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STAY-WITH-A-WINNER RULE FOR DEPENDENT
BERNOULLI BANDITS!

By K. SAMARANAYAKE

University of Idaho

The k-armed bandit problem on the Bernoulli dependent arms is
discussed. Order relations on the prior distributions of the Bernoulli pa-
rameters using moments of the posterior are used to prove a monotonicity
property of the value function. When %k = 2, a stay-with-a-winner rule is
derived for negatively correlated arms and for a certain class of positively
correlated arms. These results are extensions of those given in Berry and
Fristedt for independent Bernoulli arms. They also generalize the results of
Benzing, Hinderer and Kolonko and Kolonko and Benzing.

1. Introduction. The bandit problem of independent Bernoulli arms has
been investigated extensively. Many of the important results in this area are
collected in a monograph by Berry and Fristedt (1985). This paper extends
some of the results of Berry and Fristedt to include specific dependent Bernoulli
problems. In particular, Section 2 contains extensions of the relations among
distribution measures defined in Berry and Fristedt (1985). These extensions
are used in Section 3 to formulate a theorem for monotonicity of the value
function of a k-armed dependent Bernoulli bandit. In Section 4 recursive
formulas for the advantage of one arm over the other will be provided when
k = 2. The stay-with-a-winner rule is then extended to dependent arms.

This study uses the Bayesian approach. The Bernoulli parameters are
6 =(0,,...,0,) and the prior distribution of 6 is G. For a discount sequence
A = (ay, ay, ...) and distribution G, a strategy r specifies the arm to be used
at each stage for each possible history of observations. The worth of strategy =
in the (G;A) bandit is denoted by W(G;A; 7). The value of the (G;A) bandit
V(G;A) is the maximum possible worth. A strategy for which V(G;A) is
attained is called optimal.

Theorem 2.5.2 of Berry and Fristedt (1985) shows the existence of an
optimal strategy for any (G; A) bandit provided E(lx;;||G) < »foralll <i <k,
where x, ; is the outcome of arm i at state j. They also show in their Theorem
2.5.1 that for any fixed prior G with the previous property the value function
V(G; A) is uniformly continuous in A. In Bernoulli cases E(|x;;||G) < 1 for all
1 < i < k, and so these results apply herein.

2. Order relations on prior distributions. Some properties of the
value function are derived in this section. The primary use of this development
is to compare the value function of a bandit for different prior distributions.
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The following definition concerns an order relation defined on k-dimen-
sional distribution measures. It is a direct extension of the corresponding order
relation on univariate distributions used in the independent case as in Berry
and Fristedt (1985) and will be used to derive a monotone property of the
value function. The notation {o3*0[*}G represents o1¢p{' - -+ o+ d[*G, the
posterior distribution of 6, given that arm i has chosen s; + f; times resulting
s; successes.

DEeFiNITION 2.1. Let m > 0 and 1 < i < k. For two k-dimensional distribu-
tion measures G, and G,, G, is said to be m-greater than G, with respect to
the ith component (written G, =™ G,), if E(0,[{c5*¢ 1*}G,) > E(8,/{c5* b 1*)Gy)
whenever Zj;l(sj +f;)) <m and {01*¢£*}Gj for j = 1,2 are all defined with s;
and f; any nonnegative integers. In addition, if E(6,|G,) > E(6,|G,), then G,
is strictly m-greater than G, with respect to the ith component (written
G,>" Gy). If G, 2" G, forall i = 1,...,k, then G, is said to be m-greater
than G,, without any reference to components (written G, >™ G,). If G, >™
[>7]G, for all m > 0, then G, is said to be greater than G, (with respect to

the ith component) (written G, >~ [>7]G,).

Similar definitions apply for strictly m-greater and strictly greater.
The case m = = is included in the results and definitions that follow, unless
otherwise noted.

The main use of ordering distribution functions in a general (G; A)-bandit
problem is when G; and G, in the preceding definition are chosen from G,
0,G, 0,G, $,G and ¢,G. The relevant comparisons are given in Lemma 2.4.

The following example shows that any class of two point distributions with
the same support is well ordered under > .

ExampLE 2.1. Consider the two-point distributions

Gt =pt6(al ’’’’’ ap) + (1 _lpt)ﬁ(bl ----- by)
for ¢ = 1,2. Without loss of generality assume p,; < p,. For any j, 1 <j <k,
0,G, = pid,, ., ap T (1 _l7ts)5(b1 ..... by)
¢jGt =ptf8(a1 ap T (1 _sz)S(b1 ..... by)

fort=1,2, Where

.....

R 7 v p(1-a))
! pa; + (1 _pt)bj’ ! Pt(l - aj) +(1 _Pt)(l - bj) .
In either case 0;G, or ¢;G,, the distribution takes the form
Pz5(¢z1 ..... ap T (1- Pt)5(b1 ..... by)

for ¢ = 1, 2. That is, the resulting distributions are also two-point distributions
with the same support. Furthermore, since for any fixed nonnegative x and v,
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the function px/(px + (1 — p)y) is nondecreasing in p, we also have P, < P,
Thus we get the same ordering as between the p,’s.

Applying this result inductively, it can be easily shown that a; < b, if and
only if G, =7 G,,.

The case p,; > p, follows by symmetry, upon replacing p, by 1 — p,.

This result can be summarized as: Suppose a; < b;, then p, < p, if and
only if G, =7 G,.

The next result follows immediately from Definition 2.1.

ProposITION 2.1. For two distributions G, and G, m > 1 and 1 < i <k,
if Gy 2" Gy, then E(6;1G,) > E(6,|Gy) (true for m = 0, too), 0;G, =" a'jG2
and ¢JG1 > 1¢,G, forany 1 <j <k.

REMARK. These results hold also if suffix i is absent throughout.

The next definition introduces covariance properties among arms in terms
of posterior expectations of parameters.

DEFINITION 2.2. For two arms i and j (1 <i,j<k)and m > 1, arm i is
said to have nonnegative [nonpositive] covariance with arm j up to stage m
with respect to a distribution G if Cov (6;, Jl{a- *¢f*G}) > [<] 0 whenever
T*_(s; + f,) < m and the various {05*$L*}G are all defined. In addition, the
property is strict if

Cov(6;,6,|G) > [<] 0.

When m = « we sometimes delete the term ‘““up to stage m.”

REMARK. In Definition 2.2, m cannot be zero. However, for convenience we
sometimes let m take the value zero. A covariance at stage 0 is considered a
tautology.

The following lemma provides an equivalence ‘monotone property’’ of the
previous definition. The immediate use of this result is upcoming in Lemma
2.3, which in turn will be used to prove Theorem 3.1.

LEMMA 2.2. Let m > 1. Within the domain of L*_ (s, + f;) < m and when-
ever all the distributions {o3* ¢ L*}G are well deﬁned the followzng statements
are equivalent:

D) EG,{oidL)G) is nondecreasing in s,
(ii) E(O Hos*¢1+}G) is nonincreasing in f
(i) Cov(6,,0,{os*¢L*}G) = 0.
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Proor. For {o5*¢[*}G that satisfy T*_ (s, + f) <m — 1,
(2.1) E(0i|¢j{"i* i*}G) = E(3i|{ai*¢£*}G)
if and only if
E(0,(1 - 9))[{o361)G)
Bt 0,7 910)

since E(0;{o5*¢[*}G) # 1 as dlos *¢1*}G is well defined. Cross multiplying
terms, this simplifies to

= E(Oil{oi*d),’;*}G)

(2.2) Cov(6;,0,/{os¢{:}G) > 0.
Since E(9,{os*a[}G) # 0 as o {oi*pL}G is well defined, (2.4) can be written
as

E(6,6,[{c5*61)G)
E(6,|{o," $1)G)
which is equivalent to
(23) E(6)o{oi 64)G) = E(6{os ¢ 4}G).

Since the equivalence of (2.1), (2.2) and (2.3) holds for arbitrary {c3*¢ {}G, the
proof follows. O

> E(8{0391)G),

The following result follows similarly.

LEMMA 2.3. Letm > 1. Wzthzn the domain of L*_ (s, + f;) < m and when-
ever all the distributions {0 * ¢ [*}G are well deﬁned the followmg statements
are equivalent:

(@) E@,{os*¢L*)G) is nonincreasing in s;
(i) E@,{os d)f +*}@) is nondecreasing in f
(iii) Cov(6;, 8,{o5*¢1*}G) < 0.
ExampLE 2.2. Consider the two-point distribution function
G =p6(a1 ..... ap T (1- 1’)5(b1 ,,,,, by)" .

For any 1 <i,j <k, it is easy to show that
Cov(6;,0,|G) = p(1 — p)(a; — b;)(a; — b)).

The sign of this covariance is that of (a; — b,)(a; — b,). In Example 2.1 we saw
that at any given stage the posterior dlstrlbutlon {a- *¢1*}G) has the same
form as G, but with a different value of p. Hence, arm i has the nonnegative
(nonpositive) covariance with arm j if and only if the line joining the two
points (a;, a ;) and (b;, b;) has nonnegative (nonpositive) slope.

In partlcular consider the “classical bandit problem” of Feldman (1962) in
which G = pd, ) + (1 — p)d4, o) That is, (8, 6,) is known to be either (a, b)
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or (b,a) a priori, but which is which is not known. Here, the arms are
negatively correlated (up to stage ).

In the pervious example, the arms that are correlated positively or nega-
tively have the same sign in the covariance at every stage afterwards. This is
not necessarily true in general as the next example shows.

ExampLE 2.3. Consider a two-armed bandit with the prior distribution

_ 1 1 1
G = 3802,04 1 3505,06 T 3508,05)-

We have Cov(8,, 0,/G) = 0.01, so arms are positively correlated initially. Since

2n _ 4 25 64
071G = 55002,04) T 53905,06 T 3300.5,0.5)

we get Cov(6,,0,]02G) = —0.003. Thus, after two successes on arm 1 the
arms are negatively correlated.

The next definition extends the nonnegative covariance property given in
Definition 2.2. The corresponding extension for nonpositive covariance for arm
i requires 6, to be degenerate and can be treated as a special case of nonnega-
tive covariance.

DeriniTION 2.3. For a given distribution G, if arm i has nonnegative
covariance with arm j up to stage m for all j = 1,..., k, then arm i is said to
have nonnegative covariances up to degree m with respect to G. If all the arms
have nonnegative covariances up to stage m with respect to G, then G is said
to have the nonnegative covariances up to stage m.

The next result follows immediately from Lemma 2.2. It will be used to
prove the upcoming Theorem 3.1.

LEMMA 2.4. Let 1 <m < » and G be a given joint distribution. Then:

(@) If arm i has nonnegative covariance with arm j up to stage m with
respect to G, then o,G ="' G ="' ¢,G.

(b) If arm i has nonpositive covariance with arm j up to stage m with
respect to G, then ¢,G >7*"' G ="' g,G.

REMARK. The strict version of Lemma 2.4 holds if the covariance property
is strict.

3. Monotonicity of value function. The next theorem is the main
result concerning monotonicity of the value function. Its proof follows the
same steps as in the independent Bernoulli case given in Theorem 4.1.6 of
Berry and Fristedt (1985). A discount sequence A = (ay, ay,...), with a; = 0
for all i > n is said to have horizon n.
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THEOREM 3.1. Suppose for 1 < n < «, joint distributions G, and G, each
have nonnegative covariances up to stage n — 1 and G, ="~ ! G,. Then for any
discount sequence with horizon n,

V(G;A) = V(Gy A).
The following corollary follows from Lemmas 2.2, 2.3 and Theorem 3.1.

COROLLARY 3.2. Let n > 1. Suppose G has the nonnegative covariances up
to stage m and the horizon of the discount sequence A is m. Then for any i
where 1 <i <k, V{os*¢1*}G;A) is nondecreasing with respect to s, and
nonincreasing with respect to f; whenever Lf_ (s, + f;) < n.

A result similar to Corollary 3.2 where A is geometric or truncated geomet-
ric is proven by Hengartner, Kalin and Theodorescu (1981) for two arms; this
was extended to % arbitrary arms by Benzing, Hinderer and Kolonko (1984).

Extending results from finite to infinite horizon require continuity of the
value function. For example, the proof of Theorem 3.1 for n = « uses the fact
that V(G;A) is continuous to A. Berry and Fristedt [(1985), Theorem 2.5.1]
prove that V(G; A) is uniformly continuous in A and give an example (Example
2.5.1) in which V(G; A) is not continuous in the distribution G. However when
the arms are Bernoulli, V(G;A) is jointly continuous in (G,A) and their
Theorem 4.1.1 gives a method of proof when the arms are independent. It can
be shown [Samaranayake (1988), Theorem 2.3.1] that this joint continuity of
V(G; A) is true in the present setting of dependent arms as well.

4. The advantage of one arm over another. This and subsequent
sections consider 2 = 2. Define the advantage of arm 1 over arm 2 as
A(G;A) = VD(G,A) - VO(G,A),

where V@(G, A) is the value of a strategy that starts with arm i and continues
optimally. Using the arguments of Berry and Fristedt (1985), their Lemma
4.2.1 given for independent arms applies as well in the current setting of
dependent arms:

LEMMA 4.1. For the bandit (G;A)
A(G;A) = (a; - a2)[E(01|G) - E(92|G)]
(4.1) + E(6,|G)AY(6,G;AV) + E(1 - 6,|G)A™ (6,G;AP)
— E(0,]G)A™(0,G;AD) + E(1 — 0,|G)A™ (6,G;AV),
where A*= max(0, A) and A = max(0, —A).

REMARK. Some of these A’s are not defined when the support of either
marginal distribution of G is concentrated on {0, 1}. Take the corresponding
term in (4.1) to be equal to zero since the multiplier is zero.
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The next definition introduces another monotone property that compares
two joint distributions.

DEFINITION 4.1. Let m > 0. For joint distributions G, and G,, G, is said
to be m-greater than G, in the i — j direction (written as G, =[", ; G,) if

E[(6, - 6,)|{os #£)G1] = E[(6; - 0))|{c3 61} ]

whenever Y2_((s, + f,) <m and E[(§; — 0)l{c3$L}G,] for ¢ = 1,2 are all
defined. In addition if E[6, — 6, |G1] > E[O 0. |G2] then G, is strictly m-
greater than G, in the i — j dzrectzon (written G1 >, ; Gy). As in Definition
2.1, m = » is possible.

ExampLE 4.1. Consider the two distribution functions in Example 2.1. As
shown there, for any nonnegative integers (s, f1, o, f2)

{030 }G, = Pfoa, 0y + (1 = PF)o, 1,

(ay,ay

for ¢ = 1,2. Furthermore, P} < P if and only if p, < p,. For a; <b,,

_ o px (b —a))
_(Pl - [(b ;) - 1:|(bi_ai)'

Hence if p, > p,, depending on whether the slope of the line joining the two
supporting points of G is at least 1 or at most 1, we have G, >7_,; G, or
G, >7_; G,. The cases p; < p, and a; > b; follow by symmetry.

DerFINITION 4.2. Let m > 1. Then direction i — j of a joint distribution G
is said to have the nonnegative [ nonpositive] association with arm t up to stage
m if Cov(8; — 0,,0,{o5*¢{*}G) > [<] 0 whenever Y2_(s, +f,) < m.In addi-
tion if Cov(6; — 6;,6,/G) > [<] 0, the property is said to be strict. Furthermore
in the above definition the phrase ‘“with arm ¢” is omitted if the direction
i — j of G has the nonnegative [nonpositive] association with every arm.

As in Section 2, we allow m = 0, but an association property of degree zero
is not an extra condition. Also, both these definitions extend to the case m = «
in the obvious way, and m = o« is deleted in the notation. The following results
include the case m = «.

As in the covariance properties defined in Section 2, Definition 4.2 has a
“monotone property”’ structural equivalence.

LEMMA 4.2. Letm > 1. Then within the domain of 2_(s, + f.) < m and
whenever all the distributions {o3*$[*}G are defined, E[6; — 0; Hos¢ ()Gl is
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nondecreasing [nonincreasing] in s,

if and only if E [Oi - 0|{os o }G] is nonincreasing [ nondecreasing) in f,,
if and only if Cov(6; — 6;,6,|{c5*¢4*}G) = [<] 0.

Proor. The proof of Lemma 4.2 follows along the lines of the proof of
Lemma 2.2. In particular, substituting 6, — 6, for 6;, 0, and ¢, for o; and ¢;
and 6, for 6, we can rewrite the equivalence of statements (2.1), (2.2) and (2.3)
to obtain the lemma. O

ExampLE 4.2. Consider the distribution functlon G in Example 2.2 with
k = 2. For any i, j,
2 b, —a,
V(OLIG) - COV(O“OJ'G) =p(1 —p)(ai - bl) 1- -b——_—a .
In Example 2.1 we saw that for any given stage {o3*¢ [*}G also takes the form
of G and hence Var(6,|G) — Cov(0l, 6,|G) takes the sign of (1 —(b; —a;)/
(b; — a;)). That is, the dlrectlon i — j of G has the nonnegative or nonposmve

association with arm i depending on the slope of the line joining two points of
support of G is at most 1 or at least 1.

ExaMPLE 4.3. Consider the two-dimensional distribution G, with 6, de-
fined by

04, with probability p,

92=11-6,, with probability 1 — p.

Then we have Cov(6,, 6,/G,) = 2p — DVar(6,/G,). So Cov(8,, 6,|G,) <
Var(6,|G,) for any 0 < p < 1. Since this inequality is true for any G,, we have

Cov(6;, 65l{os 1:)G,) < V(0.l{o3 6 £)G, )

for any s, and f,. Thus direction 1 — 2 of G, has the nonnegative associa-
tion (up to stage «) with arm 1. Note that in this example the prior distribu-
tion of 6, (or 6,) is not specifically defined, and was not needed in the
comparison.

The next two results are immediate from the definitions. They will be used
to show monotonicity with respect to the distribution G of the A(G;A).

PropPOSITION 4.3. Let m > 0. Then for two distribution functions G, and
Gy

(@ G, 2", ; G, if and only if G, =T, Gl.
®) If G, 2" Gy and Gy 27" G4, then G, 2", ; G,.
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PrOPOSITION 4.4. Let m > 1. Then for two distribution functions G, and
Gy

(@) If G, 2[",; G,, then for any arm t, 0,G, 21"} 0,Gy and ¢,Gy 21"}
¢,G,.
(b) If direction i — j of G has the nonnegative association with arm t up to
stage m, then
0, G ="} G =771 ¢,G.
(©) If direction i — j of G has the nonpositive association with arm t up to
stage m, then

-1 -1
¢G>0 G="T1oG.

Furthermore, the strict versions hold in (b) and (c) if the association properties
are strict.

The next result describes the relations possible between directional associa-
tion property and covariance properties described in Section 2.

PROPOSITION 4.5. With respect to a distribution G and up to degree m for
anym > 1:

(a) If direction i — j of G either has nonnegative association with arm j or
nonpositive association with arm i, then arm i has nonnegative covariance
with arm j.

(b) If arm i has nonpositive covariance with arm J, then direction i — j of G
has nonnegative association with arm i and the nonpositive association with
arm j.

(o) If direction i > j of G has the nonnegative [nonpositive] association
with arm j [i], then direction i — j of G has the nonnegative [nonpositive]
association with arm i [j].

Proor. Parts (a) and (b) follow directly from Lemmas 2.2 and 4.2. Part (o)
follows from Lemma 4.2 and from the fact that Var(X) < Cov(X, Y) implies
Var(Y) = Cov(X,Y).

5. Monotonicity of delta functions. Now we state a lemma for com-
paring two A functions with respect to two distribution functions G, and G,
This lemma will be used to prove staying with a winner properties.

LemMMA 5.1. Let 1 <n <. Suppose A is a nonincreasing discount se-
quenice of horizon n. For two distributions G, and G,

(5.1) A(G;A) = A(Gy;A)
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if either of the following holds:

(1) Direction 1 — 2 of both G, and G, have nonnegative association with
arm 2 up to stage n, G, ="~ G, and G, =73} G,.

(i) Arm 1 has nonpositive covariance with arm 2 up to stage n with respect
to both G, and G4, G, 277! G, and G, 237! G,.

Furthermore (5.1) is strict if in case () G, >";+ G, and in case (ii) either
G, ="' G,or G, =371 G,

Proor. (i) We will use induction on n. Let P(n) be the statement, ‘“For
two distributions G; and G, if G, =75} G, G, ="~ G,, direction 1 — 2 of
both G; and G, has the increment property with respect to arm 2 and A is
any nonincreasing discount sequence of horizon n, then A(G;A) > A(G4; A).”

For n=1, A(G;A) — A(Gz,A) al[E’(B |G1) E(6,/G,) — E(6,1G,) +
E(8,|G,)] which is nonnegative since G, >Y_, , G,. So P(1) is true.

Now suppose n > 1 and assume P(n — 1). Let G, and G, satisfy G, >3}
G,, A be a nonincreasing discount sequence with horizon n and assume
condition (i). Using Lemma 4.1,

A(G;A) — A(Gy;A)
= (a; — a3)[E(6,Gy) — E(6,|G2) — E(65]G1) + E(65]G»)]

+ E(0,]G)[ AT (0:G1; AD) — AT (0,Gy; AD)]
+E(1 — 6,|G1)[A*($:G1;AD) — A($,G4; AD)]
+[E(6,/G1) — E(6:1G2)][A" (01G; AV) — A*(¢,Gp; AV)]
+ E(05]G,)[ A7 (03G, AD) — A~ (0,G1;AV)]
+ E(1 — 0,]Gy) — [A7(¢5G2;AD) — A~ ($,G1;AV)]
+[E@0:1G)) — (01G2)] [ ($:61:AD) = A7 (0,Gr3AV)).

(5.2)

In the right side of (5.2), the first term is nonnegative since A is nonincreasing
and G; =73} G,. The second, third, fifth and sixth terms are nonnegative by
Propositions 2. 1 and 4.4(c) in view of P(n — 1). In the fourth and last terms
the differences in moments are nonnegative by Proposition 2.1 and the differ-
ences in A’s are nonnegative by Proposition 4.5(a), 4.5(c), 4.4(b) and Lemma
2.3 in view of P(n — 1). So the right side of (5.2) is nonnegative and P(n)
holds.

The strict version of the result follows from the same proof by induction,
and uses the fact that at least one of the following relations that are due to
Proposition 4.4(a) and 4.4(b) must hold in its strict version:

n-2 n—2
0,G, 2155 01Gy, .G, 215% .G, or 0,G, =135 ¢,G,.

Proof of case (ii) is similar to (i). O
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The major application of Lemma 5.1 is the upcoming stay with a winner
property. The following results characterize some situations concerning how
the advantage of arm 1 over arm 2 changes with successes and failures.

ProposiTiON 5.2. Suppose A is a nonincreasing discount sequence of
horizon n. For the (G; A) bandit:

(a) If direction 1 — 2 of G has nonnegative association up to stage n with
respect to arm 2, then

A(0,G;A) > A(G;A) > A(4,G;A),
A(0,G;A) > A(G;A) > A(¢,G;A).

(b) If arm 1 has nonpositive covariance with arm 2 up to stage n with
respect to G, then

A(0,G;A) > A(G;A) > A($,G;A),
A(0,G;A) < A(G;A) < A($,G;A).

(¢) If direction 1 — 2 of G has nonpositive association up to stage n with
respect to arm 1, then

A(0,G;A) < A(G;A) < A($,G;A),
A(0,G;A) < A(G;A) < A(¢,G;A).

Furthermore, if the support of one of the marginal distributions of G has more
than one point and in cases of (a) and (c) the association property is strict, all
these inequalities involving the A’s are strict.

6. Stay-with-a-winner rule. Now we state and prove the stay-with-a-
winner rule for cases (i) and (i) in Lemma 5.1. Its proof is an adaptation of
that given for the independent case in Berry and Fristedt (1985, Theorem
4.3.8).

THEOREM 6.1. Let 2 <n < x. Suppose A is a nonincreasing discount
sequence of horizon n, the support of one of the marginal distributions of G has
more than one point and either a; = a, or E(0,|G) < E(0,|G). Then, if either
(i) direction 1 — 2 of G has the strict nonnegative association with arm 2 up to
stage n, or (ii) arm 1 has nonpositive covariance with arm 2 with respect to G
up to stage n, then A(G;A) > 0 implies A(o,G; AY) > 0.

Proor. We will prove the result by contradiction assuming 6, is not
concentrated at 0 or 1 cases in which the result is trivial.

The proof is detailed to accommodate both cases (i) and (ii) at the same time
and also to be used in slightly different versions later. From Lemma 4.1,
A(G;A) > 0 and a; = a, or E(6,|G) < E(6,|G) gives

0 < E(6,|G)A* (0,G;AV) + E(1 — 6,]|G)A* (¢,G; AV)

6.1
6.1) — E(6,)G)A™ (0,G;AV) — E(1 - 0,|G; AV)A™ ($,G;AD).
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Now suppose A(0,G;A) < 0. Then by Proposition 5.2(a) for case (i) or by
Proposition 5.2(b) for case (ii), A(¢,G;A) < 0. Hence (6.1) reduces to

(6.2) 0< —E(0,]G)A(0,G;AD) — E(1 — 0,]G)A~(6,G;AV).

So A7 (0,G; AV) = 0 and A~ (¢,G;AD) = 0 since 6, is not concentrated at 0
or 1. That is,

A(0,G;AV) >0 and  A(h,G;AV) = 0.
But for case (i) by Proposition 5.2(a),
A(0,G; AV) > A(G;AD) > A(,G;AD)

and for case (ii) by Proposition 5.2(b). Thus in either case (i) or (ii) we have
A(0,G; AY) > 0, which contradicts the assumption. O

In the special case of uniform discount sequence, either (i) or (ii) of Theorem
6.1 assures the stay-with-a-winner property. Result (ii) in this special case is
proven in Koloko and Benzing (1985).

The following slightly different versions of Theorem 6.1 are sometimes
useful. In these, we do not impose restrictions on the support of G and also do
not require the strict versions of the increment property.

COROLLARY 6.2. (a) In Theorem 6.1 suppose the strict property in (i) is
relaxed and the support of G is unrestricted. Then in either case (i) or (ii),

A(G;A) >0 implies A(0,G;AD) > 0.

(b) In addition to the assumptions in (@), suppose that « # a, and
E(6,1G) # E(0,|G). Then,

A(G;A) > 0 implies A(o,G;AP) < 0.

ExaMmPLE 6.1. Let G be the distribution in Example 2.2 with £ = 2. From
Example 4.2 we know that if the slope of the line joining the two points of
support is greater than or equal to 1 then the direction 2 — 1 has nonpositive
association with arm 2, or equivalently the direction 1 — 2 has nonnegative
association with arm 2. Hence by Theorem 6.1 in either of the cases a; = a, or
E(0,|G) < E(6,]G), arm 2 has the stay-with-the-winner property. When the
slope is negative, that is, when the arms are negatively correlated, by Theorem
6.1(b) the arm with smaller mean has the stay-with-the-winner property.

Bradt, Johnson and Karlin (1956, page 1067) provides a counter example to
show that stay-with-a-winner rule is not true in general. The prior in their
. example is a special case of Example 6.1. Arm 1 is optimal initially and the
optimal strategy requires a switch to arm 2 on a success. Clearly, neither of
the monotone properties hold with respect to arm 1 for this prior. However,
arm 2 does have the stay-with-a-winner property according to Example 6.1.
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