) page 1350].

Let F be a space of functions on a subset 2 of R and let G be a space of
functions on a subset of R¢. We denote their inner products on F and G by
(+,-)r and (-, )¢ and corresponding norms by |||z and | -|lg. It is
assumed that there are orthonormal bases {¢;} and {¢,}, j = (j;,..., j,) € Z°,
of the spaces F and G. Given a positive number D, let & denote the collectlon
of functions f in F such that

(2.3) Y <Fude|f (1 + 1) <y,

jez?

where C, is a positive constant and | - | denotes the usual Euclidean norm of
points in R¢. Think of p as a measure of the smoothness of the functions in
&. For example, if ¢;(x) = e?™* for x € [0, 1], then any function f satisfying
the ellipsoid condltlon (2.3) has a derivative f® of the kth order and,
moreover, [ satisfies Holder’s condition of order a in L, sense, where
p=Fk +a for an integer 2 and 0 < a < 1; see Ibragimov and Has’minskii
(1981).

Let a = (ay,..., a;) denote a multiindex with a d-tuple of nonnegative real
numbers, set [a]l=a; + - +a; and x*=x{1 --- x5 for x € R% Let
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T: F — G be a known linear operator which is defined on % by
T(f) = Z {f, ‘/’j>FPJ‘€Dj’

jez?

where p; =X, ,c,J% with c, being a known constant for [a] < p. Let g
denote the order of T, defined by

g = max{[a]: ¢, # 0}.

The order ¢ can be thought of as a measure of the ill-posedness of the given
inverse problem. In Example 1, p; = ¥} _,c, (27 )* and the order of T is q. In
Example 2, it can be noticed that p;, = (2ij)? and the order of T is q. In
Example 3, p; = ((w, ¢, 1 and if we make the assumption that [(w, @)=
(1 + 14179, then the order of T is q. Here ¢, = d, means that c,/d, is
bounded away from zero and infinity.

The following conditions are assumed throughout the paper.

ConprrioN 1. There is a positive constant C, such that K(P; ., Py, .,) <
Cyl f(x) — fo(2)? for f,, f, in &, where the Kullback—Leibler information
K(Pfl(x)’ Pf2(x)) ]'S given by fh’(ylx’ f1(x))10g{h(y|x, fl(x))/h(yl-x, fz(x))} dy

ConpITION 2. The conditional variance of Y given X = x is bounded on 2.

ConpITION 3. There are positive constants C; and C, such that Cyll flI% <
E|f(X)|? < C,lIfll% for any f € F.

ConbitioN 4. There is a positive constant C; such that |,/ < C; for
j ez

Condition 1 in Stone (1982) is a sufficient condition for Condition 1 bound-
ing the Kullback-Leibler information; see Yatracos (1988). It is the behavior of
the Kullback-Leibler information K(P;,.,, Py,.,) and the order of T' that will
determine the lower rate of convergence. It can be shown that Condition 1
holds for the Normal distribution in (2.2) if ¢(-) is bounded away from zero.
Condition 3 is also used to obtain the lower rate of convergence. Furthermore,
Conditions 2-4 are used in proving that certain sequences are achievable rates
of convergence and that our MOP estimator in the following theorem is
asymptotically optimal. Condition 2 holds for the Normal distribution in (2.2)
if o(+) is bounded. In Examples 1-3, Condition 4 follows immediately and a
sufficient condition for Condition 3 is that the marginal density of X is
bounded away from zero and infinity on [0, 1].

THEOREM. Suppose that Conditions 1-4 hold. Then {n~(®?~9/@r+d} is the
optimal rate of convergence for T(f).

COROLLARY. Suppose that Conditions 1-3 hold. Then {n~(P~9/@r+1} i
the optimal rate of convergence for T(f) in Examples 1-3.
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3. Proof.

LowER RATES OF CONVERGENCE. Let @(x) = T,,_,¢,x* for x € R?. There
is a point ¢ € Z¢ and a positive constant Cy such that

inf |Q(x)|* = C,.
lx—¢l<d
Choose a function ¥ in & such that (¥, ,)r # 0. Let N, denote a positive
integer and let V, denote a set of d-tuples of integers such that 1 <v, < N,
for v=(v,...,v;) in V,. We denote the sign of je€Z? by s(j)=
(s(jy),...,8(j ), where s(j,) =1 or —1 according as j, is nonnegative or
negative. Define f,, for v € V by

fnu = K;p_d/z Z <\P’ ¢j>F'7[/K,,j—s(j)v’
jezd
where K, = 2N, +1 and K,j—s(jv=(K,j;, —s(GPvy, ..., K, j; —
8(jg)vg). Given {0, 1}-valued sequence 7, = {r,,},cv, set f, = Ly 7,,f,,. Let
. denote the collection of all functions f, as 7, ranges over the 2V % possible
sequences. It is easily seen that %, is a subset of . [Use the inequality
K;2°(1 + |K,j — s(jWI**) <1+ |jI?" for j € Z¢ and v € V, to show that f,
satisfies (2.3).]
Suppose that N, — « as n — . Then

lim KEP_2q+d||T( fnv) ”?} = lim K;Zq Z |<\P’ lpj>F|2 ' |pKnj—s(j)v|2
n n jezd

2
> (W, g e lim| X e (& - s(j)v/K,)"
" 1lal=q
>[(W, g e inf |Q(x)[%
lx—¢l<d

Consequently, there is a positive constant C; and a positive integer n, such
that

(31) |T(f) = T(fo)llg > CN,#*9"9/2 for f, # f, in &, and n = n,.

Let #(A) denote the number of elements in a set A.

LemMA 3.1. Ifn > n, and N2 > 8, then there is a subset F,* of F, such
that

ITCF) = T(f) e > 28, = N2*0 for fif + f5 in FF
and log(#(#*) — 1) > 0.27TN°.

Proor. See the Appendix.
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Let &* ={f*:1<r <m, = #(Z*)} which is 28 -distinguishable. That
is, if fi* = f in &*, then T(f{) — T(fH)lg > 25,. Consider the discrimi-
nation problem of choosing among the m, hypotheses F.*. Given an estima-
tor T, define a discrimination rule A, taking Values in &* such that
|17 — TA)lg = 1nff*ey*IIT - T(f*)IIG Then, by elementary probability
and analySIS

sup Py(|7, = T(f)]g>8,1X,,..., X,)
feFr

(3.2) >m;! pr*( T, = T()le > 8.1%,,..., X,)

r=1

1 2 Pu(A, # f¥1Xy,..., X,).
r=1

This is because A, # f* implies that IT, — T(flg > 5, and FF is 26,-dis-
tinguishable. Observe that in the case of product measures

n
K( Py X X Pries Pryey X - X Pry ) = ,ZIK(Pfl(x,-w Pryap)
i

for f, f; € &. By applying Fano’s lemma [Birgé (1983)] to the product
measures P, X - X Py, \, f€ %, the average error rate in the discrimi-
nation problem can be bounded below as follows:

m;! 2 Pr(A, # f¥1Xy,..., X,)

r=1

(3.3) )
LIy suPsr rxc o K(Prrcx,ys Prsx,) + log2

=1- log(m,, — 1)

By Conditions 1 and 3, there is a positive constant Cg such that
(3.4) E{K(Psxy Prsx))} < CsN; 22 for f, f5 € FiF.
By (3.2)-(3.4) and the bound log(m, — 1) > 0.27N¢, we have that for ¢ > 0,

inf sup Pf(”Tn_T(f)”G>5n)21_8
T, feF*

if n > n(e) and N, = (n/e)/@P+9D Tt follows that

c—0

lim hmlnf inf sup Pf(”T T( f)”a > Cn—(p—q)/(2p+d)) =1,
1, fe

n

which implies that {n~(?~9/@P*d)} ig 3 lower rate of convergence.
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AcHIEVABILITY. It suffices to construct an estimator f‘n satisfying (2.1)
when fe€ %. Choose N, such that N, = n'/®P*® and let £, = {j € Z%
ljl<N,} and £¢ = {j € Z% |jl > N,}. Observe that J, = #(%,) = N¢. We
denote the summation over #, and /° by L , and L ,.. Let {1, denote the
collection of all J,-dimensional vectors B = (B;); .- Given B and y in Q,,
set Bly =X /"[?jyj with B; being the complex conjugate of B;, |8 = (B'B)"/?
and s,(-;B) =X . B;. Note that we use the same notation | - | for the norm
of elements in ), as in R

Let B* denote the minimizer of E|Y — s,(X;B)? over B €Q, and set
¥ =s,(-;B8%). To find a bound on || f;f — fli%, we define ¢,(f) = inf callf—
s,(-; Bllp. It can be noticed that e2(f) = }:/’fK f, l//j>F| . Since
(1 + N2PE K, ll’j>F|2 <X Kf, l[lj>F|2(1 +1jI?7) < C},"we have

(3.5) Y o8] = O(N;2P) for fe &.
.

From Condition 3, we have || f* — fllr = O(e,(f)), which implies that by (3.5),
(3.6) I ¥ = fllr = O(N,P).

Let ﬁn be the least squares estimator of B € Q, based on the random
sample of size n which is the minimizer over B € Q, of L7_,Y; — s,(X;; B)I”.
We define the least squares estimator of f by f. =s,(;B,). Let S, denote
the J,-dimensional vector of elements X} (X, {Y; — f¥(X;)} for j € 4, and
let H, denote the J, X J, matrix of elements ¥}_ 1%(Xi2¢/k(Xi) for j,k € Z,.
The following Lemma will be used to give a bound on || f,, — /¥l F.

LEMMA 3.2. (a) |S,|? = Op(nd,).
(b) There is a positive constant Cq such that inf,. o B‘H,B /IBI? = Cqn,
except on an event whose probability tends to zero as n — .

ProoF. See the Appendix.

Observe that the normal equation for B, can be written as H B, — B =
S,. By Lemma 3.2, we obtain |8, — B*|*> = Op(dJ, /n) and thus

R 2
fo = £ l5 = 0p(J, /).
Now we define an MOP estimator f‘n of T(f) by

(3.7)

Tn = T(fn) = §<fn’ ¢j>ij¢j‘
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Observe that
I, - ()| < 2§l<f,, — e, |+ 2 S CE e,
A A

and write the right-hand side as A, + B,,. By the assumption on p > (3.6) and
3.7,

A, < 2(;1;};:ij|2) (1 = 213 + 1 £ = FI%)

J n
= 0p{N?(J,/n + N, ?r)}
= OP(n—Z(p—q)/(2p+d))_

Note that ©; _ 44 f, 1/1j>ij|2 (1 +[jI**~?) < €y, for a positive constant Cio-
It follows from the argument used to show (3.5) that

B, = O(N,;%P=0) = O(n~%p=0/@p+d))

Therefore, {n~(?~9/@P+d} ig an achievable rate of convergence. O
APPENDIX

Proor oF LEmMA 3.1. Consider the set & = {0, 1}V % on which a metric n
is defined by n(a,,,7,) = £,y (0, — 7,,)? for 0,, 7, € £, There is an one-to-
one map 7 from .#, onto %, such that n(r,) = Ly Tpy [y for 7, € 7. By
(3.1),

IT(7(e,)) = T(w(7,)) g > CoN,7*1-92{n(a,,, 7,,)}/

for o, # 7, in £, and n > n,. Choose the maximal subset .£* of .Z such
that n(a,,7,) = NZ/8 for 0, # 7, in £*. We define Z* = 7(_£*) and choose
5, such that A, /4 <6, <A, /2 for A, = C,N,P*714/2. (N9 /8)'/2 Then it
is sufficient to verify that log{#(.Z*) — 1} > 0.27N¢ when N¢ > 8. Let
B(o,, r) = {r, € 4: n(o,,7,) <r}. By the maximality of .£* .Z c
U,,euxB(a,,1,), where r, is an integer such that N¢/8 =r, +a, for

0 <a, < 1. Since #(B(o,,1,)) = ;,;0(1\(,7)’
1
r, d
M < #( ) - L (N" )
i=o\ !

By Theorem 2 of Hoeffding (1963), we have 2‘Ng):{';1( N'l‘i) < exp(—0.281N2).
13
Therefore, log(#(_%*) — 1} > log{exp(0.281N¢) — 1} > 0.27N%. O
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Proor oF LEMMA 3.2. (a) It is noticed that ES, = 0. From Conditions 2, 3
and (3.6), there is a positive constant C,; such that

2

BIS, = L E| ¥ 0(X)(¥, - £5(X)))
£ li=1

l2

= LnE[g( X){Y - (X))
A

< Cynd,.

It follows that |S,| = Op(nd,), which completes the proof of (a).

() By Condition 3, Cyn < EB'H,B/IBI* < Cyn uniformly for g € Q.
Thus it is enough to show that sup, . QnIBt U,Bl/| B> = 0 in probability, where
B'U,B =n"B'H,B — EB'H,B). Let u,, denote the (ry,r,)th element of
U, which is given by

£ [E Wl(X,-)) (n éwm(x,')),

T T 1E4, i=1

where W(x) = ¢, _(),(x) — E¢, _(X),(X). Then |u, , |” is bounded by

pim Y Y WX )Wi(X,) e WX, Wa(X,, ).

) n 2m
R T A

Observe that the number of nonzero terms in EX; ..;, W(X;) - W, (X, )
is at most O(n™). Since {y;} are bounded,

Y X Elu,, =0 /).
roeﬂ rme%z
Note that supBEQnIBtUn’”BIZ/IBI4 < Zroe/nzrme/nlurormlz’ from which it fol-
lows that E supBEQHIBtUn’"BI/IBI2 — 0 if m >d/(@2p). This implies that
supgeq |B°U,Bl/IB |> > 0 in probability, because U, is hermitian. O
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