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MINIMAX REGRESSION DESIGNS UNDER UNIFORM
DEPARTURE MODELS'

By DEI-IN TaNG

Nathan S. Kline Institute for Psychiatric Research

Model robustness in optimal regression design is studied by introduc-
ing a family of nonparametric models, which are defined as neighborhoods
of classical parametric models in terms of the uniform norm. Optimal
designs are sought under a minimax criterion for estimating linear func-
tionals on such models that may be put as integrals using measures of
finite support. A set of conditions equivalent to design optimality is derived
using a Lagrangian principle applicable when the dimension is infinite and
the function is not everywhere differentiable. From these conditions vari-
ous optimal designs follow. Among them is the classical extrapolation
design of Kiefer and Wolfowitz for Chebyshev regression, which is therefore
model-robust against uniform departure. The conditions also shed light on
other classical results of Kiefer and Wolfowitz and of others.

1. Introduction. We address a problem that arises in designing an exper-
iment for estimating a regression parameter. In such a situation Kiefer and
Wolfowitz (1959) show that the efficiency of estimation can be greatly im-
proved by using an optimal design over a naive one.

The regression setting is assumed as follows. A regression function f is
defined on a set T. Let T, be a subset of T. At each ¢ € T, uncorrelated
random variables Y;() may be observed which satisfy E(Y(z)) = f(¢) and
Var(Y,(¢)) = o2. It is known that f € ®, a specified class of functions on T

In classical design theory, ® is a linear space of finite dimension, consisting
of continuous functions such as polynomials. In this case it is standard to
estimate a regression parameter by the least-squares method, assuming that
the design is reasonable so that the method will produce an unbiased estima-
tor. A natural criterion for design optimality is therefore the variance of the
least-squares estimator.

However, it is likely that f & ®. Further, as shown in Box and Draper
(1959), even for small model departure a variance minimizing design can on
the other hand introduce a large estimation bias, thus also a large mean
square error (MSE). In this sense some classical optimal designs are not
model-robust.

The problem of finding optimal designs that are more model-robust than
the classical designs has since received considerable attention. Typically ® is
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somewhat larger than a classical model. Initially it remained finite-dimen-
sional. Infinite-dimensional ®’s appeared in a later trend. The motivation for
such ®’s is given, for example, in Sacks and Ylvisaker (1984). However, since
they use Sobolev norms in defining ®, their optimality criteria can be difficult
to work with. For simplicity we propose to use the uniform norm. Although
nonsmooth f’s are admitted, the results are reasonable, many having counter-
parts in Sacks and Ylvisaker (1984). As argued by Fabian (1988), to use the
uniform norm in regression is natural.

To define our ® we assume for generality that 7 is a first countable
compact Hausdorff space, such as the interval [0, 1]. Let C(T') be the space of
all continuous functions on 7' under the uniform norm. Let ®, be a classical
model, that is, a finite-dimensional linear subspace of C(T), of which let
{f.}_, be a basis. For any ¢ > 0, we define a uniform-departure model as the ¢
neighborhood of ®, in C(T'), that is,

@, = {fe C(T)|d(f, Po) <&},

where d(f, ®,) denotes a distance defined in the usual way. Note that when,
for example, T' = [0, 1], ®, with ¢ > 0 is of infinite dimension. In any applica-
tion ¢ needs to be chosen. However, this problem will not be discussed. Our
aim is to find optimal designs under any ®,. Such knowledge should be useful
for choosing e.

Following Sacks and Ylvisaker (1984), we view a regression parameter
under &, as a functional defined on ®,. However, we develop a theory only for
the estimation of the general linear functional

P(f) = ¥ f(x),

i=1

where y; are known real coefficients and x; are known points in 7' and q < .
Hereafter this general form of I' is assumed unless specifically otherwise
given. We may put I'(f) as an integral of f in terms of a (signed) measure and
identify I" with that measure.

Also following Sacks and Ylvisaker (1984), we use among linear estimators
one that minimizes the maximum MSE. A design, consisting of design points
and a rule for allocating observations, is optimal if it minimizes the maximum
MSE of the best linear estimator.

For a more detailed discussion on related literature and the motivation of
the above formulation see Sacks and Ylvisaker (1984). It should be noted that
they also treat linear functionals that are induced by continuous measures.

In Section 2 we reduce the problem to the minimization of a function of
signed measures subject to a constraint. In Section 3 we give the main result
which is a set of conditions equivalent to design optimality. In Section 4 we
discuss the notion of model-robustness. Then we give optimal designs in
various situations. We also illustrate a continuity principle useful for computa-
tion. In Section 5 we recast some classical results.



436 D.-I. TANG

2. Mathematical preliminaries. Consider a general design with design

points t, € Ty, i = 1,..., k, and n; observations allocated at ¢, subject to that
N = Zn is fixed. Let Y(t ) be the random variables to be observed Let the
estimator be Tk e, Y, ) where Y(t,) = +,Y;(¢,)/n,. Then,

MSE( f; (e}, {t.}, {n.)) = E(Zc,?(tz) -T(f))
=2 Tt/ + (Le f(t) — Ly F(x))"

The two linear functionals in the bias term above may be put as [fdD and
Jfdl' with D = Yc¢;5, and I' = Ly,;5,, where 6, denotes the unit measure
concentrated at x. The best linear estimator can be found by minimizing with
respect to ¢; the maximum of the above MSE over f € ®,. To find an optimal
design we need to further minimize the resulting minimum with respect to ¢;
and n,. However, the mathematical problem is simply to maximize the MSE
with respect to f and then minimize the maximum with respect to ¢,, n; and
¢;. As in classical theory [see Kiefer and Wolfowitz (1959)], the difficulty of
minimizing over integers is here compromised by allowing n, to take on
arbitrary nonnegative numbers (subject to the constraint on their total). Thus
it can be shown that if an optimal design exists then the optimal n, and the
best c; satisfy

(2.1) n,/n;= IciI/chI.

Substituting (2.1) into the above MSE, the problem is reduced to

(2.2) min {02(2|cll) /N + (?ggi)(/fd(D - F)) }

€l

Hereafter we denote Llc,| by ||D||, for it is both the total variation of D as a
measure and the norm of D as a linear functional on C(T).

Note that a measure D that solves (2.2) contains the ¢, of an optimal design
and the corresponding c; for estimation. The corresponding n; can then be
obtained from (2.1). Thus any D considered in (2.2) may be referred to for
convenience as a design. Other than in such cases a design mentioned here-
after remains consisting of design points and an allocation rule, which in
classical theory are summarized together as a probability measure. Note that
in classical theory the estimation is done a priori by using the least-squares
estimator.

We now simplify the max in (2.2). First, we restrict attention to unbiased
designs, that is, those D’s such that

(2.3) [de = jfdr for f € ®,.

This is because otherwise the max is +. Condition (2.3) is satisfied in
classical approaches because the least-squares estimator is unbiased. For an
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unbiased D we can show that

([fd(p r)) =&?|D - TI?

f€‘D)

with the aid of Tietze’s extension theorem [Royden (1963)]. Thus, (2.2) is
reduced to the problem of minimizing

Q,(D) =plDI* + D - T|I?

over unbiased designs, where p = N 'o0%¢~2. When ¢ = 0, implying that p = «,
the expression for @, does not make sense. In this case QD) is defined as
IID||%. Note that there is, as should be, a sense of continuity for Q even at
p = . This is based on the fact that for 0 <p < x a de51gn minimizes @, if
and only if it minimizes p~'Q,(D) = IDII* + p~ YD — I'||*. For convenience we
also consider the case p = 0, for which it is obvious that if each support point
of T" belongs to the design space T, then D = T is the unique optimal design.
In the following discussion the general range for p is 0 < p < ». As with ¢, in
actual applications p is usually unknown. However, we consider below only the
minimization of @, with p arbitrary, for which D} will denote an optimal
solution.

Since function @, is derived from (2.2), extending its domain to include
measures of arbitrary support does not make practical sense. Mathematically,
to minimize over more general D’s may be more difficult, as the set of finitely
supported measures is not dense in the space of all measures under the norm
of total variation.

From any results for &, with ¢ > 0 corresponding results for ®, may be
obtained by letting ¢ — 0 (equivalently p — ) or by following similar argu-
ments. Certain optimal designs we obtain under ®, are actually classical
designs. However, as we reduce the problem in a different way, our approach
serves to shed new light on, rather than prove the classical results.

3. General results. For any measure D, let supp(D) denote its support.
For any sets A and B, let A — B denote the set of elements in A but not in
B, and let |A| denote the cardinality of A. Let D(A) and |D|(A) denote,
respectively, the mass and total variation of A under D. Further, for any real
number x let sgn(x) = 1, —1 or 0 according to x >, < or = 0.

LEMMA 3.1. For any unbiased design D, there exists an unbiased design D’
such that Q (D) < @,(D) for any p and |supp(D’) — supp(I')| < dim(®,).

Proor. By the discussion in the end of Section 2, we treat only the case
0 <p <. Recall that dim(®,) =r + 1. Let D= X! ,c;8, with {£;)~,
supp(D) — supp(I'), where all ¢, are distinct, all ¢; # 0 and m < k. Suppose
m = r + 2. The general case m > r + 1 follows by induction.
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There exists a nontrivial solution {d*}/*? to the equations,

r+2

Y dfi(¢;)=0 forj=0,...,r

i=1
For convenience let d¥ =0 for i =r+3,...,k. Let F =YXk 14}, . Then
D + sF is unbiased for any scalar s. When Isl 9& 0 is small enough we have
c,(c; +sd¥) > 0 for all i, from which [|D + sF| = ||D|l + sXd} sgn(c;). As-
sume Xd¥ sgn(c;) > 0; other possibilities can be similarly treated. By continu-
ity there exists s, < 0 such that for all i, c,(c; + sod¥) = 0 and equality
holds for at least one i <r + 2. Let D' =D + syF. Then |D'| =
Y(c; + sod¥)sgnlc;) = [ID|| + soXdf sgnlc;) <[ Dll. As D' differs from D only
on design points not in supp(I), ||[D' —T| <||[D —T| also holds. Thus
Q,(D") < Q,(D) and |supp(D’) — supp(I)| < r + 1 = dim(®,). O

A sequence D, of measures of finite support on 7T is said to con-
verge weakly in norm to measure D, of finite support on T if, assuming
supp(D ) = {xl, .., %} with distinct x’s, for any § > 0 and any open sets O,,
i=1,...,einT w1th x; € O,, there exists % such that for any n > &,

ID(T = UO;) + X (D, — Dy)(0;)| <é.
i=1
Note that D, is necessarily unique and liminf||D,|| > ||Dll. In addition, if all
D, are unbiased designs, so is D,,.

LeEmMMA 3.2. For any design sequence D, such that both |supp(D,)| and
IID || are bounded in n, there exists a subsequence which converges weakly in
norm to a design satisfying the same bounds.

Proor. Write D, = ©,c; 20, for a finite fixed M, where some c; ,’s
may be 0. There ex1sts a subsequence, say {n;}, of {n}such that ¢, , — ¢, and
Ci,n, = Ci0 forall i=1,...,M as n; > o. It follow that D, — Zi=lci,06t
weakly in norm. O

The next theorem follows from Lemmas 3.1 and 3.2.

THEOREM 3.1.  For any p, there exists an optimal design D satisfying
lsupp(D;,") - supp(F)| < dim(®,).

An optimal design may not be unique, as the norm || Dl is not a strictly
convex function. In view of Theorem 3.1 we hereafter consider only designs D
satisfying |supp(D) — supp(I)| < dim(®,).

The next lemma will be needed for Theorem 4.1.

Lemma 3.3. If p, — p (including p = ) and D} is the unique optimal
design under p, then for any optimal design D) under p,, D; — Dy weakly
in norm.
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Proor. Any subsequence of D contains a sub-subsequence which con-
verges weakly in norm to a design D,. This D, is optimal under p. By

uniqueness, D, = D¥. O

We now use the theory of Lagrange multiplier to derive conditions equiva-
lent to design optimality. Since the function to be minimized is not everywhere
differentiable and its domain is of infinite dimension, we follow an argument in
Whittle [(1971), page 52]. Let p, 0 < p < «, be fixed. Define B to be the set of
those points (x4,...,x,,,) each of which satisfies that for a design D (not
necessarily unbiased), x;,; = [f;d(D —T), i =0,...,r and x,,, > QD).
Clearly B is a convex set. For an optimal design D) we consider the point
b=(0,...,0,Q,(Dy)). This point must lie in the boundary of B. Otherwise
there would exist x** < @ (D)) such that (0,...,0,x**) € B and conse-
quently also an unbiased design D** such that @,(D**) <x™** < @,(D)),
contradicting the optimality of DJ. Finally, the existence of a supporting
hyperplane at b implies that for some Ag,..., A, 1,

Y Affid(D =T) +1,,Q,(D) > A,.,Q,(D})
i=0

for any design D. As A, ,, must be > 0, it may be chosen to be 1. Thus, D}
minimizes @,(D) = Q,(D) + L;_,A, [f; d(D — T) among all designs D. A nec-
essary condition of optimality is therefore that

(3.1) (d/de)Q)(D¥ +¢D)| _, . >0 forall D,

e=0+ "
which can be seen to be also sufficient among unbiased designs. To find the
derivative in (8.1) we use the formula,

(d/de)llD;," + eD|| L=0+ = Yy D(t)sg‘n(D;"(t))
tesupp(D)

(3.2
) + L 1Dt ~|sen(D3 (1))

tesupp(D)

THEOREM 3.2. For 0 <p <o, let a =pl|D}|l/(pllD}Il + D} — TID. Then
Dy is optimal if and only if it is unbiased and there exists p € ®, such that:

(a) Ip(t)|<1 forteT,
(b) p(t) = —sgn(D¥(t)) fort € supp(D}) — supp(T).
(¢ —a+(1-a)sgn(l(?)) <p(¢) <a+ (1-a)sgn(T(t))

for t € (supp(T') — supp(D})) N T.
(d) —asgn(D}(1)) + (1 - a){~1 +|sgn((D} - I)(1))|
—sgn((D} - 1)(1)))
<p(t) < —asgn(D} (1)) + (1 — a){1 —[sgn((D} - T)(2))]

—sgn((D} - T)(1))}
for t € supp(D}) N supp(T).
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Proor. (Necessity.) By (3.1) and (3.2),
pID; I £ D(6)segm(D; (1)) + L 1D(#)|(1 — |sen(D3(0))]))
+ D = TI{ £ D(t)sen((D} - T)(t))
+ ZID(&)I(1 ~|sen((DF - T)(®))])}

r
+2' Y AiffidDzo
i=0

for some A; and any D, where the range for ¢ in all the summations is
supp(D). Plugging D = +§,, for each ¢ € T, into (3.3), (a) to (d) follow with
p(t) = 2=l D* | + 1D* — TID=ITI_oA, £,0).

(Sufficiency.) From the existence of the described p follows (3.3), hence also
@E.1D. O

(3.3)

For the case p = » a corresponding result can be obtained by taking a = 1.

CoROLLARY . D¥ is optimal if and only if it is unbiased and there exists
p € ®, such that

(i) p(t)| <1 forteT,.
(ii) p(t) = —sgn(D}(t)) fort € supp(D}).

This corollary suggests a simple way for obtaining optimal designs under
®,. Pick a function p € ®, and normalize it so that |p(?)| < 1 for ¢t € T,,. Find
D that satisfies (ii) in the corollary. This D is optimal for any I" for which it is
unbiased. However, when TI' is given first it may not be easy to find an optimal
D in this way.

In the special case where I' is a positive measure, 1 € &, and T, = T, the
design D =T is optimal for all p and is unique except for p = ». This is
because [T'll= [dI' = [dD <|D|| and Q/(D) > plDII? > plIT||? = Q,(I) for
all D.

4. Special results. Theorem 3.2 reminds one of the theory of Chebyshev
polynomials. We review here some relevant results [see Karlin and Studden
(1966)].

A set of continuous functions {g,}>, on the interval [a, b] is said to be a
Chebyshev system (C-system) if any L ,c;g; with ¢; not all zero has at most
m distinct zeros in [a, b]. For this C-system the following results hold.

1. There exists a unique function p,, = Xc¥g; such that |p, () < 1, ¢ € [a, b]
and p,,(¢,,_;) =(—1) forsome ¢;,,i =0,...,m,with a <t, <t; < -+ <
t,, <b. We refer to p,, as the C-function and the ¢;’s as a set of C-points.

2. If there exist c¢,’s such that Yc;g;(¢) = 1 for all ¢, then the set {¢ | pZ(¢) = 1}
consists of m + 1 distinct points, including @ and b.

3. For all sets {s;}/2, with s; <s,,, and s; € [a, b], the determinants |g;(s,)|
are either all positive or all negative.
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We now study the situation in which there exists a design that is optimal
under @, and is model-robust against uniform departure in a strong sense.
According to the literature a design optimal under ®, for one ¢ > 0 may be
said to be model-robust. This definition seems weak in the sense that to
employ such a design the departure parameter ¢ should be carefully chosen to
achieve both efficiency and robustness. The strongest definition is that the
design is optimal under ®, for any & > 0. However, such designs simply may
not exist in most cases. We explore a definition that lies in between. Namely,
an optimal design D is model-robust if there exists an optimal design D} for
each p >0, such that supp(D}) 2 supp(D)) for all p >0 and D; — Dy
weakly in norm as p — ». The continuity condition seems reasonable. The
motivation for the condition of inclusion arises from the opinion that the
design points are the most vital part of a design and that a model-robust
design should have sufficiently many design points so that any degree of model
departure can be detected. However, the following result says that this defini-
tion is no different from the strongest one. As the proof shows, the condition
that the inclusion relationship holds for all p > 0 is very restrictive. In
applications one may be able to specify a realistic finite upper bound on ¢ so
that for & beyond this bound &, is too wide to be a suitable model. Thus, one
may want to relax the inclusion condition from “for all p > 0" to “for all p
greater than a specified positive number.” However, no characterization of
optimal designs model-robust in this relaxed sense is known.

THEOREM 4.1. Assume T, =T = [a,b], {f;}/_, is a C-system on T and
1 € ®,. Then D} is model robust if and orly if D} =T, in which case it is
optimal under ®, for any ¢ > 0.

Proor. (Sufficiency.) It suffices to prove the optimality of D¥ = I' under
®, for any ¢ > 0, which follows immediately from Theorem 3.2 and its
corollary.

(Necessity.) Assume [1dT > 0. Let Df — D} weakly in norm with
supp(Dy) 2 supp(D;). By Lemma 3.3 we have D — I' weakly in norm as
p — 0, since D =T is the only optimal design under p = 0. From supp(D}) 2
supp(Dy) follows supp(D;}) 2 supp(D).

We claim that D* = I'. Suppose not. Let G = D¥ — I'. Then G(f) = 0 for
all f€ ®,. By result (3) of C-system this is possible for a measure G # 0 only
if |supp(G)| > dim(®,). Since supp(D}) 2 supp(G), we have |supp(D})| >
dim(®,). Applying the corollary of Theorem 3.2 to D, there exists p € @,
such that |p(¢)] < 1 for all ¢ with equality for % > dim(®,) distinct #’s. A
standard argument using the definition of C-system implies that p must be a
constant, which must then be either 1 or —1. Accordingly, D} is either a
positive or a negative measure. The latter is impossible due to [1dD} = [1dT,
which is greater than or equal to 0 by assumption. Hence D} is a positive
measure. By continuity and supp(D}) 2 supp(D;“ ), Dy is a positive measure
with supp(D}) = supp(D}) for sufficiently large p. For each such p consider
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D, =1 - B)D} + BT for a B > 0 so small that D, remains a positive mea-
sure. This is poss1ble by supp(D;*) 2 supp(I'). From DIl = f1dD, = | Dxll,
D, —-T= a- ,B)(D* I') and Q, (D*) <Q, (D’) follows IID* I = 0 Thus
F = D¥, which leads, as p — o, to the contradiction that D;“ =TI. 0

By Theorem 4.1 the class of model-robust optimal designs for all I"’s is the
same as the class of optimal designs under @, for all I'’s. This is because a
design D optimal under @, for, say I'j, is model-robust for I', = D.

We present some results for special cases of ®,.

ProposiTION 4.1. Let Ty =T and ®, be the constant regression model.
For any p there exists D with supp(I) 2 supp(D}) and 0 < D}(¢)/T(?) <1
for t € supp(T’).

Proor. Among all optimal designs let D) be one such that [supp(D;’) —
supp(I')| is a minimum. Suppose there exists t* € supp(D;’) — supp(I"). Pick
any x from supp(I") and define D' = D} + D) (t*X3, — 8,+). Clearly D’ re-
mains optimal, but |supp(D’) — supp(I')| < |supp(D}*) — supp(I')|, a contradic-
tion. Next, suppose that 0 < DX(#)/I'(#) < 1 does not hold for ¢, € supp(I').
Then DX(¢,XD}(¢,) — I'(¢,)) > 0. By unbiasedness there exists ¢, € supp(I’)
such that D¥(¢,)(D}(¢,) — I'(ty)) < 0. Then, assuming D}(¢,) > 0, D" = D) —
c(3,, — 8,,) for a sufficiently small ¢ > 0 is a better design than D}, a contradic-
tion. O

PrOPOSITION 4.2. Assume T, =T = [a, b] and ® is the linear regression
model. For any p there exists DY with {a,b} 2 supp(D;) — supp(I') and
0 <DX@®)/T(t) <1 fort € supp(I') N (a, b).

ProOF. Assume 0 <p < ». Let D} be an optimal design. Suppose there
exists ¢* € supp(D}) — supp(I) with a <¢* <b. By (a) and (b) in Theorem
3.2, the function p must be one of +1, say —1. By (b) D}(¢) > 0 for
t € supp(D;) — supp(T’). By (c) I'(¢) < 0 for ¢ € supp(I') — supp(D;’). By (d)
Dx(#) = T'(¢) for t e supp(D}) N supp(I’). Consequently [1dD} > [1dT, a
contradiction. Next, suppose that 0 < DX(#)/T'(¢) < 1 does not hold for ¢, €
supp(I') N (a, b). Then DX (¢, XD (t,) — I'(¢,)) > 0. By (d), |p(¢,))| = 1, implying
that p is one of +1. A contradiction follows as above. O

In the next proposition let I'"— I'”" be the Hahn decomposition of T'.

ProposITION 4.3.  Assume Ty = T and ®, is the constant regression model.
An optimal design under p is given as follows:

(i) When [1dT =0, D¥ = (1 + p)"'T.

(ii) When (1dT # 0, say > 0 (assume then I'"# 0), DF = c,['"— c,I'” for
p < po, where p,=2/1dI"/[1dl, ¢; = (A + p)~ 1 + /14Dl +
/1dT) and ¢, = (@ + p) Tl - /1dD)/UITIl - /1dT) and D} =D} for
P > po.
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Proor. Invoke Theorem 3.2 with p(¢) = 1 — 2a. O
The next example illustrates that an optimal design may not be unique.

ExampLE 4.1. Let T, = T = [0, 1], &, be the constant regression model and
I' =8, — 8,5 + 8, In addition to the design in Proposition 4.3 the following
design is also optimal, D, = &, — s8, ,, + 8, with s = (2 — p)/(2 + 2p) when
p <2,and D, = §; when p > 2.

The following continuity principle may be useful for obtaining optimal
designs. Starting with p = o, find a DZ. This requires checking (i) and (ii) in
the corollary of Theorem 3.2. Next, check if the same design and p function
continue to work when p is finite but large. This requires checking (a) to (d) in
Theorem 3.2. Among them (a) and (b) will automatically hold. Usually |p(#)| < 1
for ¢ € supp(I") — supp(D¥), so (c) will hold when « is close to 1, that is, when
p is large. However, (d) will not hold if 0 < D¥(¢)/T(¢) < 1 for some ¢. When
this occurs, either try a different design to start over with or other methods,
which may be based on results such as Propositions 4.1 and 4.2, are in need.
Fortunately, this situation seems rare. So we assume here that a D} is found
so that for finite but large p, (d) either is satisfied or does not apply. According
to the above explanation, this design continues to be optimal for finite but
large p, until a value of p, say p,, is reached for which (c) holds only critically,
that is, it no longer holds for p < p;. We may then enlarge supp(D}) by
including those points of supp(I") at which (c) holds critically. New coefficients
as well as a new p(¢) may be needed. However, the results obtained for large p
may provide clues on how to find these things for p in the next range. The
same procedure may be repeated until p = 0 is reached. We illustrate the
continuity principle via the following example.

ExampLE 4.2. Let T, =T =[0,1] and ®, be the linear regression model.
Consider I' = §, — 8, with 0 <x; <x, <1, x; +x, = 1. According to Propo-
sition 4.2, we can find an optimal design based on D = ¢,§, + ¢,8, + ¢, +
c38,. However, for p = « it may suffice to only consider D = ¢,8, + c36;. In
this case there is a unique unbiased design, of which ¢, = —cg = x; — x,. It
turns out this design, denoted by D,, is optimal by the corollary of Theorem
3.2 with p(¢) = p(#) =1 — 2¢. For p < =, D, and p,, clearly satisfy (a) and (b)
in Theorem 3.2. Moreover, (d) does not apply. Finally, (c) requires a > x,,
which holds if p > p; = 2x2/x,(x, — x;). Therefore D, remains optimal for
p = p;. For p <p, we consider D, = ¢,8, + ¢,8, + 8, + c38;. In this case ¢,
determines the other ¢’s through —c, = ¢35 = (x5 — x,)(1 + ¢;) and ¢, = —c;.
As (c) no longer applies, it remains to verify (d). By Proposition 4.2 we require
0> c; > —1. Then express a as p(c; — ¢;)/(p(cs — ¢;) + 1 + ¢; + ¢3). Condi-
tion (d) is satisfied if p = p, and a = x,. Thus, coefficient ¢; can be deter-
mined in terms of p. Finally, it is necessary to verify if ¢, obtained this way
satisfies 0 > ¢; > —1. Due to p < p; the answer is yes. Hence an optimal
design for p < p,; is found. Notice that this design is supported on four points,
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although as p — 0 it converges weakly in norm to I', supported only on two
points.

We turn to extrapolation problems, which means that T, N supp(I') = &

THEOREM 4.2. For any extrapolation problem, an optimal design under ®,
is optimal under ®, for any € > 0.

Proor. Because ||D — I'||=||D|| + [ITll, the minimization criterion @, (D)
under @, is equivalent to that under ®,, that is, QD) = ID|2. O

Hoel and Levine (1964) consider an extrapolation problem in polynomial
regression. Their results are generalized to C-system by Kiefer and Wolfowitz
(1965). The question of model robustness for the design of Hoel and Levine
has been studied by Spruill (1985) under Sobolev-departure models.

5. Classical optimal designs. In this section the model is restricted to
be ®,. In this case a parameter I' may be identified with the vector I'(f) =
(T(fy), ..., T(f,)). We demonstrate that our method can reproduce many
classical designs.

THEOREM 5.1. When T, =[a,bl, T =38, for some x > b, {f}/_y is a C-
system on [a,x], and {t,}]_, is a set of C -points on T, then the unique
unbiased design supported on {t,}/_, is optimal.

Proor. The un1que unbiased design supported on {¢,}/_, is given by DX =
Li_ock 8, with ¢f = A7Y fi(s, )} x=0, where A =|fi(¢, )IJ m=0 and s, ; =t
for all % except that s; ; = x. By result (3) of C-system sgn(c¥) alternates
between +1. The optlmahty follows from the corollary of Theorem 3.2 with p
chosen appropriately between the C-function on T, and its negative. O

Essentially the same results appear in Hoel and Levine (1964) for polynomi-
als, and in Hoel (1966) and Kiefer and Wolfowitz (1965) for C-systems. When
1 € &, the optimal design in Theorem 5.1 is unique. This is a special case of
the next theorem. Note that when 1 € @, the set of C-points on T is unique
by result (2) of C-system. This set will be denoted again by {¢;}/_,. Let
vy = (fo(t), ..., £.(¢), R* = {X]_,(—Dic,v;|c; all positive or all negative},
and S* = {E]_,c,v; | ¢; all positive or all negative}. Thus, design D = ¥{_,¢;5,
is unbiased if and only if

(5.1) Z c;v; = I'(f).
i=0

The following condition will be assumed in Theorem 5.2:

(5.2) Each fe ®, either has at most r — 1 local extrema
excluding boundary points or else is constant in T'.
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THEOREM 5.2. Suppose Ty = T = [a, b], {f}/_o isa C-systemon T, 1 € &,
and (5.2) holds. Then there exists an optimal design supported on {t,}/_, if
and only if T(f) € R* U S*. In addition, the optimal design is unique if
I'(f) € R*, and not unique if T(f) € S*.

Proor. (Sufficiency.) The existence of an optimal design for T'(f) € R* or
for T'(f) € S* follows from the corollary of Theorem 3.2 with p chosen,
respectively, between the C-function and its negative or between +1.

(Necessity.) If D* = X7_,c}3, is optimal, the corollary of Theorem 3.2 gives
p* € @, which attains extremum, 1 or —1, at ¢, for i = 0,...,r. When p*(¢;)
alternates, so does sgn(c*). It follows from (5.1) that I'(f) € R*. If p*(¢,) does
not alternate, then p* has at least r local extrema. Consequently by (5.2) p*
must be one of +1, implying I'(f) € S*.

That an optimal design is not unique when I'(f) € S* can be seen by
perturbing {¢,}}_, so little that the signs of the coefficients are preserved.
Finally, to show the uniqueness when T'(f) € R* let D} and D, both be
optimal with supp(D}) = {¢,}/_,. Suppose D} + D,. It follows that supp(D,) is
not contained in {¢;}_,. By convexity every D, = sD¥ + (1 — s)D, with 0 <
s < 1is also optimal. When s is close but not equal to 1, we have supp(D,) =
supp(D}) U supp(D,). Hence, [supp(D,)| > r + 1. Let p, be given for D, by
the corollary of Theorem 3.2. For some number b near 1 or —1, p(¢) — b
(€ @) has more than r distinct zeros but is not identically zero, contradicting
the definition of C-system. O

Essentially the same results appear in Kiefer and Wolfowitz (1965) and in
Studden (1968). An application of Theorem 5.2 is the estimation of 6, when
f=Xi_o0;f;- Denote the corresponding linear functional by I, that is,
[.(f)=9,. It is easy to see that if {f,}/_4 is also a C-system on [a, b] then
I.(f) € R*. This result first appeared in Kiefer and Wolfowitz (1959) for
polynomials. See Studden (1968) for more such results.

Application of Theorem 3.2 to T' of dimension greater than 1 is limited by
the lack of theories similar to C-system. Studden (1971) extends Theorem 5.1
to the case where T, is a compact convex subset with nonempty interior in a
Euclidean space. Studden’s optimal design, which is essentially one-dimen-
sional, also follows from the corollary of Theorem 3.2 when a polynomial in
Studden (1971) is used as the p function. We give an example to illustrate this
result.

ExampLE 5.1. Let T = {t|t is any m vector} for a fixed m and let ®, be
the set of all quadratic polynomials {f | f(t) = t’/At + b’'t + ¢ for a matrix A, a
vector b and a number c}. Let T = {t |t’Ht < 1} for some matrix H > 0 and
I' =5, for some x & T,. By the corollary of Theorem 3.2 with p(t) =
1 — 2t'Ht, an optimal design can be found supported on {0, + x/(x'Hx)'/2}.
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