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HELLINGER-CONSISTENCY OF CERTAIN NONPARAMETRIC
MAXIMUM LIKELTHOOD ESTIMATORS

By SARA VAN DE GEER
University of Leiden

Consider a class &= {P,: 6 € O} of probability measures on a measur-
able space (2, &), dominated by a o-finite measure p. Let f, = dP,/du,
0 € O, and let 6, be a maximum likelihood estimator based on n indepen-
dent observations from Py , 6, € ®. We use results from empirical process
theory to obtain convergence for the Hellinger distance A(fj; , fo,), under
certain entropy conditions on the class of densities {f,: € ©}. The exam-
ples we present are a model with interval censored observations, smooth
densities, monotone densities and convolution models. In most examples,
the convexity of the class of densities is of special importance.

1. Introduction. In this paper, we derive consistency results and rates of
convergence for certain (nonparametric) maximum likelihood estimators based
on independent identically distributed (i.i.d.) observations. We shall show that
results on consistency can be (re)obtained by applying the theory of empirical
processes. Moreover, we shall relate the methods for establishing optimal rates
of convergence in density estimation [see, e.g., Ibragimov and Has’minskii
(1980, 1981a) and Birgé (1983)] with maximum likelihood estimation. Again,
the application of empirical process theory makes this feasible.

Let &= {P,: 6 € 0} be a family of probability measures on (Z, &/). An
important restriction, that we shall impose throughout, is that we assume that
& is dominated by a o-finite measure u. Denote the density of P, by
fo=dP,/du, 6 € ©. Consider a sequence X, X,,... of iid. observations
from P, =P,, 6, € 0. Let P, = (1/n)L;_,8x, be the empirical distribution
based on the first n observations. The maximum likelihood estimator (MLE)
én of 6, is (not necessarily uniquely) defined by

J log( 3,) dP, = max [ log( f;) dP,.

We assume throughout that a 6, exists.

Write fn =[5, and f, = f . To investigate the convergence of fn to f, we
need a metric (or at least a topology) on the class of densities. In the situation
where the global behaviour of fn is of interest, the Hellinger metric turns out
to be most convenient. The Hellinger distance between two densities is always
well defined (because densities integrate to one), a property shared by the
variational distance. See Birgé (1986) for a discussion on the choice of a metric.
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HELLINGER-CONSISTENCY OF NONPARAMETRIC MLE’S 15

The Hellinger distance H(P, P) between two probability measures P and P is

defined by
dP dP
aQ |dq

where @ is a measure dominating P and P. This does not depend on choice of
Q. We shall throughout take a fixed dominating measure u and write
k(f,f)=H(P,P), f=dP/du, f=dP/dpu.

Let us explain the main idea in this paper with the help of Lemma 1.1
below. The proof is very simple, which illustrates our assertion that the
Hellinger distance is easy to work with.

2
H(P,P) = dQ.

LEmma 1.1. We have
LPJVﬂﬁb—Qduz—a)zmu;gy

[The “—1” in this formula is for later convenience; see expression (1.2).]

Proor or LEMmA 1.1.

1 f. [ f.

0< §L0>010g(70 dPnﬁj;0>0( f—o -1 dPn

=/ Vﬁ—l d(P, — P,) — k*(f,, f,)- O
£o>0 fO n 0 ny /0

Now, let &= {(y/fs/fo — D14, >0 0 € 0}. Clearly, if

— 0 almost surely,

(1.1) sup
ged

then it follows from Lemma 1.1 that A(f,, f,) — 0, almost surely; that is,
then we have consistency of 7, in Hellinger metric. Now, (1.1) is called the
uniform law of large numbers (ULLN) for . In the next section, we state the
conditions for a ULLN to hold (see Theorem 2.4). These conditions are
primarily in terms of the entropy of & endowed with an appropriate metric.

We may also derive rates of convergence from entropy considerations. A
closer look at Lemma 1.1 leads to examining the usual trade-off between the
random and deterministic parts. Define for g € # the metric

1/2
lgl, = ( flgt ap,)

[gd(P, — Py)
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Furthermore, write h3(f,, f,) = (1/2)[f0>0(\/f—0 - m)z du, 0 € 0. Note that
2

(12) K%(fy, fo) = B3(for fo) = 3|(VFelFo = 1)1z

Py
Take &= {(y/fy/fo — D1, 505 0 € O} as before, and suppose {3,} is a se-
quence (depending on &) for which: For all ¢ > 0 there is an L_ such that

d(P,—P,) 1
(1.3) lim sup Prob| sup .fiz__") s 2| <e.
n—o lgllp,>L, 5, ligllz, 2

9 €0.

Then from Lemma 1.1, ho(f,, fo) = Oprot(8,). So rates of convergence follow
from probability inequalities of the type (1.3) for empirical processes indexed
by functions g € . Some examples are given in Section 3. The sequence {3,}
will be determined by the entropy of . The richer the ¢, the larger its
entropy will be and the slower {3,} will tend to zero (see Theorem 2.7).

Now, the ULLN (1.1) and the probability inequality (1.3) often do not hold,
but one can frequently use a modification of the main idea. Let us reformulate
the general situation. We consider a class of densities &= {f,: 6§ € 0} (where
one can think of 6 — f, as the ‘“natural” parametrization). Suppose there is
(another) parametrization & = {f,: y € I'}, such that (T, p) is a pseudometric
space, and such that for some transformation g: & — £,(P,) and for some
fixed a > 0

(1.4) Je(f;,) d(P, = Py) = ap*($,,70)-

We then propose to study the process [gd(P, — P,) indexed by functions
g € {g(f,): vy € T'} to make inference about p(¥,,y,). In the theory on empiri-
cal processes, one always needs the assumption that the class of functions
under consideration has an integrable envelope [see (2.2)], so this we shall also
need for {g(f,): y € I'}. This puts a major restriction on the choice of a
transformation g. In Section 4, we shall use

(1.5) g(f)=vf/(uf + 1 —u)fy) -1,

with u € (0,1) fixed, but otherwise arbitrary. Then |g(f)| < y/1/u, so that
{g(f): fe &} is uniformly bounded. This means that it certainly has an
integrable envelope. If moreover O is convex and 6 — f, is concave u-a.e.,
then it can be shown that (1.4) holds, with g defined in (1.5) and with p again
the Hellinger distance.

It is also possible to consider a whole class of transformations g for which
(1.4) holds. We illustrate this in Section 6, where we obtain a pointwise rate of
convergence for a model with interval censored observations, by comparing f,
not with f,—as in Lemma 1.1—but with a local perturbation of f, which is
locally close to f,. This is very similar to the way minimax lower bounds are
constructed for the estimation of a density at a point, say x,. There are quite a
few papers on this subject. We refer to Ibragimov and Has’'minskii (1981b),
Lemma VII.1.1, which can be used to obtain minimax bounds for the
estimation of various statistical quantities. In the situation of estimating a
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density at a point, one considers a Hellinger ball with radius »~'/2 around f,,
and one looks for a density f in this ball for which | f(x,) — fo(x)l is as large
as possible. The density f is some perturbation of f;, near x,. This is closely
related to our method, although we perturb f, instead of fo. Roughly
speaking, we shall prove that the Hellinger distance, between f and a density
that behaves like f, near x, and is equal to f, otherwise, is @p.,(n~1/2).
This in turn is used to obtain the rate at the point x,,.

The organization of the paper is as follows. Section 2 is expository. We
review known results on ULLN’s and also present in Theorem 2.7 a probabil-
ity inequality of the type as given in (1.3). The results make use of conditions
on the entropy of the class of functions. We state as an example the entropy of
a class of monotone functions, so that the implications can be checked for a
concrete case. In Section 3, we apply the theory to maximum likelihood
problems, using Lemma 1.1, and in Section 4 we consider the situation where
the densities are concave in the parameter and the parameter space is convex.
Section 5 relates our consistency results to a more classical situation where the
densities are assumed to be continuous in the parameter, for some metric = on
0. Here, we do not obtain any rates. Sections 3, 4 and 5 all end with examples,
and Section 6 investigates one of them somewhat further.

2. Entropy, ULLN’s and probability inequalities. Let (W,d) be a
space with a semimetric, and let A be a subset of W. A collection T' of subsets
U c W is a §-covering of A if diam(U) <28 foral U€ T and A = Uy ,U.
We call T a §-covering set. One can always take T to be a collection of balls

={w € W: d(u, w) < 8}, u € W. The collection of centres of these balls will
also be referred to as a &-covering set. Let N(§,A,d) be the 8-covering
number of A for the metric d, that is, the number of elements of a smallest
§-covering set. Then #(5, A, d) = log N(§, A, d) is called the 5-entropy of A.
If #(5,A,d) < « for all § > 0, then A is fotally bounded for d.

Now, let g € .Z(P), with P some probability measure on (£, &), and with
1 < g < . We define

1/q
(flglqu) , 1<qg<om,

lgllp,q =
esssup|g(x)|, ¢ =,
X

and
gl = sup|g(x)].

Although we do not identify equivalence classes, we shall refer to these as
metrics (for convenience) instead of pseudometric. For the case ¢ = 2 we often
omit the subscript 2. Apart from the entropy #(8, 4, |- llp,q4) of a class
& C £,(P), one can also look at entropy with bracketing, which is deﬁned as
follows. Let N2(8, Z, |l - llp,,) = min{k: there exist glL, gl s gi, gY such
that for each g € &, gF < g < gV for some i, and llg” — gFllp, 4 < 8}. Then
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HB(G, 2,1l lp,q) = log NB(B Z, |- llp,q) is called the metric entropy with
bracketing. Note that %”3(26 - lp, q) < H(, Z, | |lp,e).
The envelope G of £ is

G = suplgl.
gesd

If |Gl < «, we call & uniformly bounded.
An example will illustrate these concepts.

ExampLE 2.1. Take (2, &) = (R, Borel sets) and #={g: R —>[0,1], g
increasing}. So «# is uniformly bounded by 1. It is in general not totally
bounded for the sup-norm || ||p,., unless P has finite support. It is totally
bounded for || - ||p,, With g < « [see, e.g., Birman and Solomjak (1967)]. For
this metric, also a finite bracketing set exists. We shall consider ¢ = « and
q = 2. The case 1 < g < « gives similar bounds as g = 2.

LEmMA 2.2. Let £ be the class of increasing functionson R with 0 < g < 1,
forall g € &. Let #,, be the class of probability measures that concentrate on
m points. We have

sup #(8, 7, llp,«) < const. —log(m) forall 6 > 0.
Pe,,

Moreover

1
(2.1) sup # (8, 2,1 llp) < const. 5 forall 8 > 0.
P

Proor. Define M =[1/8], where [z] is the integer part of z. At each
g € &, we associate a partition of R into subsets:

AD = {x: (i — 1) < g(x) <id}, i=1,...,M,
and
M
g:(8) = XL (i —1)dl,p.
i=1
Then clearly 0 < g — g& < 8. As g varies, we get all partitions of m fixed

points x; < -+ <x, in Rinto M subsets of the form {x,}>; N A with A an
interval. The number of such partitions is
M+m-1
M-1 )

Since the partitions define the functions g%, we thus have for each P that
concentrates on m points

M+m

-1 1
M—1 ) < const. 5 log(m),

H(5,2,1- |Ip.) < log(

since M =[1/6] + 1.
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Let us now consider || - || p-covering numbers (g = 2). Birman and Solomjak
(1967) derive the order in 8 of the §-entropy of general Sobolev classes in
general metric spaces. For the case of uniformly bounded monotone functions,
it is easy to verify that their bound of order 1/8 for the entropy -£,(P) in fact
holds for entropy with bracketing. A self-contained proof along the lines of
Birman and Solomjak is available in van de Geer (1991). O

REMARK. Relation (2.1) in the second part of Lemma 2.2 shows that the
log-term in Example 2.1(i) of van de Geer (1990) is superfluous [see also the
remark on page 920 of van de Geer (1990)].

COROLLARY 2.3. Let ¥={f: R > [0,1], fincreasing} and £Z={fG: f<
S}, with G a fixed function, satisfying 0 < ||G|lp < «. Then

1
HB(8lGlp, £, - llp) < const. 3
since || fGII?» = G2l f II%G, where Py, is the probability measure defined by
Py(A) = [ G2dP/IGI}, Aec.
A

In particular, for = {g: B - [0, K], g increasing}, with 0 < K < © some
constant, and B € &7 a set with P(B) = y > 0, we find

Kyy

#B(8, Z, |- llp) < const. —5

Now, fix Py, let X, X,,... be ii.d. with distribution P,, and let P, be the
empirical measure based on X,,..., X,. The following theorem asserts that a
ULLN for a class of functions & follow from envelope and entropy conditions.
Here, and in the sequel, we restrict ourselves to permissible—in the sense of
Pollard (1984)—<, which means that we exclude cases where measurability
problems can occur. Application of the theorem yields, for example, the ULLN
for a class of increasing, uniformly bounded functions on the real line and also
for the class & of Corollary 2.3.

THEOREM 2.4. Let £ £(P,y). If

(2.2) G e £(Py)
and
1
(2.3) ;%(6,%, Il-llp,,1) = prep0 forall 6 >0

then the ULLN holds for #:
sup | [gd(P, - Py)
ged

Moreover, if sup, c 4llgllp, 1 < % then (2.2) and (2.3) are also necessary condi-
tions for the ULLN to hold.

— 0 almost surely.
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Proor. See, for example, Vapnik and Chervonenkis (1981) (for the case of
& uniformly bounded), Pollard (1984) and Giné and Zinn (1984). O

Note that condition (2.3) is on the entropy with respect to the random
I Ilp,, 1-norm. If #(8, <, - |lp,,1) is not measurable, it is to be understood as
convergence in outer probability. Finiteness of #5(5, Z,ll - llp, 1), 6 > 0, is
also a sufficient condition [more stringent than (2.3)] for the ULLN to hold [see
Dehardt (1971)].

Suppose now that G € Z(P,) for some g > 1. Then (2.3) is equivalent to
the same entropy condition, but now with respect to the || - [|p,, ;-norm:

Lemma 2.5.  Suppose |Gllp,q < ®, 1 < g < «, then
1
;%(5,f, Il ”Pn,l) = pop0 forall 5 >0
if and only if

1
;%(6,%, “ : ”qu) - ProbO for all 6 > 0.

Proor. The lemma is implicit in Giné and Zinn (1984, Corollary 8.5 and
2.20). For a direct proof of the case g = », see Talagrand (1987). O

The remainder of this section is devoted to probability inequalities for
/g d(P, — P,), uniformly for small values of || - [|p,. Let d be some nonnega-
tive function on . [We have in mind the situation where &= {g(f): f € %}
with (&, h) some metric space, and with d(f) = h(f, f,).]

Let {5,,),_, be a nonnegative sequence, decreasing to zero, but satisfying

Vns, > 1.

This sequence has to be chosen appropriately when a particular « is exam-
ined: the “richer” the #, the slower §, is allowed to decrease. Define
g, =275,, and

G.=(gesdg) <a,}, Jj=12...
The following quantities will describe the entropy of #, locally near the origin:

V#B(8,,Z, 0l lp,)

(2.4) a

J,n ‘/Eo‘_l’n
and
o #2780 Ip)
(2.5) Bjn= i§1 2i‘/;5j,n

Let {a J-} and {8 j} be (nonrandom) sequences, with « ,—0,B;,>0as j -
These sequences will govern the behavior of a;, and B;,. (Again, in a
particular situation, they have to be chosen appropriately.)
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We shall consider a randomized version of the empirical process indexed by
functions in «, ,. For this purpose, we introduce random variables e, e,,. ..,
iid. 1ndependent of X;, X,,..., with Prob(e, = 1) = Prob(e, = —1) = 1/2,
k=1,2,.... Finally, C will always be a generic constant, that is, it is not the
same at each appearance.

LEMMA 2.6. Suppose & is uniformly bounded by K, and that IIgllp0 <
D,d(g) for all g€ &. Let B;, ={B;, <pB;} and suppose a; , <a;, j=
1,2,....Then foralla > 0, there exist constants j, and C, depending on a, K,
D,, {aj} and {B,}, such that for all j > j,
>ao?,, B < exp[ —Cnof,,].

1 n
- X 8(Xy,)e,

Jj.n
L]

Prob| sup
g€, ,

Proor. If gl < g < g¥, then obviously |g| < max(|gZ|,|gY|). Therefore,
we can use the bracketing to construct a collection £, such that

logl #©@ | < %B(ﬁn,«% asll ||P0)

Js

and such that for each g € &, thereisa g@ € #© with

(2.6) lgl < g©
and
(2.7) lg@llp, < 28, + Dyo;,,, < 3Dy0;,,

Since  is assumed to be uniformly bounded by K, we may also take £© to
be uniformly bounded by K. Then, Bernstein’s inequality [Bennett (1962)]
yields

Prob( max [lg@lp, > 4Dg0;, )
g@eg®

sProb( max [g@l3, — g@l3, > 7D20 )
£0e g0

< exp[#7(5,, F, 0.1l lIp,) = Cof,]

Js
Sexp[no- a? — Cnof ] <exp[ Cno} ]

for all j > j,, j, depending on K, D, and {a/}.

Now, let A, , = ={llg@ll» < 4D,o0; ,}. Note that on A; ,,alsollgll, <4Do, ,
forall g € fj s " because (2.6) holds.

Let #® be a minimal 275 ,-covering set of &, , for || |lp,. Then we may
write for g € &, ,

g = i (8® — gi=D) + g®
i=2

with g e #®,i=1,2,..., and llg® — gt V|, <2@27¢"D5,),i=2,3,...,
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and finally, on A; ,,
lg®ll, < 38, + 4Dyo; ,, < 5Dyo
Application of Hoeffding’s inequality [Bennett (1962)] gives that, on A; , N

Bj,n’
1 1
Prob[ max Zg(l)(Xk)ek > -ac?, | X;,..., X,
gWe gD n o1 2
<exp[éf 2 n’g,n,“'”Pn) _Cnofn]

< exp[no?,B} — Cno?,| < exp|—Cno?,|

for all j > j,, j, depending on a, D, and {B;}.
Let E = ¥7_,27%i, and

{\/;f(z—iﬁ,,, &l llp,) z—iﬁ}

2 2’1/501._”/3]. E
Then on B; ,
Z My <1
In what follows, the pair {g(‘) g(‘ b} always corresponds toa ge s,
so that [g® —g¢ P, <227¢Ys,), i=2,3,.... On B, ,, we have by

Hoeffding’s inequality

Y W 1;:1 (gm(Xk) —g97D(X,))e,| =

1
—(10' |X1, ..,Xn)
i=2 2

Prob (max

e

17 . .
<Y Prob(maX‘; Y (89(X,) — 897D(X,))es
i=2 k=1

1
2

=n$,a0?, |X1,...,Xn)

2#(27%,, %, .1 l,) — C(n$2) 22“'”’noj‘fn]

IA
:

~

IA
g

[ . P
4(77§l)n) 22zn0}2’nﬁ12_ _ C(n‘gt) ) 22(1+J)n0}_2’n]

~

2 2
—C(n9,)’2 (’”)ntTj,n]

IA
g

~

IA

mg M [0 [0

[ Ci2* no? ]<exp[ C2%nof ]

~.

for all j > j,, j, depending on a and {B,}.
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Combination of these results yields

1
Z &(Xy)ex

> aoy n,B-,n)
-1

Prob| sup
geg ,

1
< Prob(max’ Z gP(X,)e,| = 299 o/, B; , mAj,n) + Prob( 45 ,,)

1
> 5&0}2’”, Bj,n)

+ Prob (max

1 n . .

> o Y (89(X,) — &Y 7P(X,))e,
i=2 M p=1

< exp[—Cnofn]. O

There is much literature on probability inequalities for empirical processes.
For example, Alexander (1984) obtains exponential probability inequalities and
in addition ‘“best possible” constants. If we replace the conditions on
HB, 2,1 p,) and #(4, G, s Il - Il7,) by the corresponding conditions on
H(8, %, ,, || llo), then Lemma 2.6 is included in Alexander [(1984), Theorem
2.1]. In ‘this paper, Alexander also shows that if f Z: n consists of indicator
functions of sets, then a ‘““good” exponential probability inequality for the
empirical process, indexed by . ,, can be established using only the nonran-
dom entropy with bracketing. (Thls is due to the fact that for g =1,,
llgllpy,1 IIgII P,,2.) With “good” we mean that the order of §, is what one
might expect it to be [after consulting the paper of, e.g., Blrge (1983), or
van de Geer (1990)], that is, that it satisfies the rule of thumb

#(5

Using a truncation device introduced by Bass (1985) [see also, e.g.,
Andersen, Giné, Ossiander and Zinn (1988)], it is possible to show that in fact,
for general classes of functions, a “good” exponential probability inequality
can be obtained if we replace #(275, y & - llp,) in (2.5) by
HB27s, &, ns |l - lp,). This is the approach in Birgé and Massart (1991),
whose results we received during the revision process of our paper.

Note that in our proof of Lemma 2.6, we only used (2.6) and (2.7), and not
so much the bracketing. Therefore, it is easy to include the case where & ,
has envelope G; , such that IIG 2llp, < const. o, g, ,- It is then not necessary to
assume & to be uniformly bounded Bernstein’s inequality can be replaced by
a Chebyshev inequality (which does not give an exponential bound), and the
resulting lemma becomes applicable to so-called VC-graph classes [see also,
e.g., Pollard (1990), who introduced the concept of manageable classes].

The following theorem gives conditions, for example, for (1.3) to hold, and is
therefore very useful for obtaining rates of convergence of, for instance,
MLE’s. The method of proof is as in Alexander (1985).

%n,ll-llpo)xnﬁﬁ as n — o,

n’ =y,

THEOREM 2.7. Let & be uniformly bounded by K and let d be a nonnegative
function with ||gllp, < Dod(g) forallg € £. Set B; ,, ={B; , < B;} and B, =
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N%_1B; ,. Assume a, , <a; forall j €{1,2,...} and Prob(B;) = 0. Then
for all a > 0, & > 0, there exist constants L, depending on ¢, K, D, a, {a;}
and {Bj} and C depending on K, D,, a, {aj} and {B j}, such that

( | /gd(P, - Py)|

lim sup Prob <e.

n—o

sup
ge&,d(g)>L3, dz(g)

Proor. First, we symmetrize the process. Application of Chebyshev’s in-
equality gives that for each g € 4, d(g) > 2%5,, 2L > V8D, /a,

|/gd(P, —Py)| 1 4D} 1
3 >-a| L ——5 <7,
d*(g) 2 nd“(g)a 2

since we assumed 782 > 1. This implies (see, e.g., Pollard [1984], pages 14 and
15)

Prob (

Prob sup 5 >a
ge¥,d(g)>2%s, d (g)
1/n)Xr_18(X,)e 1
< 4 Prob sup |(1/n) kz 18(Xy)ey] S —a).
geg,d(g)>2Ls, a*(g) 4

Next, we note that

|(1/n)E;_18(X,) ey 1 )
> —a

k=1

Prob sup >
ge#, d(g)>2"ks, d*(g) 4
i 1 2 1
< Y Prob( sup |— Y g8(X)e,| = —lgaofn, Bn) + Prob( B¢)

Jj=L+1 g€,

= ) Prob; + Prob(Bg), say.
j=L+1

From Lemma 2.6, we know that
Prob; < exp[ —Cnaj?n] ,

for j > j,. Therefore, for all L > L,

Y. Prob; < exp[ —Cn22L82| < exp[ - C2%],
Jj=L+1
since nd% > 1. If we take L sufficiently large, this becomes arbitrary small.
Thus, (replacing 2~ by L) the proof is complete. O

3. Some first applications to maximum likelihood. Let <=
{(Jfo/fo — 1).1( fo>0p 8 € B}, Of course, .if & sa}tisﬁes the conditif)ns of Theo-
rem 2.4, Hellinger consistency follows immediately. The following theorem
presents sufficient conditions that are relatively easy to verify in applications.
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THEOREM 3.1. Let &, = {\/ﬁ : 0 € ®). Suppose that £, is uniformly
bounded and that | \/f_0 du < o. Then

1
(3.1) ;%(5, EAE ”Pn,oo) = pop0 forall §>0
implies h( fn, fo) = 0 almost surely.

Proor. The conditions ensure that (2.2) and (2.3) are fulfilled for &=
{(fo/fo — D1, 50 0 € B). So we have the ULLN for & at our disposal and
the theorem follows from Lemma 1.1. O

Note that we may replace the || ||p, ~-norm by any other | - ||p, ,-norm,
1 < g < = (see Lemma 2.5).
To apply Theorem 2.7 to the class &, we introduce the notation g(f) =

(Vf/fO - 1)1{f0>0), and take
G, ={8(f,),0€0:h(fy, fo) <278,}, j=12,....

THEOREM 3.2. Suppose & is uniformly bounded. Let {5,} be a sequence for
which Vn 8, > 1 and

o H#2(5,, 2.1 s,
(3.2) lim lim sup Vn 295, =0,

J e n—owo

and

V#(2 8, Z, - llp,)
24/n 278,

(8.3) limsupProb| ),
i=1

n—o

> B, forsomej| =0,

for some sequence B; — 0. Then h( for Fo) = Opr(8,).
Proor. This follows from the fact that

fg(fn) d(P, — Py) th(fn’ fo)

(see Lemma 1.1), and from application of Theorem 2.7 with d2%(g(f)) =
RA(f, o) = (1/2lg( I3, [see (1.2)]. O

ExampLE 3.3(a). Suppose one checks one’s mailbox every day at a
random time, to see whether or not the mail for that day has arrived yet.
One is interested in the distribution function of arrival times of the mail.
Groeneboom (1987) calls this a situation with interval censored observations.
Actual applications can be found in, for example, medical experiments with
animals. The formal description is as follows. Let Y, and T, be independent
nonnegative random variables, 2 = 1,2,... . Let G, be the (unknown) distri-
bution of T, and let 6, be the unknown distribution function of Y,. Observ-
able are T, and A, = 1;3, _7,;- So in the notation of the previous sections
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X, =(T,,A,), k=1,2,... . Take as parameter space the set
® = {6: A - [0,1], 6 adistribution function},
where A is a known interval containing the support of 6, [e.g., A = [0, )]. If

we take as dominating measure u = G X v, where v is the counting measure
on {0, 1}, then the class of densities in this model is

{fo(x) = 0()°(1 - 6())" ™", x = (¢,A),0 € O).
Clearly, this class is uniformly bounded (by 1), and since u is finite,
/ m du < o, It follows from Lemma 2.2 that the entropy condition (3.1) is
fulfilled. So we conclude that h( fn, fo) = 0 almost surely. It is now easily
verified that if 8, < G, then 6, — 6, almost surely in every continuity point
of 6,. Note finally that, since 6, and 6, are monotone functions, pointwise
consistency implies uniform consistency:

suplén(t) - BO(t)l — 0 almost surely,
teA

provided 6, is continuous. This can be checked directly, but it is also possible
to derive this from the theory of Section 5, and, for example, take the
distribution of Y, as unknown parameter, rather than the distribution func-
tion. We shall not use this approach here but the general idea will become
clear in Example 5.4.

In general, we cannot use Theorem 3.2 here, because if 6, does not stay
away from zero, then « is not uniformly bounded. We return to this model in
Example 4.8(a), where we do obtain a rate of convergence.

ExampLE 3.3(b). The model gets more complicated when there is one more
observation time, say U, > T,. This is theoretically of interest, but less
common in medical studies, although one can think of a patient who visits the
laboratory only twice to be checked whether he/she has developed symptoms
yet.

Let X, = (Tk, U, ay, .Bk), ap = I(YksTkp Br = I(Tk<YksUk), and

folt,u, @, B) = 0()"(0(x) — 0(1))*(1 - 6(u))" "%,
where a, 8 € {0, 1}, a # B. We now also need to calculate the entropy of the
class {y/0(u) — 0(¢): 0 € ©} = F (say). Now, if 6(x) — 6(¢) > 6 or 6(u) —
0(¢) > 8, we find

— — 1 _ _
[Votw) —o(2) - Va(u) - o) | < = l6(e) = 8)| +]o(2) - (1))
and if both 6(x) — 6(¢) < 6 as well as 8(u) — 6(t) < 8, then

[Vo(w) = 6(t) — Vo(w) —a(t) | <2V5.

It follows that for any P and q
%(4‘/57 9', ” : ”P,q) < %(5’6)7 ” ' ”P,q)-
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So again, Lemma 2.2 shows that condition (3.1) is met, and so A(f,, f,) = 0
almost surely. This result also holds if there are m, say, observation times, m
arbitrary but fixed. Consistency of 6, can be deduced as in Example 3.3(a).
Note that Hellinger consistency in this model is in fact a stronger result than
in Example 3.3(a). More information about 6, can reduce the structure in the
model and make Hellinger consistency harder, with as an extreme case the
situation with no censoring, where {P,: 6 € 0} is the class of all probability
measures, and no Hellinger consistent estimator exists.

ExampLE 3.4. Let (2, &) = ([0, 1], Borel sets), u Lebesgue measure and
0= {0: [0,1] - [0, ), f0du =1, f|0(m)|2du < 1},

where 0™ is the mth derivative of § and where m > 1 is a fixed known
integer. Take f, = 6. Since densities integrate to 1, we know from the Sobolev
embedding theorem [see, e.g.,, Oden and Reddy (1976)] that the class of
densities ® is uniformly bounded. Furthermore, p is finite, so [ \/% du < o,
Also, the entropy condition (3.1) holds [see Kolmogorov and Tikhomirov
(1959)]. Therefore, h(8,,6,) — 0 almost surely. Note that the convergence in
Hellinger distance implies

sup'én(x) - Bo(x)l — 0 almost surely.

This follows from the theory on Sobolev classes, or from Lemma 5.2 in this
paper.

Suppose now that 6, > 1 on [0,1]. The « is uniformly bounded, and to
obtain a rate of convergence it suffices to calculate the entropy of {V6: 6 € @}.
We known that 8, is consistent for the sup-norm, so we may without loss of
generality restrict ourselves to the class of densities 6§ > ¢ for some & > 0. But
the entropy of {V0: 6 € ©, 6 > ¢} is of the same order as the entropy of
® N {6 > £}. So for the restricted &#° ={,/0/6, —1: 6 € O, § > &} (which is
uniformly bounded), we have [Kolmogorov and Tikhomirov (1959)]

H(8,%° | llw) < const. 671/™, forall § > 0.

But then, the conditions of Theorem 3.2 are fulfilled with §, = n~™/@m*D
[use the rule of thumb #(5,, £ | |.) < né2 and evaluate (3.2) and
(3.3) with ||-llp, and | -llp, replaced by | -Il}. That is, h(4,,8,) =
ﬁProb(n_m /@Cm+ 1)).

4. Application to convex models. In many models , the class of densi-
ties under consideration is not uniformly bounded, so that Theorem 3.1 cannot
be applied. The same is generally true for Theorem 3.2. Recall now that we
used the transformation g(f) = (y/f/f, — D14, ¢ The following alternative
will be useful if the parameter space ® is convex and densities are concave in
the parameter. Define for # € ®, and for u € (0,1) fixed, but otherwise
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arbitrary,

fug=ufy + (1 —u)f,.
With slight abuse of notation, we sometimes abbreviate this to f, = uf +
(1 — w)f,. Furthermore, we write f =uf, + A —u)f, Now, with the
convention that f(x)/f, (x) 1if f(x) 0, let

g.(f) = (V/f. - 1),
G, ={Vis/fuy —1:0 €0}

Clearly, <, is uniformly bounded by 1/vVu . The following lemma reveals that
we might as well look at the Hellinger distance between f, and f, ,,.

and

LEMMA 4.1.
e W7~ VRS < (7 ~ V)" s T2 lVF - VA

Proor. Note first that f,(x) = 0 if and only if both f(x) = 0and fy(x) =
0. So, on the set N = {x: f,(x) = 0} the result is trivial. On N°¢,

(VF - V) =@ - w7 - F)( g

fo/ ?
_(1-u)f m{l"’\/u‘f‘(l—u)fo/f)l(fosf)
Vi/fo +1 2
NTih s s @y | e
<(1—u) ‘/? {1 }
and
+Vi )
R R A

_(\F—wu) L+ u+ (L—w) fo/f |
- 2 l(fo)
(1-u) fo/f 0

[ VF7Fo + N/l + (L= w) ’
m +1 {fo> 1}

4 2
S\ (O 0
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The counterpart of Lemma 1.1 becomes:

LEMMA 4.2. Suppose © is a convex subset of a real vector space, and that
0 — f,, 0 € O, is u-almost everywhere concave. Then

1
fgu d(P - Py > Thz(fn,fo)-

Proor. The concavity of 6 — f, implies that for éu,n =uf, + (1 - u),

J108(f/Fun) dP. = [log(f./F3,,) P,
and the convexity of ® ensures that
J1og( £, /3,.) 4P, = 0.
Link these inequalities together using (1/2)log x < Vx — 1 to get that
0< [g,(f.)d(P, = Py) + [2.(F.)dP,.
The lemma is therefore proved if we show that A%(f, f,) < —[g,(f)dP,,

because by Lemma 4.1, h%(f, f,) = (1 — u)?/DA*(f, f,). The key is now that
either f(x) < f,(x) < fo(x) or fo(x) < f,(x) < f(x), so that

(Ve = VF)(fu = fo)/VFs <0

Hence,

W(f 1) = 1/2[(VF = VI) du = [(t = VI7F) . du
= [(1= V) dPy + [(VFu = VE)(fu = Fo) /\Fo du
< [(1 - Vi) dPy = ~ [&.(f) dP. .

We are ready for a consistency theorem. Because ¢, is uniformly bounded,
entropy conditions can be formulated in any || - [|p, ;-norm, 1 < g < (as far
as consistency is concerned). Throughout, we shall choose ¢ = .

THEOREM 4.3. Suppose that © is a convex subset of a real vector space, and
that 8 - f,, 0 € O, is u-almost everywhere concave. If

1
(4‘1) ;%(8’ ‘yu’ ” : ”Pmoo) —Prob 0 for all 6 > 0,

then h(f,, fo) = O almost surely.
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Proor. Condition (4.1) implies the ULLN for %, so it follow from Lemma
4.2. 0

Note that if densities are uniformly bounded and [ ‘/fT) du < «, then the
entropy condition (8.1) implies the entropy condition (4.1).

In order to be able to use Theorem 2.7 for the class &, with d(g,(f)) =
h(f, fo), we need the following lemma:

Levma 4.4, llgy(Pllp, < Doh(f, fo) (where Dy = Vo).

Proor.

la )iz, = V777 = 15,
- [(V7f: = 1) dPy = [(VF = VF) fo/tdu

<1/(1-u) [(Vf - VFa) du = 2/(1 = w)*(f, f,)
< 2h2(f, o),

where the last inequality follows from Lemma 4.1. O

Next, we define
Gyiin = {gu( f6),0 €0O:h(fo, fo) < 2j8n}, j=12,....

THEOREM 4.5. Suppose O is a convex subset of a real vector space, and that
0 — f,, 0 € O is pu-almost everywhere concave. Let {5,} be a sequence with
Vné, > 1, and for which

49 N L O R
(4.2) im lim sup \/7721'8” =0,

Jo® pow

and

V#(27%,, %, ;0 lp,)
24/n 275,

> B; for somej| =0,

(4.3) limsup Prob| Y,
n—o i=1
for some sequence B; — 0. Then h( For Fo) = Opea(8,).

Proor. Combine Lemma 4.2, Lemma 4.4 and Theorem 2.7. O

REMARK. The class &4, seems to be of complicated structure and one may

expect that it will be hard to evaluate a good bound for its (local) entropy.
However, the (local) || - ||p,-entropy can be bounded from above by the (local)
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entropy of {f,: 8 € ©} endowed with Hellinger metric, because

(4.4) 777, - Ik <NF = VA Va=o .
SO
777 ~ Vsl SH(F ).

_(1

Equation (4.4) also shows that the (local) entropy of ¢, for |- [lp, can be
bounded from above by the entropy of &= {y/f,/f, — 1: 6 € ©}. If 1 /o is
P,-square integrable (i.e., if u is finite), then, apart from a constant, the
I - [ -entropy of & can be bounded by the [ - ||p, «-entropy of &, = {\//70
0 e @} Here, one might want to prove a consistency theorem first, to show
that f is eventually almost surely bounded, say by K (which is of course only
feasible if f, is bounded), so that it suffices to consider {‘/fT, 00, f, <K}
This is actually a crude way to make use of local entropy.

Note also that if 1/ ‘/fT) is P,-square integrable, and if one has a bound for
the || - [[p-entropy of &,, uniformly in P, then the same argument as in
Corollary 2.3 can be used to show that, apart from a constant, this bound is
also valid for the | - [|p,-entropy of « and hence of .

ExampLE 4.6. Let (2, &) = ([0, 1], Borel sets), u Lebesgue measure and
0= {0: [0,1] - [0,®), f@ du=1,0 increasing}.

Take f, = 0. Observe that ® is not uniformly bounded, but it is convex and
6 — f, is concave. Now, let us check entropy condition (3.2). Write

g =V0/(ub+ (1-u)b,), 6€0,ue(0,1].

We have

li lgol dP, < 1 1P(|1 8l > log K) = 0 almost surel
im < lim ——=P,(|lo > lo, - most surely.
K—ow» Ilog00|>logKg0 " K- \/; &% g ) Y

So, for 8 > 0 arbitrary, there is a K such that eventually
(4.5) lgelp,llp, 1 <& almost surely,
where By = {llog 6,| > log K}. Let
-1/2

by = (010 + <_10_>) 1y

and
Ky = {ky: 0 € O}.

Then J#% is a class of monotone functions, uniformly bounded by VK /u .
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Therefore (see Lemma 2.2)

(4.6) %%(8, Fg, |l llp,,») = 0.

Now, g1 = 0, '/%k,. Taking &, x = {gy1p;: 6 € O}, we get from (4.6) that
(5,9, o ) 0.

It follows from (4.5) that eventually
#(28,4,,1l - llp,1) < #(8, &, k>l lp,,1) almost surely,

so also
1
(4.7) ;%’(25, Z,,I-llp,,1) = 0 almost surely.
Since (4.7) is true for § > 0 arbitrary, we thus have (see Lemma 2.5)
1
;%’(5, Z,, |l llp,,») = 0 almost surely

for all & > 0. So entropy condition (4.1) is fulfilled and %(4,,6,) — 0 almost
surely.

Assume now that 6, is continuous. Then [|f, — 6,ll. = 0 almost surely.
Because 6, is bounded, this implies that for some K, 6, < K almost surely, for
all n sufficiently large. Therefore, we may restrict ourselves to @, = @ N
{6 < K}. From Lemma 2.2,

1
%3(8, {\/5_ 0e @K}, Il - Ilp) < const. 5

uniformly in P. Apply this, with P = Lebesgue measure u and P=P,,
respectively, to see that the conditions of Theorem 3.2 hold with 6, = n=/3,
that is, 2(0,,0,) = Opg(n~3).

In the case of estimating a decreasing density, it is not a priori true that the
support has to be finite. If one excludes the possibility of infinite support, then
of course the same rate emerges.

The asymptotic distribution of 6, is established in Groeneboom (1985), for
the case 6, has strictly positive derivatives.

Now, the rate &p,;(n"1/3) is generally true for estimating a continuous
increasing density, but in a special case, it is quite possible that the conver-
gence is faster. This happens when 6, =1 on [0,1] (i.e., P, is Lebesgue
measure on [0, 1]). It is show in Groeneboom and Pyke (1983) that

nL,—n —logn
V3logn

where L, = [(6, — 1)>du. So the rate of convergence in Z,(u)-dis-
tance—which is equivalent to the Hellinger distance in this case—is
Opeop(n " ?(log n)*/?). We reprove this rate using entropy calculations.

_>Law N(O’ 1)’



HELLINGER-CONSISTENCY OF NONPARAMETRIC MLE’S 33

Because 6, = 1 obviously stays away from zero, we are free to use Theorem
3.2 instead of Theorem 4.5 (restricting ourselves to @g).

LemMma 4.7.  Suppose P, is Lebesgue measure. Let &= {g:[0,1] - [0,1], g
increasing} and G, = {ge“: lglp, <2'8,}. Then

. 1
(4.8) %B(Sn, e E Ilpo) < const. 27 log+(8—)‘
Moreover, if 8, > n~1/%(log n)'/?, then on the set
P(A
B - |2

Py(A)
we have

— 1| < 1: for all intervals A with Py( A) = const. Sn}

J»
n

2/ 1
(4.9) Jf(uﬁn,g%n,llﬂlpn)sconst.—log*(s—), 0<u<1l.
u

PrROOF. Let i, be the smallest integer such that 2% < 52. Define A, =
[0,1/2]and A; = (1 —27¢"D,1-27"],i=2,...,i, for g €4, define

g(g)=gl, +g(1- 2“')1(1_271,1], i=1,...,0i,— 1.

Then
lgi() 5, <llglallb, + 2lgla, Jl3,  i=1,...,5—1
SO
ip—1 , '
Zl lg(&) 7, < 3llgl?, < 3(2%/52).

Define f,(g) = g:(8)/lg{(@llp, if llg(g)lp, # 0 and f;(g) = 0 otherwise.
Then || f(g)llp, < 1 and f;(g) is increasing on [0, 1], so fi(g)Xx) <1/V1 —x.
In particular, fi(g)1, < 2‘/;, i=1,...,i,—- 1.

Consider now the class 7 = {f(g)1,: g € & ,}. This is a class of increas-
ing functions on A;, uniformly bounded by 21, Because Py(A)) = 27, appli-
cation of Corollary 2.3 yields

J

u
(4.10) J/B(— Z,I|~|Ipo)3const‘7, i=1,...,i,— 1.

277’
Let [ f(2), f;"(g)]1 be a u/2’ bracket of f(g)l,, g € F, ,:
(4.11) fF(g) <fi(g)la, <f"(g)
and

(4.12) 1 £2(8) ~ (&) e, < 50
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Define
lg:(2)lle,

(413) MLL(g) = T]u&“

and

(4.14) MU(g) = ( lg:&) Iy + l)uSn.
ué,

Then

fF(g)MP(g) <g:(8)1a, < (8)MI(g)
and

| £U(g)MP(g) - FE(g) ME(8) |2,
15y < (MH@YI (&) — FH(@) e, + MY (g) — ME(2) [, )13,

u2

<lgi(&) Ioygz; + w871 I%,.
Take fX(g) = i 'fH(@MM (1, and [Y(g) = Tiy'fV(e)MU(g).
The pair [ f*(g), fY(g)] is a bracket for g1y ;_5-co-ny:

fH(g) < 8l 1-g-wo-1 < fYe)

and

u2

,  ioml ,
1ru(g) = r=(&)le, < {Ilgi(g) [bygay + u82lL, I3,
i=1
u? ,
< ﬁ{3(22133)} + u?? = 4us?.
Since llg(&)llp, < llgllp, < 275, the number of choices for M (g) and M"(g)
a g varies is Cy2/ /u. Therefore, the number of brackets [ fZ(g), fU(g)] as g
varies is

iop—1 u 9J 2J
I—[ const. exp[JZ’B(—., F, - IIPO)] — < exp|const. i,—|.
i=1 27 u u
In other words,
J

(4.16) %B(ﬁuén, {g1p,1-2-comz 8 €Z )11 ”Po) < const. iO;’

It remains to find brackets for {gl;_s-co-v 1 & € ¥ ,}. Now, Py(1 —
27Co=D 1] = 27Co~D < 2(2%/§2), by the choice of i,. So from Corollary 2.3,

9J

(4.17) %B(uﬁn,{gl(l_z—uo—l), 1]: g S ':gj,n}’ “ * “PO) < COI‘lSt. ;.
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Combination of (4.16) and (4.17) shows that

7
JfB(\/—S_uS,L,fj’n, [| - ”Po) < const. iog'

Taking u = 1/V8, we now proved (4.8), since i, < const. log*(1/5,).

Inequality (4.9) can be obtained in exactly the same way, since on B,,
P(A)) <2Py(A)) and also P,(1— 2 ¢~ 1] < 2P(1 — 27¢~D 1]. Hence,
on B,, (4.10) with P, replaced by P, holds. In (4.11) and (4.12), we replace
the brackets by the random brackets that come from the || - | p -bracketing set.
Definitions (4.13) and (4.14) remain as they are. Then also (4.15) goes through
with P, replaced by P, and the brackets replaced by the random ones. And so
on. O

The rate of convergence &p,,,(n~'/*(log n)'/?) for the maximum likeli-
hood estimator 6, of the uniform density now immediately follows from The-
orem 3.2, because Breiman, Friedman, Olshen and Stone [(1984), Theorem
12.2, page 320] proved that for the set B, defined in Lemma 4.7,
limsup,, _,,, Prob(B:) = 0. In fact, they allow P,(A) to be much smaller,
namely of order n~! log n (and they consider classes of sets more general than
intervals).

ExaMmpLE 4.8(a). We revisit the model with interval censored observations.
The setup is as in Example 3.3(a), that is, u = G, X v, with v the counting
measure on {0, 1}, and

1-A
fo(t, A) = 80(8)*(L - 6(2)) ",
with 6 € ® = {all distribution functions}. The map 6 — f, is linear in § and @
is convex. Since distribution functions are monotone,

5(5,(Fi 0 < ), 11-11) < const. <

uniformly in P, and obviously also uniformly in any measure bounded by a
fixed constant. Since u is finite, we thus have this bound for the entropy of { fj:
0 € 0O} endowed with Hellinger metric to our disposal:

%B(B,<\/ﬁ: 0 e @)},Il . Il,L) < const. %

Furthermore, again because u is finite (i.e., 1/ m is Py-square integrable)
the same bound is valid for &, = {,/f,/f, s — 1: 6 € ©} equipped with the
metric || - [|p,. So, as in the previous example,

h(fn’ fO) = ﬁPmb(n_l/?')’

which in this situation means that [ly/ én — \/% l, as well as [ly/1 — én —
Y1 — 8,1l are of this order in probability.
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ExampLE 4.8(b). So far we were unable to prove our conjecture that the
§-entropy for the Hellinger metric of the class of densities of Example 3.3(b) is
of order 1/8(log*(1/8))'/2. This would lead to the rate &p, ., (n~'/3(og n)'/®).

ExampLE 4.9. Consider again the model in Example 3.4. Here, one needs
68, > 0 to ensure that eventually also 8, > ¢ for some & > 0. This, we need
because {V8: 6 € ® N {0 > &)} has, apart from a constant involving &, the same
| - ll-entropy as ® N {6 > }. Therefore, if one wants to prove the rate of
Example 3.4, Theorem 4.5 does not help to relax the assumption 6, > 0. On
the other hand, if m is large enough, Theorem 4.5 can be used to obtain a
slower rate under milder assumptions on 6.

5. Continuity in the parameter. In the literature on consistency, it is
often assumed that 6 — f, is w-almost everywhere continuous (for some
topology on 0). See, for example, Huber (1967) and Pfanzagl (1988). Further-
more, one requires compactness of ® (or local compactness and additional
assumptions on f, for 6 outside a compact set). This is related with our
entropy conditions (3.1) and (4.1). For simplicity, we again restrict ourselves to
uniformly bounded classes of functions. Similar results hold for classes with an
integrable envelope.

LeEmMMA 5.1. Let ® C O*, where (0%, 1) is a compact metric space. Suppose
0 = f, = 0 is defined (and measurable, but not necessarily a density) for all
0 € O* and p-almost everywhere continuous in § € @*. Let g:[0,0) > R be a
continuous transformation. Suppose that <= {g(f,): 6 € ®*} is uniformly
bounded. Then

1
(5’1) —%(8,*%, ” : ”me) —Prob 0 for all 6 > 0.
n

Proor. Define g, = g(f,), 6 € ©* and

w(0,p) = sup lgo—ggl, 06<0% p>0.
0,0)<p

By dominated convergence
gl_r)r%)fw(B,p) dP, = 0.
Let 6 > 0 be arbitrary. Take p, such that
fw(e,po) dP, <8, 0 € O*.

Let B, = {6 € ©*: 7(6,6) < p,} and let By,..., B, be a finite cover of ©*.
Then eventually

fw(ei, pe,) AP, < 28 almost surely,
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for i =1,...,r. Thus, we have shown that for all § > 0 there exists a
nonrandom r = r(8) with #(28, 4, - |lp, 1) <r almost surely, for all n
sufficiently large. So the entropy condition (2.3) of Theorem 2.4 holds. But
since ¢ is uniformly bounded, this is equivalent to entropy condition (5.1) (see
Lemma 2.5). O

Thus, when densities are continuous in the parameter, entropy condition
(4.1) [and entropy condition (3.1) in the case of uniformly bounded densities]
follow if parameter space is compact. Before summarizing the resulting consis-
tency statement in a corollary, let us look at what can be said about the
behaviour of 6, for this case. Call 6, identifiable for the metric 7 on ©* > @ if
for all 6 € ©*, h(f,, f,) = 0 implies 7(6,0,) = 0. Here, h(f,, f,) is defined,
for values of @ in the extended parameter space ©*, as h%(f,, f,) =
1/2) [(‘/ﬁ - \/E )2 du (we assume throughout that f, > 0).

LEMMA 5.2. Let ® C O*, where (0%, 7) is a compact metric space. Suppose
0 — f5, 0 € ©* is u-almost everywhere continuous and that 0, is identifiable.
Then, if h(f, , fo) = O for some sequence {6,}, also (8,,0,) — 0.

Proor. Define for p > 0

v(0,p) = inf |/fz —fo|, 60"
P

70,0 <

Then v(6,p) > 0 and v(6, p)TI\/ﬁ — \/fT)I as p — 0. Hence, by monotone
convergence, for 7(6,0,) # 0

lim [v%(0, p) dp = h*( fy, fo) > 0.
p—0

Take n > 0 arbitrary. For each 8 € 0, = {§ € ©*: 7(9,0,) > n}, take p, such
that

Jv*(0,p5) d > 0,

and let A, = {6 e 0,: (0, 6) < py}. There is a finite subcover Agy-..r Ay, of
the compact set ©,. Thus,

inf  A2(f,, > min [v%(6,, du > 0.
7(0,00)>n (fo fO) ISiSS'[ ( ' pe’) *
Since 7 is arbitrary, this proves the lemma. O

We present the consistency results when densities are continuous in the

parameter in a corollary. Pfanzagl (1988) proved essentially the same using a
different approach.

CoRrOLLARY 5.3. Let © C O*, where (0*,7) is compact. Suppose 0 — f,,
0 € ©*, is u-almost everywhere continuous. If (i) {f,: 8 € ®*} is uniformly
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bounded, or (ii) ® is convex and 0 — f,, 6 € @ is p-almost everywhere
concave, then we may conclude that h( f , fo) = 0 almost surely. If further-
more 0, is identifiable, then 0, is consistent for .

It is to be stressed that our extension of parameter space is only a device to
verify the entropy conditions that we imposed in Theorems 3.1 and 4.3. The
definition of the MLE remains the same, that is, én is defined by maximizing
over O, not over @*,

ExampLE 5.4. In a convolution model, one has observations X, =Y, + Z,,
where Y, and Z, are independent real-valued random variables, where Y, has
unknown distribution 6, and where Z, has known distribution K,, & =
1,2,... . Let us suppose we are on the real line and assume that K, has a
bounded, continuous density %, with respect to Lebesgue measure and that %,
vanishes at infinity. The density of X, with respect to u (= Lebesgue mea-
sure) is

2= [Ro( = 5)60(dy).

Take O* = {all measure 8 with 0 < 6(R) < 1} and take 7 as the metric on 0*
corresponding to the vague topology. Then ®* is compact and, by our assump-
tions on %, the map 6 — f, = k(- — y)0(dy), 8 € O®* is u-almost everywhere
continuous [see Bauer (1981)]. Moreover, ® = {all probability measures on R}
is convex and 0 — f,, 6 € O is concave, so from Corollary 5.3, h(f,, fo) = 0
almost surely.

6. More on interval censored observations. Consider again Lemma
1.1. Here, we compare f with f,. We have seen that it is sometimes more
helpful to compare f with the convex combination uf, + (1 — u) f,, because
fo might not stay away from zero. There are also other possibilities, depending
on the problem that is examined. We illustrate this with the model with
interval censored observAations [see Examples 3.3(a) and %.B(a)]. The idea we
use here is to compare f, with a density that is equal to f, except on a small
interval.

Let us now construct this density. First, recall that in the model with
interval censored observations,

fo(t, 8) = 0()*(1 - 8())" ",
where 8 € ® = {all distribution functions}. Define for 0 <u <v <1

u, if6,<u,
00, = {0, ifu<by,<uv,
v, iféy=v
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and
0, ifo<u,
0,,=16), ifu<b<uv,
0, if 6 >v.
Then 6, , is a distribution function. Take g, , , = /fo/fo,, = 1, n,uv =

gén.u v and %,v = {go’u’v: 0 (S @}
The following lemma is in the spirit of Lemma 1.1 and Lemma 4.2.

LEmMMmA 6.1. Forall 0 <u<v <1,

J&n,u.0d(P, ~ Py)

2
12, ., .17,

1

Proor. Since 6, , , is a distribution function,

A

flog( féfn

n,u,v

dP, > 0.

n

On the other hand,

A

1 fn
Eflog( fa

dP, < [£4,u,, (P, = Po) + [8,,..,dPy.

n,u,v

Thus, we have to show that

”gn,u,v”%-’o = _2fgn,u,v dPO

(compare with the proof of Lemma 4.2). Now,

A

fa
18n, 0. ol12, = [ ( a1

So the result is true if [(f, /fs, ., — 1 dP, < 0 or equivalently, if

fA fn/fén,u,udpoﬁf . dp,.

dPy — 2 [&,,.,, P,

n,u,v

u<6,<v u<0,<v
For each 6
fo 6 1-6
dP, = 0, + 1-26,);dG
jI;S9<Uf0 0 '/;tS0<U 02,,) 0 1 _03,1;( 0) °

=1+ 11+ III, say,

where we take {u <6 <v)={u<0<v, §p<ulU{u<0<v, 6,=>v}U
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{u <0 <v,u <86, <v}. We have
(06 —u)by +u(l-20)

I= daGg
'/1;50<v,00<u u(l - u) 0
0—u)u +u(l—2~06
< f ( ) ( ) 4G,
u<6<v,0y<u u(l - u)
-/ Go.
u<0<v, 00<u
Similarly
</ dG,
u<6<v, 0y=v
and
m < [ dG,.
u<f<v,u<fy<v
Therefore
I+ +M< [  dG,=[  dP,. a)
u<f<v u<f<v

We are going to use (6.1) with ©z and v varying. Then, Theorem 2.7 is not
powerful enough, and we need to go back to Lemma 2.6 to get the proper
probability inequalities. The result of Theorem 6.2 was first obtained by
Groeneboom (1987), who also derived the asymptotic distribution.

THEOREM 6.2. Suppose that 6, and G, have positive density near t,, then
10.(20) = B0(20) | = Foran(n1%).

Proor. If 6(t,) > 0,(¢y), we define M, = 0(¢,) — 0,(¢,) and ¢, = {min ¢:
0(¢) = 04(ty)}. Taking u = 6(s), v = 0(¢,), t, < s <t,, we get that 6, , = 6(s)
on the interval [s, ¢,).

Case 1. Let ©, = {0: 6(¢y) > 04(2y), t5 1 — to = My > n~ '3}, where ¢, , =
{min ¢: 6() — 0,(,) = 1/2M,). We also define to,; = {min z: 6(2) — 0,(¢y) =

27'M,), and 6, =6, ,, where u = 0,(¢,) + 27'M, and v = 6(¢,). Then, we
write g, ; = /fy/fs, — 1. Consider the set O, = {0 € 0;: ligllp, <
2/2%ip 1/2 llge, ;| < Co 2@/3ip=1/3 to; —ty < Cy 22/26in~1/3) Here, C, is a
generic constant that may however depend on PO Let

B, - { sup |P,[a,b) — Py[a,b)l < n—1/2 logn}.
a,beR
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Take §, = n~ /2 From Corollary 2.3, we know that the u§,-entropy with

bracketing for || - [|p, of {g, ;: & € O, ;} is at most
23i2(5/3)j
const, ——, 0<uc<l.
u

The ud,-entropy of the | -[lp-norm is also bounded by this expression,
provided we are on B,. Hence, by Lemma 2.6, taking o; , = 2/2%5,, we find
that for j > j,, j, not depending on i,

12 | o
Prob( sup [— Y g :(X,)e,| = —=2%/2%n"1, Bn) < exp[ —C2%2%].
0€0,, | p=1 32
But then also
1 .
Prob( sup Z 8o.:(X))e,| = —=2242%n"! for some i, Bn)
(62) oeﬂ;;l@l,z k=1 32
< exp[ - C2%%].

Now, let i, = argmax f{llg, ;Il»,/2%} and g, = g, ; . If 1Z,llp,/ 2% < 2/n"1/?
then, since 8, and G, have positive density around ¢,
2 _
(6.3) (%o,1 — to)(%Mo) = C()”gg,z”%() < Cp2¥n~ 1.
Because (¢, ; — ¢,) = M,, (6.3) gives
or
M, < C,2C/%n-1/3,
But then also |g, ;| < Cy2?/®/n~1/3 Furthermore, for all i = 1,2,...,
. 2 T
(2o, — to)(z_lMe) =< “go,i+1”§’o < Cy2¥2%n~t
so, because M, > n~ /3
(to,; — to) < Cy2%728in~1/3,

We conclude that if [Ig,llp,/2% < 2/n"'/2 then 6 € N7_ 1945
Let & =1{2/715, < I|g9||p0/22‘9 < 278 } In view of (6.2), and because of the
previous remark

1/n)Xr_18(X,)e 1
Prob I(1/n)X; 12g( k) e > _,B, sexp[—C022L]
g€ llgllp, 8
and so
1/n)Xi_18,(X,)e 1
Prob sup |( /n) k_ uge( k) kl >-.B, Sexp[—COZZL]_
1Zllp,/ 220> 215, llZ,llp, 8
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Desymmetrizing the process yields that for ¢ > 0 arbitrary and L sufficiently
large
z,d(P,—P,) 1
Prob sup &5 (_ 5 o) > | <e.
15llp,/2%0> 215, 1215, 2

Here, we again use from Breiman, Friedman, Olshen and Stone (1984) that
Prob(Bg) — 0.

Case 2. Let @, ={0: 0(¢y) > 0(ty), My > ¢, , — t,}, where ¢, , is defined
as in Case 1. We define 0, differently from Case 1, namely 6,=6, ,, u =
0o(2y) + (1/2)My, v = 6(¢, + 2 'z max{t, ; — to, 1 1/3}) with z > 0 chosen in
such a way that 0,(t,) + (1/2)M, > 0,(t, + 2”2 max{t, , — to,n" 3}, i =
1,2,....Write g, ; = ‘/fo/fo 1. Consider the set @, ; = {# € 0,: llg, ;llp, <
9i9in-1/2 lgy i < Co26/2i2in=1/3 4 | —t) < C2%/Dn=1/%), Let s,
n~1/2 The ud, -entropy with bracketlng of {go:0€ ®2 ,} for the metric || - II P,
is at most

2/2)ig@/3)j

const.
u

Again, the same is true for the random entropy, on the set B, defined in Case
1. Let i, = argmax {llg, ;llp,/2} and g, = g, ;. If 1Zllp,/2% < 2/n"'/%, then
|go,i|22_i max(t, ; — £y, n" 3} < Co2%2%n" 1,

In particular
M (25,1 — ty) < Cp2¥n"

so, because M, > ¢, | — t,,

ty 1 — t, < 2%/Din=1/3
Moreover,

lg, ;| < 28/2i2ip~1/3,
So 0 N;_,0,,.

We find as in Case 1

g,d(P, — P 1
Prob sup /2 (_ 3 )| >—| <e.
185l /200> 235, ”go”Po

Finally, note that by Lemma 6.1,
€, d(P, ~Py) _ 1

g5 ||%>0 27

where we take g; of Case 1 type if 6, € ®, and of Case 2 type if 6, € @,. So if
6, €0,U 0,, then with large probability M; <2%n~1/3 If 6, is not in
@1 U ®2, M, =8, - 0(to) > 0, then of course M; < n-V3,

The situation with 8,(t,) — 8,(¢,) < 0 can be handled in the same way. O
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