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ESTIMATING COEFFICIENT DISTRIBUTIONS IN RANDOM
COEFFICIENT REGRESSIONS

By RupoLr BERAN! AND PETER HALL

University of California, Berkeley, and Australian National University

Random coefficient regression models are important in representing
linear models with heteroscedastic errors and in unifying the study of
classical fixed effects and random effects linear models. For prediction
intervals and for bootstrapping in random coefficient regressions, it is
necessary to estimate the distributions of the random coefficients consis-
tently. We show that this is often possible and provide practical representa-
tive estimators of these distributions.

1. Introduction. The past decade has seen growing interest in the use of
random coefficient regression models of the form

(1.1) Yi=a+ (b+b))x; +e, l1<j<n.

Here a and b are unknown constants, and {b j} and {e j} are each sequences of
independent and identically distributed random variables with means zero and
unknown distributions and the {x} typically represent a conditioned version of
a random sequence of design points. Such random coefficient regressions
model heteroscedastic errors in ordinary linear regression. As special cases,
they include some classical random effects models.

Recent surveys of work on random coefficient regression or autoregressive
models include Raj and Ullah (1981), Chow (1983), Nicholls and Pagan (1985)
and Newbold (1988). The emphasis in the existing theory has been on estimat-
ing the constant parameter a, b and on estimating the variances of the random
coefficients b;, e;. In the case of prediction intervals and for bootstrapping, we
would like to know the distributions of b; and e;. For example, this would be
important if we wished to construct prediction regions for response in random
coefficient models for panel data [see Hsiao (1986)]. In general, means and
variances alone give little information about these distributions.

We therefore raise and solve two questions in this paper: Given the data
(x,,Y), 1 <j <n, when can the distributions of b, and e; be estimated
consistently? What are practical estimators of these distributions? Section 2.2
provides conditions on the random coefficient model under which the distribu-
tions of b, and e; are identifiable. Section 2.3 describes several methods for

J
estimating the moments and distributions of b; and e;. Section 3 discusses
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computational matters. It includes a detailed algorithm for one of the distribu-
tional estimates for Section 2.3 and a numerical example.

Work on moment estimation in the context of random coefficient models has
points in common with techniques in the econometric literature for estimating
residual variances of known functional forms and for testing heteroscedastic-
ity. See for example Hildreth and Houck (1968), Goldfeld and Quandt [(1972),
Chapter 3] and Amemiya (1977). Indeed, special cases of some of our estima-
tors [in particular, of those defined at (2.1) in Section 2] have previously been
discussed in this context. However, the point at issue in the present paper is
not whether we can estimate moments of lower order, such as variance, but
whether we can simultaneously estimate a very long sequence of moments, the
length of that sequence increasing with increasing sample size. Our main
technical result describes just this situation, and enables us to develop theory
for distribution estimation. That work is readily extendable to the multivariate
case. However, the unwieldy notation required for estimation of multivariate
moments of arbitrarily high order and for applying these estimators to produce
consistent estimators of multivariate distributions, obscures the main issues.
We have therefore chosen to illustrate our results in the simpler, univariate
case.

We should comment on our decision to condition on the variables x;. In our
view, regression is intrinsically the study of functional relationships where the
design variables are held fixed, that is, are regarded as nonrandom. If the x,’s
are not conditioned upon, then the study is one of correlation, not regression.
Data for the regression model may be generated by taking an independent
sample of independent triples (b, e;, X;), defining Y, =a + (b + b)X; + ¢,
(the correlation model) and conditioning on the values X, to obtain the
regression model. The correlation model admits results very similar to those
for the regression model. Indeed, only minor modifications of the techniques
used to prove our main result (Theorem 2.2 in Section 2.3 and its implications
discussed later as Methods 1-4) are necessary.

2. Main theoretical results.

2.1. Summary. We assume that the observed data (x;,Y)), 1 <j < n, are
generated by the model (1.1). Here, a and b are fixed constants,
b,ey ..., b,,e, are totally independent random variables with b;,...,5,
identically distributed and ey,...,e, identically distributed and E(b;) =
E(e;) = 0. Section 2.2 describes circumstances under which the distributions
of b, and e; can be identified from an infinite realization (x,, Y7), (x5, Y3), . ..
and Section 2.3 discusses moment-based estimators of those distributions.

2.2. Identifiability. It is clear that under very general circumstances, the
constants a and b may be estimated consistently by ordinary least squares.
‘However, identifiability of the distributions of b; and e; is not so transparent.
In addressing the latter problem we shall assume that the design variables
Xy, Xg, ... represent a realization of an independent and identically distributed,
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nondegenerate sequence X;, X,,... with cumulative distribution function F.
A variety of other cases may be treated similarly. (For example, all of the
asymptotic theory which we shall describe applies to the case where the design
points x; = x,;, 1 <i < n, are evenly spaced on an interval I, provided the
design ‘“density” is taken to be uniform on I.)

We shall say that s € [ —x, x] is a point of support of the design distribution
F if either |s| <o and P(s —e <X, <s+¢)>0forall >0, or s=+
and P(X; > A) > 0(when s = +) or P(X; < —A) > 0 (when s = —) for all
A > 0. The following results may be proved.

THEOREM 2.1. If F has at least one of the points 0, +® or — as a point of
support, or if the distribution of b; is uniquely determined by its moments (all
assumed finite) and F is nonsingular, then the distribytions of b; and e; may
both be estimated consistently from an infinite realization (x,,Y,),(x4,Y5),... .

The proof is deferred to the Appendix.

If F is singular, then it does not necessarily follow that the b; and e;
distributions can be identified, even if both distributions are uniquely deter-
mined by their moments, or are completely known except for a single parame-
ter. For example, suppose x; takes only the values +1, and the distributions of
b; and e; are N(0,0;) and N(O0, 02), respectively. Then b,x; + e; is normal
N(0, o2 + o2) for each j. We can estimate o2 + 0%, but not ¢ or ¢, from an
infinite realization.

2.3. Estimation by moments. If both the b, and e; distributions are
uniquely determined by their moments,
Br = E(b}), and 1y, = E(ef), k=1,

J

then sample estimates of B8, and y, may be used to estimate those distribu-
tions. The first step is to estimate a and b. There is a variety of root-n
consistent ways of doing this. Variance is asymptotically minimized by choos-
ing @, b to be the so-called “efficient” estimators, defined by minimizing

T -1

S(a,b) = ¥ (Y; — a — bx;)"(2262 + 82)
J=1

where 62 and 62 denote consistent estimators of var(b;) and var(e;), respec-

tively. Ordinary least-squares estimators are given by

b= {élyj(xj - x)}{él(xj - 9?)2}_1 and ¢ =7 - &%,

where ¥ =n"'L;_,x; and Y =n"'L;_,Y;. One way of computing the effi-
cient estimators is to take the ordinary least-squares estimators as pilot
estimators of a and b, then calculate estimators of var(b;) and var(e;) (for
example, by using the methods described in the following text) and finally,
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choose estimators of a and b by minimizing S(a, b). Alternatively, methods
suggested by Carroll (1982) and Robinson (1987) could be employed.

However, the matter of efficient estimation of a¢ and b is not a central issue
in our analysis. Our aim is to establish uniform consistency of a long sequence
of moment estimators, and our main result (Theorem 2.2) is valid for a variety
of choices of ¢ and b, including the “‘efficient” estimators and the ordinary
least-squares estimators.

Our estimator of Z; = b;x; + e; is given by

Z-=Y~—(d+l;x-)=b4x-+e-+s-,

J J

where £, = —{A; + Ay(x; — %)}, A, =n"'T;_,bx; + n'L;_,e; and in the
special case where 4 and 5 are the ordinary least- squares estimators,

n n n -1
= { Y obxy(x; — %) + X oej(x; - ’7)}{ 2 (% - ’7)2} :
=1 j=1 =1
If the distributions of b;, e; and design are all essentially bounded, then each is
uniquely determined by 1ts moments, and also max _l¢;| = O{(n "' log n)"/?}
with probability 1. [The latter result follows by Benstein’s inequality, using the
argument leading to (A.4) in the Appendix]. Therefore, max; Sn|Z = Zl >0
with probability 1. '
There are many ways of estimating the moments B, and vy, root-n consis-
tently, starting from the quantities ZJ-. Observe that

k
AEIDY (’;)x}[-}lyk_l + (variable with zero mean) + o(1), 1<k<r,
=0
and so a variety of techniques based on ‘“‘regression” may be employed. We
suggest two methods. First, the ordinary least-squares method constructs
estimators 3, and 9,, 1 < k < r, as solutions of the equations

n k
(2.1) Y fo"{ZJ(e - Y (};)x}ﬁﬁk_,} =0, 1<k, mx<r.
i=1 =0 '
Typically we would constrain both ﬁl and 9, to be zero. Naturally, if we
should decide to increase the value of r, then this approach requires recompu-
tation of the entire collection ,ék,&k That difficulty may be averted by the
second method, based on recursive simple linear regressmn as follows. Take
Bl =9, =0 and assume that estimates ,82, 729""Bk 1»Vp—1 have already

been computed. Put %, = n"'L; _ ,x%,

k-1 n
W, =2} - (]le)le'ﬁli'k—l’ W,=n"1Y W,
=1 j=1
(2.2)
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That is, we estimate B, and vy, by simple linear regression on W;,, 1 <j <n,
as though the design points were xk

For each fixed & the estlmators B, and 9, defined by (2.1) and (2.2) are
root-n consistent and asymptotically normally distributed. This result is
straightforward to prove, and requires only moment conditions on the distri-
butions of b;, e; and design. However, it is important to prove that ,Bk and ¥,
converge uniformly to B, and vy,, respectively, in some sense. The property of
uniform convergence is essential to our discussion later in this section of
distribution estimation, starting from the moment estimates. When establish-
ing uniform convergence it is simpler to work with the recursive estimators
defined by (2.2), rather than the ordinary regression estimators defined by
(2.1). For recursive estimators we may obtain the following result. In this
instance, ¢ and & may be taken as either the “efficient” estimators or the

ordinary least-squares estimators.

THEOREM 2.2. Let Bk and 9, be defined as at (2.2). Assume that the
distributions of b;, e; and design are essentially bounded, that E(b;) = E(e;) =
0 and that the design distribution is nonsingular. Then for each 6 > 0 there
exists m > 0 such that with probability 1,

max (IBk Bk|+|‘9k_7kl)=0(n_1/2+a) asn — o,
1<k <n(log n)'/?

A proof of the theorem is given in the Appendix.
Once the moments have been estimated, the distributions of b; and e; may
be estimated in a variety of ways. We suggest four methods.

METHOD 1: ORTHOGONAL SERIES. The technique is based on a proposal by
Hausdorff (1923) and involves fitting a truncated and rescaled Legendre
polynomial expansion to the distribution function (or density) of b; or e;.

METHOD 2: PARTIAL FOURIER INVERSION. Assume that the density f;, of b;
exists. Then it may be estimated by

o 1 T r (it)k ~ it

(2.3) fu(y) = E@/[_T{H kgl 5 Bk}e Y dt,

where %/ denotes ‘“real part”. If r =r(n) equals the integer part of
n(log n)/2 for a sufficiently small number n > 0, if T = T(n) diverges to
infinity such that (log T')/(loglog n) — 0 and if the characteristic function ¢,
of b; satisfies sup,(1 + [£)***|y,(¢)| < o for some & > 0, then suplf, — fol > 0
w1th probablllty 1. [It will often be found that the truncated Fourier inverse f,
has ‘“‘sidelobes”, or oscillations in the tails, caused by the severe zero-one
truncation implicit in the integral. These can be substantially reduced by
replacing the integral _g 7 in (2.3) by [_., ) * @7, Where wy is a nonnega-
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tive function with bounded support, being equal to 1 over most of [- T, T'] and
coming down smoothly to zero toward the ends of the interval.]

MEeTHOD 3: DISCRETE APPROXIMATION. Algorithms exist for constructing
discrete distributions with m atoms, whose first 2m — 1 moments match
those of a given distribution [e.g., Devroye (1986), page 686ff]. If m equals the
integer part of n(log n)'/%, for sufficiently small n > 0, then it follows from
our theorem that the (2m — 1)-point distribution whose first m moments are
B, =0, 32, R Bm, converges as n — o to the distribution of b;. [With proba-
bility converging to 1 as n — «, a proper discrete distribution w1th moments
B, ..., B, exists. However, existence is not a crucial matter for the algorithm,
which will produce ‘“densities” taking negative values in the tails if the
moments do not define a proper (2m — 1)-point probability distribution.]

METHOD 4: SMOOTHED DISCRETE APPROXIMATION. Like method 1, this tech-
nique is based on a proposal by Hausdorff (1923). It rests on the observation
that if G is a distribution function on the interval [0, 1], then

[mu]

G.(u) = ¥ p,j, where pmj=/1(".‘)n(1—t)'”‘fd(;(t)
j=1 ot/

and [mu] denotes the integer part of mu, converges weakly to G as m — oo.
Now, p,,; is simply a linear combination of population moments. If these are
replaced by their sample counterparts and if m equals the integer part of

n(log n)/? for sufficiently small n > 0, then the resulting estimator G,
converges to G. Shohat and Tamarkin [(1943), page 90ff] have described both
of Hausdorff’s methods.

In practice, Monte Carlo or bootstrap methods would typically be used when
applying estimators of the distributions of b, and e; to the problem of
constructing prediction intervals. Resampling would be done for the estimated
distributions, and in this context the preceding third and fourth techniques
would be particularly straightforward to implement. In the case of prediction
intervals, nonparametric bootstrap methods have the obvious advantage of
consistency when compared with parametric techniques, if the parametric
model should be misspecified.

When confidence intervals or hypothesis tests, rather than prediction inter-
vals, are to be the end result of analysis, bootstrap methods offer advantages in
terms of coverage accuracy and accuracy of the position of the interval
endpoint. However, in this context, an adequate description of a distribution is
often obtainable through only the first few moments; see for example Beran
(1987) and Hall (1988). Pearson curves are usually fitted to the first four
moments, and the second-order accuracy of bootstrap methods relies only on
the first three moments. In particular, bootstrap methods for constructing
confidence intervals or hypothesis tests about @ and b may be based on
resampling b¥ and e from discrete distributions with moments equal to the
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estimated values (B,, B,, Bs) and (;, 92, 75), respectively. This is a version of
the so-called ““wild bootstrap’ [Hardle (1989)].

3. Computation of estimators.

3.1. Overview. The least-squares methods of Section 2.3 yield consistent
estimators of the moments {8,} and {y,} of b; and e, respectively. In practice,
it is usually reasonable to assume that the dlStI‘lbuthIlS of b, and e; are
supported on compact sets whose endpoints are plus or minus several standard
deviations from the respective means. Hausdorff’s (1923) second method for
approximating a cumulative distribution function (cdf) from its moments (the
fourth technique of Section 2.3) is designed for distributions supported on the
interval [0, 1]. To use Hausdorff’s method in our context requires a one-to-one
transformation of the support set and estimated moments to [0, 1].

The basic algebra for such a transformation is as follows. If W is a random

variable whose cdf G is supported on the compact interval [—c, c], then
Z=(2c)"'W+3

has cdf G,(x) = Gy{2c(x — 1,/2)} supported on [0, 1] with moments
k ) ' .
E(Z* =) (?)(20)_12‘(k“1)E(W1), k>1,
j=0
These relations, Hausdorff’s method and the moment estimators from Section

2.3 are combined in the following algorithm for estimating consistently the
distributions of b, and e;.

3.2. Algorithm. For simpler exposition, we describe only the algorithm
that estimates the distribution of b;. The treatment of e; is essentially the
same. There are four steps:

Step 1. Calculate the least squares estimators @, b, and the moment
estimators (B3,, 9,), 1 < k < m, by the methods described in Section 2.3.

STEP 2. Suppose that the distribution of b; is supported on the compact
interval [—c, c], where ¢ = /\Bl/ 2 for some ﬁnlte positive A. For the reasons
discussed in Section 3.1, calculate the transformed estimated moments

k . R
- £ (Hoa s e, 1ehsm

Jj=0

STeP 3. Apply Hausdorff’s method by calculating

R m\ \miz .
pj=(j)A 'B;, O<j=<m,
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where A" is the rth order difference operator defined by
ArBj =2 (:)( —I)Lﬁj+i'
i=1
The discrete distribution that assigns probability p; to the atom j/m for
0 <j<m is the estimated distribution on [0,1] that corresponds to the
moments B, 1 <k < m.

STEP 4. Calculate the polygonal approximant G to the cdf of the discrete
distribution from step 3 [cf. Feller (1971), page 540]. Then calculate the
estimated cdf of b; as

G(x) = G{(Zc)"lx + %},
with ¢ as in Step 2.
In applying this algorithm, it is important to bear the following four points
in mind:

1. All calculations should be done in double precision arithmetic or better.
Even so, round-off error can become a problem when m, the number of
moments being estimated, exceeds 30.

1.0

0.8

0.6

0.0

-0.02 -0.01 0.0 0.01 0.02

Fic. 1.
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2. In a sense, the potential for bias in G decreases as m increases, since the
polygonal approximation becomes finer. However, the moment estimators
are themselves biased and, for fixed n, the effect of this contribution will
increase with m. )

3. Both round-off error and sampling variability in estimated moments (see
Section 2.3) are further reasons for being conservative in selecting m. Trial
and error is advisable.

4. A good initial choice of the constant A in Step 2 is A = 5. Too small a choice
of A introduces spurious ripples into the tails of G. Again, some trial and
error is useful.

3.3. Numerical example. As an illustration, we applied the preceding
algorithm to the random coefficient model in which a = 0 and b =1, the
design points were x; = i/n for 1 <i < n and the distributions of b; and e;
were each uniform on [—0.01,0.01]. An artificial sample of size n = 200 from
this model served as the data set for this example. We used m = 30 estimated
moments, taking A =5 in the cdf estimation algorithm. Figures 1 and 2
cothpare the estimated cdf’s of b ; and e; with the actual uniform cdf’s.

The smoothing visible in the tails of both estimated cdf’s is the bias that
results from using only a finite number of estimated moments in constructing
these cdf’s. It is remarkable, nevertheless, how well the estimated cdf’s
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approximate the true cdf’s in this difficult estimation problem, even at sample
size n = 200.

APPENDIX: Proof of Theorems

Proor or THEOREM 2.1. Observe that since a and b may be estimated
consistently, then we may assume, for the purpose of checking identifiability,
that Z; = b;x; + e, is observable. Define ,(¢) = E(e*®), y,(t) = E(e"*%) and

W(tls) = E(eBlx; = s) = (st (2).

If s is a finite support point of F, then, by confining attention to pairs (x;, Y;)
with x; close to s, the characteristic function (¢|s) may be estimated consis-
tently for all ¢£. The technique involves selecting a small “window” h and
computing the empirical characteristic function [Feuerverger and Mureika
(1977); Csorgd (1981)] of the sample {Z;: s — h <x; <s + h}. This estimator
of ¢(¢t|s) is consistent if, as n > ©, h > 0 and nh — «. Stone (1977) has
established consistency in a broad class of regression-type problems of this
nature.

If s = 0, then ¢(¢|s) = (), and so the distribution of e may be estimated
consistently. Then, taking s’ to be any nonzero support point of F (remem-
bering that F is nondegenerate), we may estimate ,(¢) = y(¢/s'ls’) /¥ (t/s")
consistently for each ¢ and thereby obtain the distribution of b;. If +« is a
support point of F, then we may choose a sequence s;, s,,... of points of
support increasing to +«. The characteristic function (s;'uls,) =
(W, (s; 'u) may be estimated consistently for each % and each j. Letting
k — o we see that y,(u) can be estimated consistently, as may also be
U, (t) = Y(¢tls") /¢, (s't) for any support point s’. Therefore, the distributions of
both b and e may be identified.

Suppose next that the distribution of b; is completely determined by its
moments and F is nonsingular. Then there exists a nondegenerate open
interval I all of whose points are support points of F. We may consistently
estimate (¢|s) for each s € I and each ¢. For fixed ¢, use difference operators
to calculate y{P(st)y,(¢), s €I and [ > 1, from {y(tls’), s’ € I}. For example,

D (s)p() = Tim ($(tls") - 9 (t1)} /(5" — )1}

Since y(st)y () — E(b})/1! as t — 0, then all moments of b; may be esti-
mated consistently. Thus, we may estimate i, and hence also ¢,. O

ProoF oF THEOREM 2.2. For the sake of definiteness we take 4 and b to be
the ordinary least-squares estimators. Let C; > 1 denote an upper bound to
each of esssuplb;|, esssuple;| and sup;lx;|.

Step (i): Lower bound to o2 = ™', _ (xf — %,)%. We claim that if £ > 0
is sufficiently small, then there exists a constant C, > 1 such that, with
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probability 1 among sequences {x,},

(A1) min Clo2 > 1 for all sufficiently large n.
l<k<tlogn :
To check this claim, note first that if U,,...,U, are independent random

variables with zero mean and satisfying ess sup|U,| < M and var(U)) < v for
each j, then by Bernstein’s inequality [e.g., Pollard (1984), page 193],

(A.2) P( YUz t) < 2exp{—3t*/(nv + 3Mt)}
j=1
for each ¢ > 0. Let X, X,,... denote the random sequence of which x,, x,, ...

is a realization, and put u, = E(X®), U; = n"NX} — u,), M = n"'2C}, v =
n~2C2* and ¢ = n~1/2C}s, where 0<s<n2 By (A.2),

P(|Xk — | = n~12Cts) < 2e”* 24,

Define
S]? = n Z (X Xk) X2k _Xk2
j=1
= oy — 13+ (Kap — tow) — (K — ma)” = 204(Xs — 1a)-
Then,

P(SE < pop — 15 — n V2CHs — n71CPEs® — 2|u,ln1/2Cts) < 4e=s"/4
Now, |u,| < C¥ and p,, — u2 > C2*, where 0 < Cy < 1. Therefore,
k 1 ok — Mz = C3 3
P(S? < C% — 4n~12CP*s) < 4e=5"/4

for 0 <s <n'2 Put ¢ ={8log(C,/Cy)} " and s = n'/% Then for 1 <k <
¢ log n and large n,

C2* — 4n~1/2CPhs = C2H1 — 4n~V/%(C,/Cy)™s} = 3C3*.
Hence,

pl inf SZ<(iC 2”}_41 _1n1/4).
{lsklsnglognsk<(z 3) | < 4é(log n)exp(—3n'/*)

Result (A.1), with C, = (2C51)?, now follows by the Borel-Cantelli lemma.

Step (ii): Upper bound to A,, = n”lo; 2 L7_ (bfe] — Bkw)x"(x’“r —Xp)
Let ¢ be as in (A.1). We claim that, for a constant C, >

(A.3) limsup (n/logn)/?>  max C;(’””IAk,I <C,
n—o O<k,l<3tlogn,
k+i>1

with probability 1. We shall establish this result using (A.2), with
U, =n""o; 2 (bfe - Bm)xf(x}”’ - £k+l)‘
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In view of (A.1), ess sup|U;| and (var U,)'/? are both dominated by M = v'/? =
An~1C3ETDCEH < n~1Ck*!, where C, = 4C3C,. Hence, for large n and all
A>0,

max P{IAkll > A(n"'log n)l/sz”} < exp(—jA%logn),
O<k,l<itlogn,
k+1>1

whence
—(k+1) -1 172 1 2 _x/4
P max C; |A,l > A(n"tlogn) < (3élogn)'n :
O<k,l<itlogn,
k+i>1
It follows via the Borel-Cantelli lemma that if A > 2,

(A4) limsup(n/logn)”?  max  C;**DA,| <A
n—o 0<k,l<itlogn,
k+1>1

with probability 1. Taking A = C, we deduce (A.3).

StEP (iii): Upper bound to |8, — B,| + |9, — ,/. The argument in Step (ii)
may be used to show that for a constant C; > 1,

(A.5) lim sup (n/log n)l/2 max |g;| < Cj
1<j=<n

n—o

with probability 1. Now, ZAJ"z = (b;x; + e)* + Ay, where, if |¢;] < 1,

k
Bl s X (§)ib, + e f e
=1

IA

(A.6)

IA

|£j|l§k:1 (’;)[bjxj + ej|k_l < (2C) e I
Let C; > 1 be fixed, to be chosen shortly. On the set

S = {IBI - Bl +19 -l < (n_llogn)l/zce§5=lj,all I1<l<k- 1}
and assuming that k&, n are chosen such that

(n~'log n)CE-Y <1,

we have
Kk I A
max )] (l)lle ’Bﬁ'k—z - BzYk—zl
l<j<n I=1
(A7) ek s ()] .
, 501(01"“1)2(l)(|ﬁl_ﬁl|+|71_71|)
=1

< (2C)*(n'log n)"*CE,
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Furthermore,
Bl
W2t~ zg (l )xfl'B”A'k" =B+ v+ Ay + Ay,
where
= [k
Az = 1 (l)xf(bf'ef'l = Byiy),
1=0
kg X
Ajra = X (Z)xj’(ﬁjyk—z - 31‘)%-1) +t A
-1
On the set

G2 =& N { max le;| < 2C;(n~1 IOgn)l/z}’

1<j<n

assuming that n is so large that Cy(n~'log n)/2 < 1, we may deduce from
(A.6) and (A.7) that

(A.8) lngafnlAml < (n'log n)l/z{(201)2k205 + (201)2k0625;11j}.

The estimator 3, satisfies

n

Br=Bi=0;n"" Y (A, + Ajus)(xf — %)
Jj=1

On the set

_ _ 1/2
Ehz = Epy N max C;4tmIA, | < 2Cy(n"'logn) /
0<l,m<%tlogn,
l+m>1

we have

< (2C)*(n 'log n)l/z.

L (*) 4

=0

n
-2,-1 k ¥
o, n Z Ajkz(xj _'xk)
Jj=1

By (A.8) and Step (i),
21N (k=
o, n"t Y (xj xk)
j=1
Therefore, if Cy > 128C$C,C;, then

|8, - Byl < (n™'log n)l/zgcsiﬁu.

The estimator 7, satisfies

n
Ve —v=n"1) (A + Ajrz) — (Bk - ﬁk)fk
j=1

< (n"'log n)"*(2C,)*{(20,)* 20, + (2C,)* cF).

and, as in the previous paragraph, it follows that if C; exceeds an appropriate
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function of C;, C,, and Cj,
|9 — &l < (n""log n)l/zécgfxu'.

Therefore, for a suitably large Cy; (depending on C,, C, and Cj, but not on &
or n) we have

(A.9) |:ék - Bk, +|77k - 'Ykl < (n“l log n)l/zcg:f:u'.

Recalling the definition of &),; we see that for this Cg, (A.9) holds for all
1<k <(£&/2)]ogn, on the set

&= { max |e;| < 2C5(n""log n)1/2>

l<j=<n

0<l,m<itlogn,

ﬂ{ max C;4 ™A, <2C,(n" " log n)l/2 .
l+m=1

By (A.3) and (A.5), & holds for all sufficiently large n, with probability 1.
Therefore,

C_Ek=l.j Q. _ +14, — < -1 1/2
lsk?%agxlogn C (l'Bk 'Bkl I’)’k ’)’kl) (n ogn)

for all sufficiently large n. Finally, since ©; _,j < k2, then if 7 is so small that
n—n210g06 <9, -

3, — y, — -1/2+8
15k;,111(i§n)1/2(|3k Bkl"‘l?’k Ykl)Sn

for all sufficiently large n. O
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