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ALARGE SAMPLE STUDY OF RANK ESTIMATION FOR
CENSORED REGRESSION DATA!

By ZHILIANG YING
University of Illinois

Large sample approximations are developed to establish asymptotic
linearity of the commonly used linear rank estimating functions, defined as
stochastic integrals of counting processes over the whole line, for censored
regression data. These approximations lead to asymptotic normality of the
resulting rank estimators defined as solutions of the linear rank estimating
equations. A second kind of approximations is also developed to show that
the estimating functions can be uniformly approximated by certain more
manageable nonrandom functions, resulting in a simple condition that
guarantees consistency of the rank estimators. This condition is verified for
the two-sample problem, thereby extending earlier results by Louis and Wei
and Gail, as well as in the case when the underlying error distribution has
increasing failure rate, which includes most parametric regression models
in survival analysis. Techniques to handle the delicate tail fluctuations are
provided and discussed in detail.

1. Introduction. Let T,,...,T, be a sequence of positive random vari-
ables, usually representing survival (failure) times of n patients (items) in a
medical (industrial life) study. Let X,..., X,, be their corresponding (p X 1)
covariates sequence. The accelerated life model [cf. Cox and Oakes (1984) and
Kalbfleisch and Prentice (1980)] is to relate the logarithms of survival times,
Y; = log T}, to their covariates through a system of linear regression equations

(1.1) Y,=p"X,+e, i=1,...,n,

where B is a p X 1 parameter vector and the ¢; are conditional on X,,
independent and identically distributed (i.i.d.) random errors with a common
distribution function F. The regression model (1.1) for survival data is often
complicated by the so-called right-censorship: There exist (log) censoring times
C;, such that we can only observe Y; A C;, §; = Iy, _¢) and X;, i=1,...,n.
Here, we shall assume that conditional on X, ¢; and C; are independent.

For the censored regression (1.1), when the common error distribution F' of
€, is modeled as a member from a specific parametric family of distributions,
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one can apply the usual maximum likelihood method for statistical inference;
compare Lawless (1982). Simple formulas are often obtainable by applying the
widely used large sample theory such as the asymptotic normality of
the maximum likelihood estimators. Without any parametric assumption, the
classical linear rank statistics for testing B = B, may be extended and used in
testing hypotheses for censored regression data; compare Prentice (1978) and
Cuzick (1985). Examples of such extended linear rank statistics include the
log-rank and the Gehan (1965) statistics, and the G* family, compare
Harrington and Fleming (1982).

In the absence of the right-censorship, it is well known that the linear rank
statistics can also be used as estimating functions to construct R-estimates;
compare Hodges and Lehmann (1963), Adichie (1967) and Juredkova (1971).
Because of discontinuity, these estimating functions are much more difficult to
analyze than those of the maximum likelihood in the parametric case. The
approaches given by the aforementioned articles are based upon a monotonic-
ity property of the R-statistics and a standard contiguity argument. Exten-
sions of the two-sample log-rank and Gehan statistics are obtained by Louis
(1981) and Wei and Gail (1983), who showed that in these two cases, the
monotonicity is preserved even in the presence of a right-censorship and
therefore the classical method applies. Earlier, Buckley and James (1979)
proposed an extension of the least squares estimating equation to handle the
censored regression. Ritov (1990) linked this type of estimating equations to a
class of weighted log-rank forms and developed certain asymptotic properties.

For the general censored linear regression, the linear rank (in particular,
the log-rank) estimating functions are not only discontinuous, but also non-
monotone, and therefore, neither the usual Taylor expansion method, often
applied in analyzing a maximum likelihood estimator, nor the contiguity
argument can be used. Recently, Tsiatis (1990) and Lai and Ying (1992)
proposed certain modifications to the linear rank estimating functions and
investigated their large sample properties. Their approaches are based upon
establishing local asymptotic linearity properties of these functions to show
that the resulting estimators are asymptotically normal. Specifically, Tsiatis
(1990) studied the log-rank statistic truncated at T'*, that is,

5oy = 3 [T x, - 220 an oo
(12) 5y = X [ ( i~ Zee gy | N0,
where T* is a prespecified constant such that

1 n
(1.3) liminf — Y P{Y, A C; — B7X; > T* + 7} > 0

noe Ny

for some 1 > 0. The role of T* is to avoid the usual technical difficulty of a
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possible tail instability. Here and in the sequel, we shall use the notation

N(b,t) = Iy, pc,-57x,20,5,-10  N(b,8) = X Ni(b,2),

i=1

N*(b,t) = ¥ X,N(b, 1),

i=1

Ni(b’t) = I(Y,/\C,—bTX,zt,5,=1)’ N(b’t) = Z N’i(b’t)’
(1.4) . -
N*(b,t) = ¥ X;N(b,1),

i=1

Zy(b,t) = Iy, nc-ox,20p  Z(bst) = X Zy(b,1),
i=1

Z*(b,t) = Y. X,;Z,(b,¢).
i=1

His main result is to show that there exists a nonrandom p X p matrix AT
such that

1
Vn

uniformly in [|b — B8|| < B/ Vn, for every fixed constant B. Here and in the
sequel, we shall follow the convention that |[v|| of a vector v denotes its
Euclidean norm and [|V|| of a matrix V = (v;;) denotes v/ Lv?; . Equation (1.5)
means that the function £¢75(b) is asymptotically linear in the n~1/2 neighbor-
hood of the true regression parameter 8. From (1.5), it follows that a solution
of £T5(b)/ Vn = 0 exists in the n~'/2? neighborhood of B that is also asymp-
totically normal. Instead of truncating at T'*, the approach of Lai and Ying
(1992), for the case of log-rank statistic, is to put a weight function w, and to
consider

now Z*(b,t
(16)  €7(b) = Z[mwnw,t)(x,-— Z—((,#)dz\a(b,t).

i=1 —

1

(1.5) £78(b) = ﬁsTS(B) +ATSYn (b — B) + 0,(1),

The weight function w,(b,t) is constructed from the data and typically takes
value 1 if the risk size Z(b,t) is > n® for some 6 < 1 and 0 if Z(b, t) is much
smaller than n?®.

In spite of these efforts, many important issues still remain to be resolved.
Listed below are five major ones which seem to be necessary for any compre-
hensive resolution.

(a) Replacing T* in (1.2) by . A major drawback of Tsiatis’ (1990) result is
that it requires a known T'*, a rather unrealistic assumption. In fact, a
reasonable choice of T* can only be made if one has some knowledge of F and
B. Moreover, if T* is chosen to be too small, a substantial portion of the
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information in the data set may be lost. Lai and Ying’s (1992) approach, which
though constructs w, adaptively from the data and can deal with truncated
data, is also rather unpleasant for the simple, such as the log-rank, estimating
functions since one has to choose an appropriate weight function w, to
dampen the tail instability. In view of this, it is important to study the
original log-rank estimating function

n e Z*(b,t)
(1.7) £0) = L f_m(Xi Z06.0) ) dN;(b, ).

(b) Approximating n~'(:) by a nonrandom function m(-). In order to
address the issue of consistency, the global behavior of the random function
n~Y%(-) has to be studied. This can be done by developing uniform approxima-
tion of n~l by a nonrandom function m, so that consistency of the rank
estimate is ensured by showing that the much simpler nonrandom m has a
unique root. Note that m(B) = 0.

(c) Establishing asymptotic linearity

1 1
(1.8) T6(8) = =£(B) + AVn (b - B)

for b in any shrinking neighborhood. This will ensure that any consistent root
is also asymptotically normal, provided that the slope matrix A is nonsingular.
Note that if (b) is settled, the consistency reduces to verifying that m has a
single root. However, linearity in the n~1/2 neighborhood is not sufficient to
ensure normality from consistency.

(d) Checking under what condition m has a unique root. In view of (b), this
is crucial to proving consistency.

(e) Checking whether the slope matrix A in (1.8) is nonsingular. This is
crucial to usefulness of (1.8).

This paper tackles all five issues raised above for, in fact, more general
weighted log-rank estimating functions. Specifically, all the results will be
established for the estimating functions without the unpleasant upper limit
T*. It will be shown that the asymptotic linearity (1.8) holds in any shrinking
neighborhood in the most general sense one would hope for and that the
random estimating function n !¢ can indeed be approximated uniformly by its
nonrandom limit. It will also be shown that the slope matrix A is always
nonnegative definite and, under an extremely mild condition, is actually
positive definite. Finally, it will be verified that the nonrandom limit function
m has a unique root in the case of the two-sample problem, thereby extending
the results of two earlier papers by Louis (1981) and Wei and Gail (1983) to
the general weighted log-rank estimators, and the case when the error distri-
bution has an increasing failure rate.

The paper is organized as follows. In Section 2, we prove that asymptotic
linearity holds almost surely for the log-rank estimating functions when b is
close to B. An immediate consequence of this result is that there exists a fixed
neighborhood of B, within which the rank estimator exists and is strongly
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consistent and that any consistent rank estimator is also asymptotically
normal. These results are extended in Section 3 to the more general weighted
log-rank estimating functions ¢,. In Section 4, we show that within any
bounded region, n~'4(b) can be uniformly approximated by a nonrandom
function. By defining rank estimator as a minimizer of [|£(b)ll, such an
approximation leads to a simple condition that guarantees the consistency and,
together with the results of Section 2, the asymptotic normality of the rank
estimator. Similar results are also proved for the rank estimators using the
weighted log-rank estimating functions £,. The paper concludes in Section 5
with two important special cases.

2. Asymptotic linearity of the log-rank estimating function and
asymptotic normality of the resulting estimator. In this section, we
establish the asymptotic linearity of the log-rank estimating function &(b)
defined by (1.7) for b in a neighborhood of the true parameter 8. This result is
then used to show the existence of a fixed neighborhood that guarantees the
consistency and asymptotic normality of the resulting rank estimator. Because
of its delicacy, we shall provide sufficient technical details in our proof. Since
all of our developments are conditional on the covariates X;, we shall assume
that the X; are nonrandom.

First we introduce the following conditions.

ConpDITION 1. The covariates are uniformly bounded, and without loss of
generality we assume that sup,|| X;|l < 1.

ConDITION 2. The error density f and its derivative f’ are bounded and

JCF @ /F@2F(t) dt < oo,

ConpiTiION 3. The C; have uniformly bounded densities g;, that is, there
exists B, such that |g;(¢)| < B, for all ¢ and i.

ConDITION 4. sup; E|min{e;, C;}|* < o, for some 6, > 0.

Condition 1 is the same as the Condition (D) in Tsiatis [(1990), page 358]. As
will be commented following Lemma 1, this condition can certainly be relaxed
to sup;_,lIX;ll = O(n®) for every & > 0. Condition 3 is the same as the
Condition (B) in Tsiatis [(1990), page 357] and seems to be the most restrictive
among all four conditions.

We shall use F and G; to denote the distribution functions of ¢; and C; and
use F and G, to denote their survival functions. Let A = f/F be the hazard
rate of ¢;. Moreover, let

S|~

(2.1) L, .(t) = — L X}G,(t + B"X;), k=0,1,2,
i=1
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where X? =1, X! = X, and X? = X, X7, and

o T, (OTT(t) | X(¢
(2.2a) A, = f_w[l"n,z(t) - ﬁ )o(t,)( )]A((t)) dF (t),

L, (8T a(2)

(2.2b) 3, = [ww[rn,z(t) - | ).

For matrices A,, 3, and R, (¢) =T, ;&) — T, (O (£)/T, o) we claim
that the following properties hold:

1. The R,(¢) are nonnegative definite, and nonincreasing in the sense that
¢t > ¢ implies R,(¢') — R,(¢) is nonnegative definite [denoted hereafter by
R, ()= R, ()]

. A, is nonnegative definite.

. If the eigenvalues of R,(¢) are bounded away from 0 for all large n and
some ¢ in the support of f, then the eigenvalues of A, and 3, are also
bounded away from O for all large n.

4. The eigenvalues of A, are bounded away from 0 if and only if the

eigenvalues of 3, are bounded away from 0.

W N

To justify these claims, note that we can write

1z P X,Gi(t + BTX))
Ral?) = ;igl (Xi - TGt + BTX;)

" XG(t+ BTX,
X(Xi— ZL—l i z( ﬁ l)

T
LA Gi(t + BTX,)>0.
Z?=1Gi(t +BTXi) ) z( +B 1)>

Moreover, for ¢ < ¢,

1 n
R, (1) ;El
v XG.(¢+ 87X\ _
X, - —— ( f ;) G,(t + B"X,)

?=1Xi(_;i(t' + BTXi)
):Ll(_}i(t' +B'X,)

X

X _ ?=1Xigi(t + BTXi)
A )

x =1Xi§i(t + BTXi)
‘In,Gi(t+ BTX,)

T
éi(t + BTXi),

where the last inequality follows from an ANOVA-type decomposition. Now
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write
A, = [_ n(t)[f(t)+ f}()t)}dt

£2(2)
- BT 50

which clearly implies 2-4.

dt + [ f(t)d(~R,(®)),

THEOREM 1. Under Conditions 1-4, the log-rank estimating function ¢(b)
is asymptotically linear in the sense that, for every sequence d, > 0 with
d,—0a.s,

sup {ll€(b) — €(B) — A,n(b~B)ll/(Vn +nlb-Bl)}=0(1) as.

llb-Bll<d,
In particular, if 0 < cin — 0 in probability, then

sup (ll€(b) — £(B) — Aun(b =B/ (Vn + nllb = Bl)} = 0,(1).

l6-gli<d,

Theorem 1 differs and improves the result of Tsiatis [(1990), Theorems 3.1
and 3.2] in several ways. First, it is for the usual log-rank statistic ¢, which is
not truncated at the tail. Second, it provides the asymptotic linearity for ¢ in
any shrinking neighborhood of B, rather than in the n~/2 neighborhood. As
we have mentioned earlier, this is crucial for translating consistency into
asymptotic normality for the rank estimator. It is also useful for conducting
statistical inferences in some situations in which neighborhoods larger than
n~1/2 are needed; compare Wei, Ying and Lin (1990). Finally, the asymptotic
linearity holds almost surely.

The “a.s. linearity” implies “in probability linearity” because of a well-
known result that d, = 0,(1) if and only if for every subsequence n, there
exists a sub- subsequence n,, such that d, ny = 0(1) as.

With the additional assumption that A, is eventually nonsingular, which
has been shown to be almost always satisﬁed, Theorem 1 can be used to
characterize the local behavior (near ) of the resulting rank estimator. This is
given by the following corollary.

COROLLARY 1. Suppose that Conditions 1-4 are satisfied and that all the
eigenvalues of A, are bounded away from zero for all large n.

(1) There exists a closed neighborhood 4 containing B as its interior point
such that BA, defined as a solution of |I§([§)II = min, . _,|IEB), is strongly
consistent.

(ii) For any ¥ containing B as its interior point defining B as in (), if p is
consistent, then

Vn'3;12A,(B - B) »4 N(0, 1,).
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In particular, if T, ;(¢) - I(¢) exist for k = 0,1,2 and all t, then

o L)L) | X
(2.3) A, > A= f_w[Fz(t) —~ (F())(t)( )]A((:)) dF(t),
(2.4) R [:O[I‘z(t) - F—l(%t—)} dF(t),
and

Vn (B — B) >4 N(0,A7'SATY).

We need a few lemmas for the proofs of Theorem 1 and Corollary 1. Without
loss of generality, we shall assume B = 0 throughout the rest of this section.

LemMma 1. Let V, be a bounded sequence of constants. Under Conditions
1-4 for every y €[0,1), B> 0, K > 0 and 6 > 0, with probability 1,

i Vi[”i(b» t) — EVi(b,t)] = o(n(l—v)/2+0),

i=1

(2.5a) sup
llbll<B, Ev(b,t)<Kn'™”

T Vi[v,(b,t) — Evy(b,t) — v (', ') + Evy(¥,¢)]

i=1

sup
(2.5b) lo-bl+It—t|<Kn""

— o(n(-7/2+6),

where v; is any one of Z;, N; or N, defined by (1.4) and v = T}_,v,.

The preceding lemma is a special case of Theorem 1 of Lai and Ying (1988).
The proof given there essentially uses Bennett’s (1962) exponential inequality,
or, more precisely, its extension by Alexander (1984). It says that the order of
these weighted empirical processes, centered at their means, are bounded by
their standard deviations multiplied by n°. Note that if sup, _,|V;| = o(n®) for
every £ > 0, then (2.5) still holds since & can always be absorbed into 6.
Continuing to track orders in this way, we can discover that all approximations
we shall establish hold when Condition 1 is relaxed to sup; _, [l X;ll = o(n®).

LEmMMA 2. Let t,(a) = infl¢: EZ(b,¢) < n'~*} with 0 < a < 1. Then under
Conditions 1-4, for every 6 > 0 and B > 0,

, [ Zx(b,s)]dN(b )
sup = | dNi(b, s
Ibll<B, t>ty(e) || 6@ i =1 Z(b,s)
(2.6) ;T EZ*(b,s)
- . — ———— dEN,(b,
ftbm)ig i~ "EZ(b,s) i(b,9)

=o(nt~9/2%%) g.s.

In particular, the left-hand side of (2.6) is o(n'/?) a.s.
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ProoF. From Lemma 1 and the fact that EN(b,t) < EZ(b,t) < n'~¢ for
t = t,(a), we get, for every 6 > 0,

sup  {N(b,t) — EN(b,t)| + |N*(b,t) — EN*(b,¢)ll
6ll<B, t=t,(a)
(2.7) _ . R
+|Z(b,t) — EZ(b,t)| + 1Z*(b,t) — EZ*(b, 1)l
=o(n1~0/2%0%) as.
Now dN/(b,t) = —dN(b, t), which implies that
Lh.s. of (2.6)

< sup  |IN*(b,t) — EN*(b,t) — N*(b,t,) + EN*(b,t,)l

Ibll<B, t=t,(a)

Z*(b
(2.8) + sup t——d N(b,s) — EN(b,s) I
loll<B, ¢, ||t Z(05 ) [ ]
N t[zx(b,s) sz(b,s)JdEN(b :
sup - , S
Ibll<B, t=t, Z(b,s) EZ(b,s)

From (2.7), the first term on the right-hand side of (2.8) is o(n®~%/2+%) a5,
The second term is also o(n!~/2+9) by applying the integration by parts
formula [cf. Gill (1980), page 153] together with (2.7) and the fact that the
total variation
Z (b s) © —dZ(b,s)

2.9 —_—
(29) S“pf Z(b,s) Z(b, s)
where [|dv(¢)| of a vector function v(¢) denotes the sum of the total variations
of all its components. Recall that p is the dimension of X;.

Thus it remains to control the last term on the right-hand side of (2.8).
Choose 1> a* > (1 + a)/2 and tb(a*) = inf{t: EZ(b,t) < n'~*"}. Then
EN(b, t,(a*)) < EZ(b, t,(a*)) < n'~" = o(n®~*/2), implying

¢ [Z"(b,s) EZ*(b,s)
sup -
(2.10) lbll<B, t=t,(a) Z(b,s) EZ(b,s)
< _/tb(a*) Zx(b,S) _ EZx(b,S)”
T i || Z(b,s)  EZ(b,s) |

< 2psupf = O(logn),

] dEN(b,s) ”

tb(a)

dEZ(b,s) + o(n1~2/2%),

Since
Z*(b,s) EZ*(b,s)
Z(b,s) EZ(b,s)

Z*(b,s)(Z(b,s) — EZ(b,s))|
Z(b,s)EZ(b, s) |
Z*(b,s) — EZ%(b, s)
+’ EZ(b,s)
_12(b,5) ~EZ(b,s)| 127(b,5) — EZ*(b, )l
= EZ(b, s) EZ(b,s) ’
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it follows from (2.7) again that the second term on the right-hand side of (2.10)
is of the order o(n~*/2*?) a.s,, noting that sup, [,/ |dE Z(b, s)/EZ(b, s)| =
O(log n). Hence the right-hand side of (2.8) is o(n!~*/2%%) and the desired
conclusion (2.6) follows. O

LemMA 3.  Suppose that Conditions 1-4 are satisfied. Define

Z*(b, s)
£(b,t) = /_WIZI[X -~ m]dN(b s),

t x( 73)]
b,t) = X, - — 2L dEN(b,s).
{6,1) f_wEl[ EZ(b, 5) (6,5)

(i) For every B > 0 and every 6 > 0,

(2.11) sup [lE(b,t) — £(b, )l = o(n?*%) a.s.
lblli<B, teR?
(i) There exists 6, > 0 such that
(2.12) sup IE(D,2) — €(0,¢) — £(b,t)ll = o(n'/?7%) a.s.

llbll<n=1/3, teR?

The proof given below is basically in the same spirit as that of Theorem 2 of
Lai and Ying [(1988), pages 346-348] for a slightly more general setup.
However, we will present all the key steps here, partly for its completeness and
partly to show that the condition (3.1) there is not needed in our setting.

ProoF oF LEMMA 3. From the definitions of £(b,#) and (b, t) and Lemma
2,
sup  [I€(b,t) — {(b, )l

lIbll<B, teR!
< sup {IN*(b,t) — EN*(b,t)ll}

lI6ll<B, t<ty(a)

{ ¢ 1Z%(b,s) — EZ*(b, s)|l + |1Z(b,s) — EZ(b, )|

+ sup
lall<B, ¢ <#,(a) Z(b,s)
XdN(b,s)}
EZ*(b,
+ sup { ft ( $) d[N(b,t) — EN(b,t)] H} + o(n'/?)
Ibll<B, ¢ <y(a) EZ(b,s)

=o(n'?*%) as.,

where the last equality follows from (2.5a) (with y = 0),

sup [ dN(b,s)/Z(b,s) = O(log n)
b — o
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and
EZ*(b,s)
EZ(b,s)

sup / W) g

b — o

= O(logn).

For (ii), let ¢, = inf{¢: EZ(0,¢) < n'~*0} with 0 < @, < 1/6. Note that from
Conditions 1-3 it is easy to check that for any a < a, sup{ty(a): (bl < n~1/3}
< t, for all large n. Thus, in view of Lemma 2, it suffices to show (2.12) with ¢
restricted to ¢ < ¢,. Note also that {(0,¢) = 0 for all ¢ This can be used to
verify that

f(b’t) - §(0,t) - {(b, t)
— [N*(b,t) — EN*(b,t) — N*(0,t) + EN*(0, )]
¢ Z%(0,s)
_ /_wmd[N(b,s) — EN(b,s) — N(0,5) + EN(0, 5)]
. [2%(b,s) EZ*(b,s) Z*(0,s) EZ(0,s)
_f_w_Z(b,s) T EZ(b,s)  2(0,s) | EZ(0,s)

dN(b, s)

¢ [EZ*(b,s)  EZ*(0,s)
‘f_w_ EZ(b,s)  EZ(0,s)

d[N(b,s) — EN(b,s)]
¢+ [Z*(0,s)  EZ*(0,s)
_f_u,_ 7Z(0,s)  EZ(0,s)
= Q1(b,2) + @3(b, 1) + Q3(b, ) + Qy(b,2) + Q5(b, 1), say.
From Lemma 1, for every 6 > 0,

(2.14) sup 1Q.(b, )l = o(n/3*%) a.s.

lloll<n=1/3, t<¢,

]d[EN(b,s) — EN(0, 5)]

From Lemma 1, the integration by parts formula and (2.9), for every § > 0,

(2.15) sup 1Qx(b, t)ll = o(n/3*%) a.s.

lloll<n=1/3, t<t,

By a tedious but otherwise straightforward manipulation to express it in an
appropriate form so that Lemma 1 can be used, it can be shown that for every
6> 0,
Z*(b,s) EZ*(b,s) Z*(0,s) N EZ*(0,s)
Z(b,s) EZ(b,s) Z(0,s) EZ(0,s)

(2.16)
nl/2-(1/3-ag)+6

=T Z(b,5)
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for all large n and all s < ¢, and [|b]l < n~'/3. From (2.16) and the fact that
SUP ) < n-1/3/ 2% AN(b, 8) /Z(b, s) = O(log n), we have

(2.17) sup IQs(b,t)ll = o(n'/?) a.s.

lloll<n=173, t<tq

Now sup) < n-13, ; <4, |EZ(], ) /EZ(0, ) — 1| = o(1) a.s., which can be used to
show that for all large n, llall + |6l < n~'/3 and max{t, s} < ¢,,

(2.18) <Ky(llb —all + |t = sl)

EZ(b,t) " EZ(a,s)

‘ ., EZ%(b,1) _ EZ%(a,s)

for some K, > 0. Therefore, we can apply Lemma 3 of Lai and Ying (1988) to
get for every 6 > 0

(2.19) sup 1Qu(b, 2)ll = o(nt~1/3/2+a+0) g g

loll<n=1/3, t<t,
Finally, since

Z*(0,s) EZ*(0,s)
"Z(0,s)  EZ(0,s)

1250, s) — EZ*(0, )l |Z(0,s) — EZ(0, )|
= EZ(0,5) * EZ(0,5)

we can apply Lemma 1 to get for every 6 > 0,

sup 1Qs(b, )l

lbll<n=1/3, t<¢
0

1r _
_ o(n1/2+°‘+0)ft0 = Y IGi(s + b7X;) f(s + b7X;)
(2.20) -l

— Gy(s) f(s)lds
= o(nt/2+«=1/340) [" [ f(s) + |f'(s)] ds as.
Therefore (2.12) follows from (2.13)-(2.15), (2.17), (2.19) and (2.20). O

LEmMMA 4. Under Condition 2, f(¢) = o(F'/%(t)) as t1 1y, where 1, =
supft: F(¢) > 0}.

Proor. By the Cauchy-Schwarz inequality,

£2(t) = [[;Ff?((:—))dzr(s)] s[tF[%(:—))] dF(s)F(t) = o( F(2))

astt71p. O
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LeEmMmA 5. Suppose that Conditions 1-3 are satisfied. Then

EZ*(b,s)

Xi- EZ(b,s)

221 [ % ]dEM-(b,s>=n[An<t>b+nn(t,b>],
—®i=1

where supfln, (¢, DI/IIbl: t € R, 0 < |Ibll <d,} > 0 foranyd, |0, and where

L, 1(8)Ina(s) | X(s)
I,0(s) A(s)

(222)  AL(t) = [_twlr,,,z(s) - dF(s).

Proor. Let #; , = inf{t: EZ(b,t) < [|6]|*/°}. Then

EZ*(b,s) 4
X - —— 27 ] /3.
i EZ(b,5) H dEN,(b,s) < 2n]bl|

n

(2.23) [ X

Zl,bi=1

Moreover, let 52, , = inf{t: EZ(b,t) < 161113}, Then

t EZ*(b,s) |~ - .
fz,bi§1 Xi B E—Z(E)—]Gi(s +b Xi)f(s +b Xi)ds
t & EZ*(b,s) |~ .
- fzz,bigl i W]Gi(s +b7X;)

(2.24) XF(S + bTXi)[)‘(S + bTXi) - A(s)] ds

,1n EZ*(b,s)] . _
—nf XX, - oL | XIGy(s + bTX,
n./,;z‘bn, igl[ i EZ(b, 3) i L(s b l)

F(s +b"X,) X(s+ b*TX,-)
F(s +b*"X,) A(s + b*"X))

dF(s + b*"X,)b

=nmn,(#,,t,b), say,

where b* lies between 0 and b. Now F(s + A) = F(s) — f(s)A — (f_’(s’")/2)A2
for some s* €[s,s + A] by the Taylor expansion and f(s) = o(F%(s)) by
Lemma 4. Therefore

F(s+A)

— -1-0 bl — 0.
75) -0 as bl -

(2.25) sup
lal<lBll, F(s)=11]14/3
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From (2.25), we have for all b close to 0,
sup  {lIm.(Zs,5 2, B)ll/lI0I]}

Iy p<t<iy,

=3f

#

o[ X(s +6°7x)

<), ( A(s + 57X,

(s + b*TX)

m dF(S + b*TX)

~.

:»In—l
||[v]=

;|,_.
e

I/\

[tl °Gy(s + bX;)* dF(s + b*"X,)
t

2,b
1/2

dF(s + b*"X,)

Foy 1 v
3 dF(t)— Y. F(i, , — IbI)G,(, , — bl ,
f—w( f(2) ) R )}
which converges to 0 as |[bl > 0, noting that [(X(¢)/A())? dF(¢) =
[CF' () /f(@#))? dF(¢) [Efron and Johnstone (1990) and Ritov and Wellner (1988)].
This in conjunction with (2.23) and (2.24) implies

(2.26) sup {lln,(;,,,t, b)ll/IIbl} = 0 as [l - 0.
t>1,
From (2.26) and the fact that sup, ,., ,[1A,(¢) — A, (F, Il = 0 as |6l = 0, it
follows that we only need to show (2.21) for ¢ < Z, ,, that is,
(2.27) sup {llm, (2, B)lI/1IBll} — 0.

t<iy s, 0<llbli<d,

Similar to (2.24), we have

(=%

i=1"—%

EZ*(6,5) | re)  m
i - E—Z(E)—]Xt Gi(s +b Xi)

(2:28) F(s +b"X;) X(s +b*7X))

T o dF(s + b*"X,)b,
(s—l—b Xl) (s+b X)

where b* lies between 0 and b. From the definition of Z, ,, we can easily show
that, uniformly in {X J-},
EZ*(b,s) EZx(O s)|

- 0.
EZ(b,s)  EZ(0,s) |

F(s + bTX)

F(s + b*7X,) !

(2.29) sup

s<iy,
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From (2.28) and (2. 29) as ||b]| = 0,

£(b,1) = (1+0(1)) Zf”” x[sz(s)

L0il®) yrg )
- no(s) G(s )] )dF(s)nb
= (L+o(1) Zlf_w[xzm 5) - ]

Therefore (2.27) holds. O

ProoF oF THEOREM 1. From (2.11) and (2.12),
(2.30) sup  {l€(b, 1) — £(0,2) — £(b,8)ll/(Vn + nlbl)} - 0

teR!, 0<|bll<B
asn — oo,

Combining Lemma 5 with (2.30) we get Theorem 1. O

ProorF oF CoOROLLARY 1. From Lemma 5 and the assumption that all
eigenvalues of A, are bounded away from zero we conclude that there exists
such a nelghborhood A that liminf, ,infyc s 15— p=eln " Hin(®I} > 0 for
every 6 > 0. From this and Lemma 3(i), conclusion (i) follows.

For (ii), since B is consistent, Theorem 1 implies that

VRSV ?A,(B — B) = (n2,) T E(B) + 0,(1),

which is also asymptotically equivalent to (n3,)~'/%(B, t5(a)) for any a €
(0, 1). Choosing a < 1/6, we can show that the latter is asymptotically equiva-
lent to a sum of independent zero-mean random vectors. Thus the desired
asymptotic normality follows from the classical Lindeberg central limit theo-
rem. O

3. Extensions to the weighted log-rank estimating equations. In
this section, we extend the results of Section 2 to the weighted log-rank
estimating functions of the form

Z%(b,t
(31) £/(6) = [ w(b.1) Z (X - Eé,—t)))dN(b ok

where (b,t) = ,(b, ) is left continuous and ¢(B,?) € o{Z,(B, s), N/(B, s);
s<t,i=1,...,n}). We shall impose the following boundedness and continuity
conditions, which are satisfied by the commonly used linear rank statistics in
survival analysis as will be commented.

ConpITION 5(a). For every B > 0, lim sup, . sup,, < glly(b, 0) +
JZld(b, D] < o as.
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ConprTioN 5(b). There exist ay, > 0 and 6, > 0 such that
sup ly(b,t) — (B, t) — uy(t)(b—B) =o(n"?) as,
t<t(ag), lb—Bll<n=1/3

where t(a) = inf{t: EZ(B,t) < n'~*} and w,(2) is a p X 1 vector satisfying
[H29ldp, ()] = o(n'/3%) as. for some 6, > 0.

CoNDITION 5(c). There exists #, such that for every § > 0 and every ¢,

sup {W(b t) — (g2, t)z()}} - 0.
le—-pll<d,

It can be verified that Conditions 5(a)-(c) are satisfied by (b, t) = Z(b,t)/n
(Gehan) and ¢(b,¢) = S°(b,t), p > 0(G?), where
AN(b,
(3.2) $(b,¢) = 1‘[(1— —(i))

s<t

Z(b,s)

is the Kaplan-Meier estimator of the survival function F(t) or more generally
by (b, t) = (S, (b, 1)) with |¢'(w)] + |¢"(w)] < u"*o for some &, > 0 and all
u € (0, 1). In fact, for y(b,t) = Z(b,t)/n we have ,(¢) = EZ(B,t)/n and

o, y(t) = —{f(t) W(t) + F(t)n ™! Zlgl(t +BTX, )X]

while for y(b,¢) = ¢(S,(b, 1)), ¥,(t) = (F(t)) and
X(s) dF(s)
o) = =6 (FO)FO [ T35 For

Recalling the definition of £(b,?), we can write £,(b) = [2 (b, ) d&(b, ?).
Since Section 2 gives the asymptotic linearity of the £(b,¢), it is intuitively
clear, via the integration by parts formula, that &£,(5) should also be asymptot-
ically linear. Theorem 2 below confirms that this is indeed the case.

THEOREM 2. Suppose that Conditions 1-5 are satisfied. Then the weighted
log-rank estimating function ¢,b) is asymptotically linear in the sense that,
for every sequence d,, > 0 with d,, —» 0 a.s.,

sup  {lI£,(b) — £,(B) — A, yn(b = B)I/(Vn + nllb — gll)}
(3.3) lo-Bl<d,
=0(1) a.s,

where A, , = [Z.0,#) dA,(t).
From Theorem 2 and similar to Corollary 1, we have the following corollary.

COROLLARY 2. Suppose that Conditions 1-5 are satisfied and that all the
eigenvalues of A, , are bounded away from zero for all large n.
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(i) There exists a closed neighborhood ¥, containing B as an interior point
such that Bl,,, defined as a solution of llgw(é¢)ll =min, . ,I€,(b)ll, is strongly
consistent. .

(ii) For any A4 containing B as its interior point defining [i,, as in (i), if B,
is consistent, then

ﬁz;,lllf/zAn,w(é;/; - B) g N(O’ Ip)7

where 3., , = [“imazn(t)[l“n,z(t) - T, (OTT (&) /T, 1dF(t). In particular, if
stability condition T, ,(¢) — I,(¢) holds for k = 0,1,2 and all ¢t, then

o _ L(8)TT () | X(¢
(34) A, >4, = f_w!//‘(t)[Fz(t)— (F())(t)()L((t)) dF(t),
o_ r,(t)r7
(35) Sy 3= [ «p(t)[rzu) - —(?Tt)ﬂ dF (1),
and

v (B, - B) »o N(0,4,'5,4;Y).

Corollary 2 is easily proved by using the same argument as in the proofs of
Corollary 1 and Theorem 2, and therefore its proof is omitted.

Proor oF THEOREM 2. For notational simplicity, assume again that g = 0.
Let £(b,t) and {(b, t) be defined as in Lemma 3. Then

£,(b) = /_w P(b,t)d[£(b,t) — £(0,¢) — A,(t)nb]
(3.6) . .
+ [ w(b,) dE(0,8) + [ ¢(b,¢) dA,(t)nb.
From (2.30) and Lemma 5, we have

(3.7) sup  {llE(b, 1) — £(0,¢) — A, (t)nbll/(Vn + nllbl)} - 0.

teR!, |lbll<d,

From (3.7), Condition 5(a) and the integration by parts formula,

[ 06,0 dl€0,0) = £0,0) = A,(eyab]| [ + nlo)|

sup

(3.8) Ilbllsd,,{
-0 as.

From Condition 5(c) and the fact that sup,, [I gz, ) <eldA,($)] = 0,as 6 - 0,

- 0.

(3.9) sup
lloll<d,

[ w(e,6ydA () ~ [ B(1) day(®)
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In view of (3.6), (3.8) and (3.9), it remains to show

(3.10) ”:”‘gn{nf_;ﬂ(b’t) de(0,) = [ w(0,1) df(O,t)N / (Vn + nubn)}

- 0 a.s.
From (2.11), sup,  zill£(0, t)Il = o(n'/?*?) a.s. Thus, (3.10) holds with |6l < d,
replaced by d,, > ||b|l = n~1/3. Now Lemma 2 implies that

sup [1£(0,¢) — £(0,¢(ap))ll = o(n'/27%0) as.,

t>t(ag)

for some ¢, > 0. Thus in view of Condition 5(b),

[ w0 ae0,0) - [ w00 de0,)|

—

sup
lbll<n=1/3

11
(8.11) =o(n'?) + sup
llbll<n~—1/3
=o(n'?) as.

Therefore (3.10) holds and Theorem 2 follows. O

4. Approximations of the estimating functions in compact regions
and consistency and asymptotic normality of the rank estimators. In
the preceding two sections, asymptotic linearity properties have been estab-
lished for the log-rank and the weighted log-rank estimating functions £(b)
and ¢,(b) for b in some neighborhood close to the true parameter 8. These
properties are then used to show that inside that neighborhood of B, the
corresponding rank estimators are consistent and asymptotically normal. Un-
less a consistent auxiliary estimator can be obtained a priori, such small region
is unknown in practice. Therefore, it is important in both theory and practice
to know when a rank estimator defined in an arbitrarily chosen compact region
will be consistent. In doing so, we shall in this section develop another kind of
approximation. For an easy presentation, we shall assume that (C,, X;) are
1.i.d. random vectors with H as the common marginal distribution of X; and
g.(G,) as the conditional density (survival) function of C, given X, =x.
Conditional on (C,, X,), the ¢, are ii.d.~ f. Therefore, the observations
(Y;, X,, 8,) are i.i.d. random vectors.

THEOREM 3. Suppose that Conditions 1-4 are satisfied. Define the ‘“mean
function”

EXII(Yl—bTXlzs)

¢
(4.1) m(d,t) = E{f w[Xl - ldI(Yl—bTXlgs,51=l)}

EI{Yl—bTXl >s)
and define m(b) = m(b,®). Then for all B> 0 and & > 0,

(4.2) sup [I£(b) — nm(b)|l = o(n'/2¢) a.s.
lloll<B
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The preceding theorem shows that within any bounded region, the esti-
mating function n () can be uniformly approximated by the nonrandom
function m(b) up to the order of n~1/2*¢ To apply this theorem to rank
estimation, suppose that there is a known compact region Cp containing B as
an interior point. Let 8 be defined as a minimizer of ||£(d)||, that is,

(4.3) IE(B)Il = min 1)

Then the following results concerning consistency and asymptotic normality of
B hold.

THEOREM 4. Suppose that Conditions 1-4 are satisfied.

Q) Ifm(b) # 0 for all b € C.\{B), then B — B a.s.
(ii) In addition to the assumption m(b) # 0, suppose furthermore that A
defined in Corollary 1 is nonsingular. Then

(4.4) IIBA - Bl = o(n_l/Z”) a.s. foreverye > 0,
(4.5) Vn (B — B) > N(0,A"'SAY),

3, is the same as in Corollary 1.

Recall that m(B8) = 0. Therefore, Theorem 4(i) shows that if the nonrandom
mean function has a unique zero, then B is strongly consistent. Although
m(b) can be evaluated in principle for any given joint distribution of (¢;, C;, X,),
we will verify the assumption m(b) # 0 for b + 8 for two important cases in
Section 5. Furthermore, if the slope of m(-) at B is nonsingular, which, from
the comments following (2.2), is almost always the case, then B is also
asymptotically normal.

Proor oF THEOREM 3. We first note that the approximation (2.5a) in
Lemma 1 remains valid if we regard X, as random variables. More precisely,
forevery0 <y <1, B> 0, K> 0and 6 > 0, we have

sup IL(b,t) — EL(b,¢)ll = o(nt~7/2%%) as,
bl<B, EZ(b,t)<Knl~"
where L is any of the empirical processes Z, Z*, N, N*, N or N*. This clearly
leads to Lemma 3(@i) with {(b, t) replaced by nm(b, t), that is,

(4.6) sup llg(b,¢) — nm(b,t)ll = o(n'/?**) as. O
teR',|b|<B

Proor oF THEOREM 4. Since m(d) is continuous in b and m(B) =0, (1)
follows from (4.2). Moreover, since A, — A, (i) follows from (i) and Theo-
rem 1. O

From Theorems 3 and 4, and analogous to the argument given in the proof
of Theorem 2, we can develop results similar to Theorems 3 and 4 for the
weighted log-rank estimating functions and their induced estimators. More
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precisely, let £,(b) be defined by (3.1). Suppose that (b, t) converges to a
nonrandom function (b, ¢) in the sense that, for every B > 0 and some &,
and a4 € (0,1/2) with ¢,(a) = inf{t: EZ(b,t) < n'™%},

(4.7) sup  [(b,2) — (b, 8)l =0(n"*0) as.
I6ll<B, t <ty(aq)

Define BA.,, as a minimizer of [£,(b), that is, II§(,,(BA¢)II = min ;< ¢, lI€, (D).
Then we have the following results.

THEOREM 5. Suppose that Conditions 1-5 and (4.7) are satisfied.

@ supy < pli€,(0) — nfe(b, t) dm(b, D)l = O(n! ™00y g s,
() If m,(b) = [(b,t)dm(b,t) # O for all b € C \ {B}, then B, > B a.s.
(iii) In addition to the assumption of (ii) above, suppose furthermore that
A, defined by (3.4) [y(2) = ¢(B, )] is nonsingular and that ¥(b,t) is continu-
ous at b = B for every t. Then

(4.8) 1B, — Bl = o(n~Y/2*) a.s. forevery e > 0,

(4.9) V' (B, - B) o N(0, 4,5, A;Y),
where 3, is defined by (3.5).

It can be shown that the condition (4.7) is satisfied for the Gehan statistic
and the G* family. Moreover, for these statistics, the continuity of y(b,?) at
b = B is straightforward. The proof of Theorem 5 uses the integral representa-
tion £,(b) = [¢(b,t) d£(b, t) and approximations developed for £(b, ). Instead
of giving details, we only sketch some main ideas of the proof. Again, assume
that g = 0.

Proor oF THEOREM 5. For (i), we can first show that

sup w(b, ) dEd, )| +nll [~ (b, ¢) dm(b,¢ }

(4’10) |b|$B{ '/';b(“o /;b(ao) ( ) )
=O0(n'"*) as.

and then apply (4.6) and (4.7) to get

tb(aO)

(4.11) j w(b,t) dé(b, t) — f"’(“°’¢(b t)dm(b,t) = O(n'~%) as.

Combining (4.10) and (4.11) we get (). From (i) and the fact that

[¥(0,¢) dm(0,¢) = 0, we get (ii). Finally, (iii) follows from (ii) and Theorem 2.
O

When no censoring is present, there are many popular methods, such as the
least squares, for handling linear regression. These methods are usually
superior in terms of computation and analysis. However, the rank method still
has its own merits; compare Draper (1988). For the censored linear regression,
the rank method becomes even more competitive since the computational and
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analytical advantages enjoyed by the least squares or similar methods have
disappeared. For example, Buckley and James’ (1979) extension of the least
squares estimate for censored data is as difficult to analyze as (if not more
than) the rank estimate.

By properly choosing the weight (score) function i, one can obtain an
asymptotically efficient estimator BA(,, that attains the semiparametric (F is
unspecified) lower bound. Adaptive construction of such asymptotically effi-
cient estimate is given in Lai and Ying (1991), which also handles left-trun-
cated data.

Recently, Lin and Geyer (1992) developed a useful algorithm for computing
minimizers in some nonstandard settings by applying the method of simulated
annealing. They have demonstrated that their algorithm is particularly useful
for evaluating rank estimators because it does not require any smoothness
condition on the ‘“‘loss function.”

5. Two special cases. In the preceding section, approximations are used
to develop conditions that guarantee consistency and asymptotic normality of
the rank estimators defined as minimizers of estimating functions over arbi-
trarily fixed bounded regions. A key condition in this development is the
uniqueness of the zero for the nonrandom limit [y(b,¢) dm(b,¢) of n~'¢,(b).
Although given the underlying probability structure, one can always evaluate
Jy(b, t) dm(b, t) numerically to check whether it is satisfied, we shall in this
section demonstrate that this condition indeed holds in two important situa-
tions: (1) the two-sample problem and (2) the case when {¢,;} has an increasing
failure rate. Without mentioning specifically, we shall always assume through-
out the rest that the regularity Conditions 1-5 as well as (4.7) are satisfied.
Moreover, we shall assume that (b,¢) > 0. This is satisfied for all the
commonly used statistics in survival analysis. In fact, it is satisfied when
¥(b,t) = d)(S(b t)), where ¢(u)=1y(u) — 1 —uw) Yly(s)ds with y(u) =

—f(F~Yu))/f(F~%u)) for some strongly unimodal density /. We refer to
Prentice (1978) for justification of generating (b, ¢) in such a way.

In the two-sample problem, we have X; =0, i1 =1,...,n; and X, =1,
i=n;+1,...,n. It will be assumed that (b, ¢) is nonincreasing. Let
1 1 = _
(5.1) Ki(t) ==X G(t), Kyt)=— X G(t).
ni-1 i +1
Then

n4(b) = [ BB\ Kyt +B) f(t+b - B)

Ky(t + 0)F(t + b = B)[Ky(2) (1) + Ky(t + b) f(¢ + b - B)]
(5.2) K()F(t) + Ko(t + b)F(¢ + b - B)
K,(t) F(t) Ky(t + b) F(t + b — B)
= s K(O)F(t) + Ky(t + B)F( + b - B)
X[A(t+b—B) — A(2)] dt.
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Now K, F@®)Ky(t + bF(t + b — B)/[K(F() + Kyt + B)F(t + b — B)]
is nonincreasing in ¢ and strictly decreasing at those points for which
K@Kyt +b)>0and f(¢ +b — B) + f(#) > 0. Therefore, for b > 8,

o _ K(t)F(t)Ky(t + b)F(t + b — B)

f_m‘/’(b’ 2 K\(t)F(t) + Ky(t + b)F(t + b — B)
. /w 7(b.6) K\(¢)F(t)Ky(t + b)F(t +b - B)
T VT KD F(t) + Ky(t +b)F(¢ + b - B)

with strict inequality if K, (¢)K,(¢t + b)y(b,¢) > 0 for some ¢ in the sup-
port of f(¢t + b — B) + f(t). Moreover, liminf n~1(d) > 0 provided that
K ()K(t + b)y(b,t) is bounded away from O for all large » and for some ¢ in
the support of f(¢ + b — B) + f(#). The other direction of the inequality holds
when b < B. Thus 8 is consistent and asymptotically normal. This extends
Louis (1981) for the log-rank estimating function and Wei and Gail (1983) for
the Gehan case. In fact, either in the log-rank or in the Gehan, it is easy to see
that the left-hand side of (5.3) is monotone in b. For general i, however, the
limiting function is usually not monotone, but, as is shown, still has a unique
zero.

Now consider the general regression model but with monotone increasing A.
For simplicity, assume that (¢;, X;, C;) are i.i.d. random vectors and that A is
strictly increasing. It should be emphasized that almost all the parametric
families commonly used in modeling the accelerated life regression model have
increasing failure rate (IFR). In particular, it can be verified that the extreme
value, the log-gamma, the normal and the logistic families have strictly
increasing IFR. The Cauchy family, however, does not have IFR property.

We first consider the one-dimensional case and then generalize it to the
multiple regression. Following the notation of Section 4, we have

my(8) = [ 5(b,0) [Cult +bx) f(t + (b - B)x) dH(x)
[x@x(t +bx) f(t+ (b—B)x)dH(x)
(5.4) | JGL(t + bx) f(£ + (b — B)x) dH(x)

xG.(t + bx) F(t + (b — B)x) dH(x)
Gt +bx)F(t+ (b - B)x)dH(x) |

A(t+b—B)dt
(5.3)

A2) dt,

Let
q.,5(%) = G,(¢ + bx) F(¢ + (b = B)x)/ [Cu(t + bw) f(¢ + (b — B)w) dH(w),

r,o(%) = G,(t + bx) F(¢ + (b = B)x)/ [G(t + bw) F(¢ + (b — B)w) dH(w).

Then q,, and r,, are both density functions with respect to the common
measure dH. Moreover, q, ,/7; , is strictly increasing (decreasing) in x when
b>p (b<p) It follows then that for b > (<)B, [xq,,(x) dH(x) >
(<) fxr, (%) dH(x). Hence m ,(b) > (<)0 if b > (<)B.
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We now extend the above result to the multiple regression model. To show

m,(b) # 0 for b # B, it suffices to show (b — B)'m ,(b) # 0. From (5.4) with
x € R? and letting x, = b"x and x, ;= (b — B)"x,

(b —B) " my(b) = f_:J(b, £) [Gu(t +x,) F(¢ + %,_p) dH (x)

fxb_BGx(t +x,) f(¢ + xb_ﬁ) dH(x)
(5.5) JG.(t +x,) f(t +x,_g) dH(x)

Jxy_gG(t + x,) F(t + x,_p) dH(x)
" [G.(t + x,) F(t + x,_,) dH(x)

Let A; =b — B and A,,...,A, form an orthogonal basis for R”. Define linear
transformation £ = @x where QT =(A,...,A »)- Replacing x inside the
brackets [ ] in (5.5) by @~ 1% and integrating out #,,..., %,, we get, for some
nondecreasing function H,

(b=B)"my(b) = [ B(b,0) [Cult +2,) f(¢ + 2,_) dH ()
(5.6) JEf( + %) dH(2)  JEF( + ) dH(5)
Jf(¢ + £,) dH(%,) JF(t + &) dH(%,)

)

reducing the problem to the previous one-dimensional situation. Hence
(56— pB)'m,(b) > 0 forall b +p.
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