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DIFFERENTIABILITY OF STATISTICAL FUNCTIONALS
AND CONSISTENCY OF THE JACKKNIFE

By Jun SHAO!

University of Ottawa

In statistical applications the unknown parameter of interest can
frequently be defined as a functional § = T(F'), where F is an unknown
population. Statistical inferences about 6 are usually made based on the
statistic T'(F, ), where F, is the empirical distribution. Assessing T'(F,) (as
an estimator of 6) or making large sample inferences usually requires a
consistent estimator of the asymptotic variance of T'(F,). Asymptotic
behaviour of the jackknife variance estimator is closely related to the
smoothness of the functional 7. This paper studies the smoothness of T
through the differentiability of 7' and establishes some general results for
the consistency of the jackknife variance estimators. The results are applied
to some examples in which the statistics T'(F,) are L-, M-estimators and
some test statistics.

1. Introduction. Statistical inferences about an unknown parameter 6
are usually based on a point estimator 6 of 0. Frequently 6 can be considered
as T(F), where F is the unknown population distribution and T is a func-
tional on a space of distribution functions containing F, and the estimate 6 is
then obtained by evaluating T' at the empirical distribution function F, based
on iid. samples X,,..., X, from F. Often the statistical functional T pos-
sesses differentiability properties which provide information about the asymp-
totic behaviour of § — 6 = T(F,) — T(F) as well as methods for statistical
inferences. These ideas were first introduced by von Mises (1947) and studied
by many other authors [e.g., Reeds (1976), Boos (1979), Boos and Serfling
(1980), Serfling (1980), Huber (1981), Clarke (1983, 1986), Gill (1989) and
van der Vaart (1991)].

When T has an appropriately defined differential at F, T'(F,) can be
expressed as

T(F,) = T(F) + n"' ¥ ¢p(X,) + 0,(n"V2),
i=1

where ¢ is a real-valued function satisfying E¢(X,) = 0. If E¢2(X,) = o2
is finite, then

(1.1) n'?[T(F,) = T(F)] =4 N(0,0%).
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Of course, the existence of a differential of T' asserts more. It provides a useful
tool to study the behaviour of the jackknife estimator of o2, which is the main
topic of this paper. See also the discussion in Serfling (1980) and Clarke (1983).
Since o2 in (1.1) is unknown in general, a consistent estimator of o? is
required for the purposes of assessing 6 and making statistical inferences. The
jackknife provides a nonparametric method of estimating o2 [see Tukey (1958)
and Shao and Wu (1989)]. Let F,; be the empirical distribution based on the
samples X,,..., X;_;, X;.1,..., X,,. The jackknife estimator of o? is

v;=(n—-1) '—21 T(F,;) — n~t _;lT(Fnj) .

Using v; does not require knowing the form of the function ¢ and
therefore avoids the theoretical derivation of ¢,. An essential asymptotic
requirement for v, is its consistency:

(1.2) vy, > o? as.

Result (1.2) has been established for some particular types of estimators
[e.g., Miller (1964, 1968), Arvesen (1969), Reeds (1978) and Parr and Schucany
(1982)]. Using a differential approach, Parr (1985) proved (1.2) for continu-
ously Fréchet differentiable T' with respect to (w.r.t.) p, (see Definition 2.3),
where p,, is the metric generated by the sup-norm. However, Fréchet differen-
tiability w.r.t. p, is too strong a requirement since some frequently used
statistical functionals are not Fréchet differentiable w.r.t. p... Beran (1984) and
Sen (1988) considered other types of differentiability in studying asymptotic
behavior of the jackknife estimator.

The purpose of this paper is to establish (1.2) using a unified method, a
differential approach. The differential approach adopted here is different from
those in Beran (1984), Parr (1985) and Sen (1988) in the following sense:

1. We are not limited to the use of the sup-norm metric p.. By considering a
metric other than p,, we obtain a much larger class of differentiable
functionals.

2. We weaken the differentiability condition required by Parr (1985) so that
the results are obtained under very minimal requirement of the differen-
tiability of T'.

Our results are more general than the existing results in the literature.
Applications of the general theory to commonly encountered statistical func-
tionals, including those corresponding to functions of the sample mean, L- and
M-estimators and some test statistics, are discussed throughout the paper.

2. Differentiability of statistical functions. Let T be a functional on
&, a convex set of p-dimensional distributions containing the unknown
population F and all degenerate distributions. Let 2 be the linear space
generated by %.
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DEerFINITION 2.1. Let .7 be a class of subsets of 2. T is .Adifferentiable at
G € & if there is a linear functional L, on 2 such that for any € € ./,

. T(G+tD)—T(G) — Lg(tD)
lim ; =0,
t—0

uniformly in D € € and G + tD € .

If 7 is the collection of all single point subsets of 2, then the differentia-
bility in Definition 2.1 is Géateaux differentiability. Suppose that & is a
topological space. If . is the collection of all bounded subsets of 2, then the
differentiability in Definition 2.1 is Fréchet differentiability. If . is the
collection of all compact subsets of Z, then the differentiability in Definition
2.1 is Hadamard differentiability. From the definition, Fréchet differentiability
is stronger than Hadamard differentiability and Hadamard differentiability is
stronger than Géateaux differentiability. It is known that Gateaux differentia-
bility is too weak to be useful for establishing (1.1), the asymptotic normality
of T'(F,). By choosing a suitable topology on 2, Hadamard differentiability of
T at F ensures (1.1).

Let p be a metric on 2. Then a natural topology on & is the one generated
by p and the corresponding differentiability is called differentiability w.r.t. p.
The most commonly used metric on 2 is the one generated by the sup-norm:
for D, and D, € 9, p (D,, D,) =|D; — D,ll.. = sup,|D(x) — Dy(x)l. How-
ever, it is necessary to consider other metrics. For example, let T(G) =
g(/xdG(x)), where g is a real-valued differentiable function. Then T is not
necessarily Hadamard differentiable w.r.t. p., but is Fréchet differentiable
w.r.t. the metric generated by the L;-norm: p,(D,, D,) =ID; — D,l, =
[ID(x) — Dy(x)ldx.

Note that if p, and p, are two metrics on 2 satisfying p,(D;, D,) <
cp (D, D,) for a constant ¢ and all D,, D, € Z, then differentiability w.r.t. p,
implies differentiability w.r.t. p,. This suggests use of the metric

(2.1) p«(Dy, Dy) = py(Dy, Dy) + p Dy, Dy), D,,D, € 9.

The class of functionals differentiable w.r.t. p, is substantially larger than the
class of functionals differentiable w.r.t. p,, or p;.

However, even Fréchet differentiability does not ensure the consistency of
the jackknife estimator v;. For example, T(G) = g(/x dG) is Fréchet differen-
tiable at F w.r.t. p, if g is differentiable at u = [x dF. But if the derivative of
g is not continuous at u, v; is not necessarily consistent. If g is continuously
differentiable at u, then v is consistent [Miller (1964)]. This indicates that the
consistency of v; requires a more stringent smoothness condition on T than
the asymptotic normality of T'(F,). It requires that T is differentiable continu-
ously in some sense. Despite this requirement on smoothness of 7' and the
fact that there are other data-resampling methods for variance estimation
(e.g., the delete-d jackknife and the bootstrap interquartile range) which may
require fewer conditions for their asymptotic validity, the jackknife estimator
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is widely used in practice because of its simplicity in computation (relative to
other resampling methods).

DEerFINITION 2.2. A functional T is continuously Gateaux differentiable at
G € & if T is Gateaux differentiable at G and for any sequences of numbers
t, = 0 and G, € ¥ satisfying p(G,,G) — 0,

. | T(Gy + (8, — Gy)) — T(Gy)
lim

ko t

- LG(ax - Gk) =0,
uniformly in x, where §, is the distribution degenerated at the point x.

Note that if T is a function on the real line, then .Adifferentiability in
Definition 2.1 is the same as the ordinary differentiability of 7' and the
differentiability in Definition 2.2 corresponds to that 7' is continuously differ-
entiable in the ordinary sense.

When the metric p, is used, continuous Géteaux differentiability is just
enough for establishing the consistency of v;. If a metric other than p, is
used, we may need to consider a stronger differentiability, which is a general-
ization of Definition 1 in Parr (1985).

DEerFINITION 2.3. A functional T is continuously Fréchet differentiable at
G e & wrdt. pif T is Fréchet differentiable at G w.r.t. p and p(G,,G) — 0
and p(H,,G) — 0 imply

lim T(Hy) —T(Gy) — Lo(H, — Gi) _
k= p(Hy, Gy)

It can be verified that continuous Fréchet differentiability w.r.t. p,, implies
continuous Géateaux differentiability.

0.

We now study some examples of continuously differentiable functionals.

ExampPLE 2.1 (Functions of means). Let g be a function on R? and
T(@) = g(fxdG). Then T(F,) is g(X), where X is the sample mean. If g is
differentiable at © = [x dF' and the derivative Vg is continuous at u, then T is
continuously Fréchet differentiable at F w.r.t. p,.

ExaMpPLE 2.2 (L-estimators). Consider the functional
(2.2) T(G) = [xJ(G(x)) dG(x),

where J(¢) is a function defined on [0, 1]. Examples of 7' can be found in
Serfling [(1980), Chapter 8]. T'(F,) is called the L-estimator of T'(F). From
Parr (1985),

T(G) -~ T(H) = [¢5(x) d[G(x) ~ H(x)] + R(G, H)
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with

¢r(x) = ~ [[I(y = x) = F(»)]I[F(y)] dy,
(2.3)

R(G, H) = [W[G(x), H(x)][H(x) - G(x)] dx,

where I(A) is the indicator function of the set A, W[G(x), H(x)] = 0 if
G(x) = H(x) and =[G(x) - H)I"YFDJ (@) dt — J[F(x)] if G(x) # H(x).
Parr (1985) showed that if J is bounded, continuous a.e. Lebesgue and a.e.
F~!, and 0 outside of [@, 1 — «] for a constant a > 0, then T is continuously
Fréchet differentiable w.r.t. p,. However, T may not be Hadamard differen-
tiable w.r.t. p, if ¢ is untrimmed, that is, J(¢) # 0 when ¢ is near 0 or 1. In
general, T is also not necessarily Hadamard differentiable w.r.t. p;. Using the
metric p, in (2.1), we have the following result.

THEOREM 2.1. Let T be given by (2.2). If J is bounded, continuous a.e.
Lebesgue and a.e. F~1, and continuous on [0,a) U (1 — a, 1] for a constant
a > 0, then T is continuously Fréchet differentiable at F w.r.t. p,.

ExaMPLE 2.3 (M-estimators). The M-functional T(G) is defined to be a
solution of

(2.4) [r(x,T(G)) dG(x) = mtin fr(x,t) dG(x),

where r(x,t) is a real-valued function on R?*1. Examples of M-functionals
can be found in Serfling [(1980), Chapter 7]. Let 8 = T'(F). T'(F,) is called the
M-estimator of 6. Assume that ¢(x,t) =dr(x,t)/dt exists and Ag(¢) =
[(x,t) dG(x) is well defined. Consequently, A5(T(G)) = 0. Assume further
that A, is differentiable at T(G) with X (T(G)) # 0. Define hg(¢,s) =
[Ag(®) — Ag(8)]/(¢ = s)if s # t and = Xg(s) if s = ¢ Then

T(H) -~ T(G) = [¢p(x) d[H(x) — G(x)] + R, + R, + Ry
with ¢F(x) = —!ﬂ(x, 9)/AIF(9)’

Ry = [Xp(9)] " [u(x,0) d[H(x) - G(x)]
(2.5a)

—[X(®)] 7" [u(x,T(G)) d[H(x) - G(x)],

Ry = {[Xa(0)] " — [ha(T(H),T(G))] ")
(2.5b)
X [w(x,T(G)) d[H(x) - G(x)]
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and

Ry = [ho(T(H),T(G))] ™
(2.5¢)
X [[4(2,T(G)) = v(x, T(H))] d[H(x) - G(x)].

Clarke (1983, 1986) proved that T is Fréchet differentiable w.r.t. p, under
some conditions on the function . The following result shows continuous
Fréchet differentiability of T'.

THEOREM 2.2. Let T be given by (2.4). Suppose that as k — o,

(2.6) T(G,) =6 forp (G,,F)—0
and
(2.7) X (&) = Xp(0) for p Gy, F) > 0and &, — 6.

(1) Assume that |ly(-,t) — (-, 0)ll, = 0 as t = 6, where || ||, is the total
variation norm [ Natanson (1961)] and that

(2.8) Aa(T(G)) = O(p(H, G)).
Then T is continuously Fréchet differentiable at F w.r.t. p,,.

(ii) Assume that there is a neighborhood N, of 6 such that for t € N,,
q(x,t) = dy(x,t)/9x is bounded. Assume further that for each t € N, there is
a set D, such that as t - 0, m(D,) > 0 and sup, c pelg(x,t) — q(x, 0 - 0,
where m is the Lebesgue measure and Dy is the complement of D,. Then T is
continuously Fréchet differentiable at F w.r.t. p,.

ReEMARKS. (i) If condition (2.8) in (i) is replaced by
Au(T(G)) = O(p+(H,G)),

then T is continuously Fréchet differentiable w.r.t. p.

(ii) Clarke (1983, 1986) established some results for the continuity of T
which implies (2.6). Condition (2.7) is implied by A, in Clarke (1983) or A, in
Clarke (1986). In particular, (2.7) is satisfied if both (x, ¢) and dy(x, ¢) /3¢t are
bounded and continuous.

(iii) A sufficient condition for (2.8) is [ly(-, 8)ll, < %, since

[Aa(T(@)| <l¢(-,T(@)) ol H, G).

ExaMPLE 2.4 (Linear rank statistics). Let % = {all distributions on R} and
for G € &,

(2.9) T(G) = j:J(é(x))dG(x),

where J is a differentiable function on [0, 1] and satisfies J(1 — ) = —J(¢)
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and
G(x) = G(x) — G((-x) -), x=0.

T(F,) is then a linear rank statistic. Note that Wilcoxon signed rank statistic
and Winsorized signed rank statistic are special cases of T'(F,). For any
G € &, T in (2.9) is Hadamard differentiable at G w.r.t. p, and

Ly(D) =f0°°J'(é(x))D(x)dG(x) +f0°°J(é(x))dD(x), Deo.

T is not Fréchet differentiable w.r.t. p., but the following result shows that T
is continuously Géateaux differentiable at F.

THEOREM 2.3. Suppose that J' is continuous on [0, 1] and ||J'||, < . Then
T in (2.9) is continuously Gateaux differentiable at F.

ExampLE 2.5 (Cramér-von Mises test statistic). Let F, be a specified
hypothetical distribution and

T(G) = [[G(x) — Fy(x)]* dFy(x).

T(F,) is then the Cramér-von Mises test statistic for the test problem: H:
F=F,versus H;: F + F,. Let Lp(D) = 2/D(x)[F(x) — Fy(x)]dF,(x). Then

[T(H) = T(G) - Le(H - G)|
| [1H@) - 6@ HE + 6(x) - 2R@)] dRx)

< p(H,G)[p(H,F) + p(G, F)].

Hence T is continuously Fréchet differentiable at F w.r.t. p...

ExampPLE 2.6 (Two-sample Wilcoxon statistics). Let %, = &%, = {all g-
dimensional distributions}, % = {all distributions of the product measure F X
G, Fe #,G € %)}, and

T(F,G) = [F(x)dG(x), (F,G)e .

This functional T plays an important role in many applications [Gill (1989)]
and if F, and G,, are the empirical distributions based on the data from F
and G, respectively, then T(F,,G,,) is the two-sample Wilcoxon statistic. Gill
(1989) showed that T is Hadamard differentiable w.r.t. p,, with Ly 4(D,, D,)
= [F(x)dD,(x) + [D(x)dG(x). Let ¢, and s, be two sequences satisfying
t, > 0,s,=0(,) and t, = O(s,). Let r, = t,s,/(¢t, +s,)and F, € ¥, G, €
&, satisfying p(F,, F) - 0 and pf(G,,G) = 0. Then a straightforward
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calculation shows that
|T(Fk + tk(ﬁx - Fk)’ Gk + Sk(ﬁy - Gk))
—T(F,,Gy) — Lp (t4(8, — F},), 5,(8, — Gk))'

tkskf(5x - F,)(w)d(8, — G,)(u)

55 [(F, = F)(u) d(8, = G, )(u) + 4, [ (3, — F)(w) d(G, — G)(n)
< 2|tksk| + |Sk|pw(Fk, F) + ltklpoo(Gk’ G) = O(T‘k).
Hence T is continuously Gateaux differentiable at (F, G).
3. Consistency of the jackknife. Throughout this section we assume

that (1.1) holds with an unknown o 2. We now establish the consistency of the
Jjackknife estimator v,.

THEOREM 3.1. Assume that T is continuously Gdteaux differentiable at F
and
where ¢p(x) = Lg(8, — F). Then
(3.2) v, > o a.s.

Proor. Note that F,, =F, +¢,(8y — F,) with ¢, = —1/(n — 1). Then
the continuous differentiability of T and the fact that p(F,,, F) — 0 a.s. imply

T(F,;) - T(F,)
t

n

- LF(6Xl - Fn) hacd 0,
uniformly in i, a.s. Hence
max|(n — 1)[T(F,) - T(F,))] - (2, -Z)| > 0 as,
1s=n
where Z; = ¢(X,) and Z = n~'Y?_,Z,. Then

! > (2, - Z)z +0o(1) as,

n—1;5

UJ=

and the result follows from the strong law of large numbers (SLLN) under
condition (3.1). O

THEOREM 3.2. Let p be a metric on &. Assume that p satisfies

(833) p(F,,F)—>0 a.s. and i[p(Fni,Fn)]2=O(n‘1) a.s.
i-1
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If T is continuously Fréchet differentiable at F w.r.t. p and (3.1) holds, then
(3.2) holds.

Proor. Let Z; be defined as in the proof of Theorem 3.1,
R, =T(F)-T(F)-(n-1)""YZ,+Z

J*i
and R =n~'Y" |R,,. Then
vy=(n-1)""Y(Z-2Z)+(n-1) L (R, -R)
i=1 =1

n
+2(n-1) YR, |(n-1)""YZ-Z|.
i=1 j#i
From the SLLN, (n — 1)7X?_(Z, — Z)? > o2 a.s. It remains to show that
(n — DX?_;R2, - 0 a.s. From (3.3),
max p(F,;,F) <p(F,,F) + maxp(F,,,F,) >0 as.
1<n t<n

If T is continuously Fréchet differentiable at F w.r.t. p, then for any &£ > 0,

R2, < ¢?[p(F,;, F,)]* foralli < n and sufficiently large n.

Thus, (n — DX R%, < e%(n — DX} [p(F,,, F)? and (n — DX?_;R%, - 0
a.s. follows from (3.3). This proves (3.2). O

Note that Theorem 3.2 is mainly for the situations where Theorem 3.1 is
not applicable, that is, T' is not continuously Gateaux differentiable and a
metric p other than p, has to be considered. The metric p, however, has to
have property (3.3). The following lemma shows that (3.3) holds for p; if the
second moment of F exists. Since p(F,;, F,) < n~', (3.3) also holds for the
metric p, in (2.1).

LeEmMma 3.1. Assume that E |X1|2 < o, Then
[IF(x) ~ F(x)|dx >0 a.s.,

and
2

L | 1P - Fo)lds] =0 s

Thus, v, is a consistent estimator of o when T is either continuously
Géteaux differentiable at F' or continuously Fréchet differentiable at F' w.r.t.
p. Theorem 3.2 is applicable to Example 2.1 (functions of sample means),
Example 2.2 ( L-estimators) and Example 2.5 (Cramér—von Mises test statistic).
For the L-estimators, the condition on J we required in Theorem 2.1 is much
weaker than that in Parr and Schucany [(1982), Theorem 2]. Theorem 3.1 is



70 J. SHAO

applicable to Example 2.4 (linear rank statistic) and Example 2.6 (two sample
Wilcoxon statistic), since T are continuously Giteaux differentiable in these
examples. Theorem 3.2 is also applicable to Example 2.3 (M-estimators), since
by Theorem 2.2, T' in (2.4) is continuously Fréchet differentiable w.r.t. p,
or p,.

For M-estimators, the consistency of v; can be established if condition (2.6)
in Theorem 2.2 is replaced by a weaker condition
(3.4) max |T(F,;) - 0| >0 as,

1<n

which is a necessary condition for the consistency of v, if T(F,) — 6 a.s. For
example, (3.4) holds if ¢ is nondecreasing in ¢ and there is a neighbourhood
N, of 6 such that for each fixed x, ¥(x, ¢) is continuous on N, |¢(x, )| < M(x)
for t € N, and EM(X)) < .

In some cases we need to consider a function of several functionals: g T,
where T is a d-vector whose components are functionals on & and g is a
real-valued function on R<.

THEOREM 3.3. Suppose that the gradient Vg is continuous at 6 = T(F)
and that the components of T satisfy the conditions in either Theorem 3.1 or

Theorem 3.2. Then the jackknife estimator for g - T(F,) is consistent, that is,
2

Vgg = (n - 1) Xn:
i=1

n
gOT(Fni) -n7! ZgOT(Fnj)
j=1

- Vg(0)V[Vg(0)] a.s.,
where V is the asymptotic covariance matrix of n'/?[T(F,) — T(F)].

Proor. The conditions on Vg and T imply that

(n-D L [Vg(Tm))(T(m - £ 18,

2

(3.5)
- Vg(0)V[Vg(0)]" as,
and
(3.6) (n-1) Y |T(F,,) — T(F,)|* - trace(V) as.,
j=1

where || || is the Euclidean norm. From the mean-value theorem,
2

= (=D % [Vg(T(Fn))(ﬂFn,-) - £ 1m,)|
+(n_1)i (Uni_n_l Zn:Unj)
i=1 j=1

r2n-1) % Vg(T<F,,))T(Fm->(Um~ ) U,U-),

i=1
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where U,;, =[Vg(¢,,) — Ve(T(F)IT(F,,) — T(F,)] and ¢,, lies between
T(F,;) and T(F,). From (3.6) and the continuity of Vg at 0,

max [Vg(£,:) — Ve(T(F,))[ ~ 0 as.

Hence

(37 (1-1) L U2 so)(n=1) LIT(E) - TE) = o)) as,

i=1
and the result follows from (3.5), (38.7) and the Cauchy-Schwarz inequality. O

As a final remark, we indicate that the differential approach for establishing
consistency of the jackknife estimators can be handily applied to some situa-
tions where the observations X, ..., X,, are non-i.i.d. For example, for inde-
pendent but not necessarily identically distributed Xj,..., X,, the jackknife
estimator v, is still consistent as an estimator of the asymptotic variance of
n*?[T(F,) — T(F)], where F is the average of the distributions of X,,..., X,,
as long as T is continuously differentiable, (3.3) holds,

E¢p(X,) =0,  sup E¢3(X;) <o

and
2

n n 1
; dp(X;) —nt §:¢F(Xi) __ZE(J"F(X)_’O a.s.

i=1

n-—1

In fact, (3.3) holds for p, and for p, under an additional condition
sup; E|X; |2*® < » for a constant & > 0.

4. Proofs.

Proor oF THEOREM 2.1. Let A={x: F(x) <c} and B={x: ¢ < F(x) <
1—¢} with ¢c=a/2. If F(x) €A and pJ (G, F) + p(H, F) <8, then
G(x), H(x) € [0,c + 8]. Let 6 < a/2. Since J(¢) is uniformly continuous on
[0, ¢ + 8],

‘&W[G(aa»H(x)][G(x) - H(x)] dx /p*(G,H)

(4.1)
< sg£|W[G(x), H(x)]| -0

as p.(G,F)+p,(H,F)— 0. Similarly, (4.1) holds with A replaced by
{x: F(x) > 1 — c}. Note that there are constants ¢ and b such that B C [a, b].
Then

W[G(x), H(x)][G(x) — H(x)] dx
B

/p*(G,H)

< [IWIG(=)], H(x)]|dx > 0
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as p4 (G, F) + p,(H,F) - 0, since |W[G(x), H(x)]| - 0 if J o F is continu-
ous at x and |W(G, H)|l. < 2||J]l. < . This shows that R(G, H) in (2.8) is of
order o(p (G, H)). O

Proor oF THEOREM 2.2. (i) From conditions (2.6)—(2.8) and the fact that
J1v(x,0) = ¢(=, T(G))] d(H - G)(x)

R, in (2.5a) is of the order o(p (G, H)). Also from (2.6)-(2.8), R, in (2.5b)
satisfies

IRyl < o(1)p(H,G) = o(p( H,G)).
The result follows since R in (2.5¢) satisfies,
Rl = 0(0)|[[6(x,7(6)) - y(x, T(H))] d(H - G)(x)

<OM[ly(-,T(G)) —¢(-,T(H)) o H,G)
=0(pG, H)).
(ii) Under (2.6)-(2.7),

IR, < o(l)’fd/(x, T(GQ))d(H - G)(x)

= o(1)|[q(x, T(G))(H - G)(x) dz| = o(py(G, H)),

since q(x, T(G)) is bounded on N, and T(G) — 6 as p (G, F) — 0. From the
proof of part (i), R, and R are of the order o(p (G, H)) if

wy = [[¥(x,0) — ¥(x,T(G))] d(H - G)(x) = o(p+(G, H)).

Under the conditions in (i),

lwy,6l < 0(1)p G, H)ym(Dr,) + pi(G, H) sup |q(x,T(G)) - q(x,9)]

x €D

This completes the proof. O
Proor or THEOREM 2.3. Suppose that ¢, — 0, and p (G, F) — 0. Let
H, = G, + t,(8, — G). Note that
T(H,) —T(Gy)
ty

— Ly(8, — Gp) = Ry(x) + Ryp(x) + Rgp(x),
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where

Ru(x) = ["7(Ga(w))(5. = Gu)(w) dGy(w)

—[:J'(F(u))(éx — F)(u) dF(u)
+J(Gy(x)) —J(F(x)) + T(F) - T(G,),

RByu(x) = ["[J(Ha(w)) = I(Gu(w))] d(5, = Go)(w),

and

J(Hy(w)) — J(Gy(w)
tk

Ry(x) = [ = J'(Ga(w))(8, = Gi)() | dGy(u).

0

Since p (G, F) —» 0 and J and F are continuous, T(G,) —» T(F) and
J(Gy(x)) — J(F(x)) > 0 uniformlyin x.

Since J' is continuous,

[ 7/(Gu(w)) (5. = Ga)(w) dGia(w) = [ (F(w)(5, ~ Fy)(x) dGy(u)

<l oGy = J" o Fllo + 1 lep Gy, F) — 0.

Also,
’[O“J'(F‘(u))(sx — F)(x) d(Gy - F)(u)
<0Gy, F)|(J' < F)(3, - F)|,
< 0 Gy, F) (1" op 3., F) + 1711115 — Fl,)
< 2”J’”vpoo(Gk7 F)
Hence

R,,(x) —» 0 wuniformlyin x.
From the continuity of J and J’,
R,.(x) >0 and Rg,(x) — 0 uniformlyin x.
The result follows. O

Proor or LEmMMA 3.1. Let I, (x) be the indicator function of the set
{X; <x}and W, = [°_[I(x) — F(x)]dx. Note that

E\W| < [E|I(x) - F(x)|dx = 2 [F(x)[1 - F(x)] dz < .
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Thus, from the SLLN,
(4.2) [’ [Fy(x) - F(x)]dx =n"" ¥ W, > EW, =0 as.

i=1

Since [F,(x) — F(x)]"< F(x) and [°_F(x)dx < %, we have
J* [Fu(x) ~F(x)] dx—0 as,,

which and (4.2) imply [°.|F(x) — F(x)|dx — 0 a.s. Similarly we can show
that [§|F,(x) — F(x)|dx — 0 a.s. Hence the first assertion follows.
For the second assertion, note that

(n =D T |f1Fux) - F(o)lds|

n

=(n- 1)“151 [/an(x) - Ii(x)ldxr

<2n(n - 1)‘1[[|Fn(x) - F(x)|dx]2

n

+2(n-1)7" ¥ [f|li(x) —F(x)|dx] :

i=1
Since E[[|I)(x) — F(x)|dx]? < E(IX,| + E|X,])? < x,

n 2 2
n Yy [[u,.(x) - F(x)|dx] - E[f|11(x) - F(x)|dx] as.,
i=1
by the SLLN. The result then follows from [|F(x) — F(x)|dx — 0 a.s. O
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