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MINIMUM IMPURITY PARTITIONS

By Davip BURSHTEIN, VINCENT DELLA PIETRA, DiMITRI KANEVSKY
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Tel Aviv University and IBM, T. J. Watson Research Center

Let (X, U) be jointly distributed on 2" X #". Let Y = E(U|X) and let
% be the convex hull of the range of U. Let C: 2> ¢€=1{1,2,...,k},
k > 1, induce a measurable & way partition {27, ..., Z;} of 2. Define the
impurity of 2, = C~!c) to be ¢(c, E(U|C(X) = ¢)), where ¢: € X % —
R is a concave function in its second argument. Define the impurity ¥ of
the partition as the average impurity of its members: V(C) =
E¢(C(X), E(U|C(X))). We show that for any C: 2'— € there exists a
mapping C: % — ¢, such that ¥(C(Y)) < ¥(C) and such that €~ 1(c) is
convex, that is, for each i, j € C, i # j, there exists a separating hyperplane
between C~ (i) and ¢~ (). This generalizes some results in statistics and
information theory. Suitable choices of U and ¢ lead to optimal partitions
of simple form useful in the construction of classification trees and multidi-
mensional regression trees.

1. Introduction. Let (X, U) be jointly distributed random variables with
values in 2" X #", and let % C %" be the convex hull of the range of U. Let
€ be a finite set € ={1,2,...,k}, and let ¢: € X - #' be concave in its
second argument, that is,

d(e,tyg + (1 = t)y,) 2 td(c,y0) + (1 —t)d(c,y,)

for any y,,y; € % and ¢ € [0, 1].
Let Y = E{U|X} so that Y: 2" — % is a random variable on 2. For any
measurable partition C: 2" — ¢, define the objective function ¥(C) by

Y(C) = E¢(C(X), E(U|C(X))) = E4(C(X), E(Y|C(X))).

Explicitly,
¥(C) = Z{P(C‘l(c))d)(c,E(U|C(X) =¢))
(1) . Je-1e, Y (%) P(dx)
- E RO T e

We interpret C as partitioning 2" into % subsets labeled by ¢, and we
interpret W(C) as the cost of partitioning. We are interested in finding a C
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with minimum cost. We note that an important special case of (1) is

v(C)=Y P(C_l(c))qﬁ(c,P(@ =1|C(X) =¢),...,
(2) ce?
P(® =n|C(X) =c¢)),

where O is a random variable with values in the finite set: {1,2,...,n}. (2)is a
special case of (1) obtained by taking U =[6(0,1),...,5(0,n)], where
8(0,7) = 1if ® =i and 0 otherwise.

The problem of minimizing special cases of (1) and (2) has been studied both
in the literature of statistics, [Anderson (1984), Breiman, Friedman, Olshen
and Stone (1984) and Fisher (1958)] and.information theory [Chou (1988) and
Nemetz (1967)].

In particular (2) includes the objective function of the Bayesian classifica-
tion problem with possibly different costs assigned to different types of classi-
fication errors [e.g., Anderson (1984), page 224], as a special case: that is,
suppose that ® is a random variable taking n possible values, and suppose
that based on the value of X, we wish to decide on the value of 0. Let C:
2" — € be the decision mapping. If ® =i and C(X) =j, then the classifica-
tion cost is d; ;. The cost function is

V(C)= YL P(C"Y(c)) X duP(®=c|C(X) =c),
ce? ced
which is a special instance of (2), since linear functions are concave.

Breiman, Friedman, Olshen and Stone (1984), Chou (1988), Fisher (1958)
and Nemetz (1967) studied special cases of (1) and (2). They all assume
#(c, - ) = ¢(-) is independent of c. The problem of minimizing (1) was studied
by Fisher (1958) for the case where £ is a finite set, % is arbitrary, n = 1, and
where the objective function ¢(y) is —y2%, the motivation being to group
(cluster) members with similar characteristics. In connection with the con-
struction of decision trees, Breiman, Friedman, Olshen and Stone (1984)
studied (1) for the case where &  is a finite set, ¢ is any concave function,
k=2 and n =1 They also studied (2) for the case 2 =2, n =2. The
construction technique of Breiman, Friedman, Olshen and Stone consists of an
initial tree growing step and a second pruning step. Tree growing is performed
by recursive partitioning of the predictor space 2, both for regression trees
via (1) and for classification trees via (2).

Chou (1988) has studied the objective function (2) for the case where &2 is a
finite set, £ and n are arbitrary and where ¢ is the Shannon entropy function:

DUy, g, ... u,)=—3 ulogu;.
i=1
Nemetz (1967) has treated the case where k£ = 2, n = 2, ¥ has the form (2)
and ¢ is the Shannon entropy function. In Section 2 we study the general
case, thus generalizing the results of Breiman, Friedman, Olshen and Stone
(1984), Chou (1988), Fisher (1958) and Nemetz (1967). One of the conse-
quences of our results for finite £ is an algorithm with complexity polynomial
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in the size of &, for finding a partition C that minimizes ¥(C). In Section 3
we characterize V(C) in decision-theoretic terms and give examples.

2. Results.

THEOREM 1. For any C: Z— ¢ there exists a C: U%— € such that
Y(C(Y)) < ¥(C) and such that C~(c) is convex for all c € €.

Proor. Let p = (p(1), p(2),..., p(k) € X* y(i) e B" fori=1,2,...,k

and y = (y(1),y(2),...,y(k)) € #**. Now define the convex subset #cC
@k(n+1) by

(p,y):for each ¢ & € cither p(c) = 0 or p(c) > 0 and y(( ; “f

Define n: 7> %' by

n(p,) = E{p(C)fb(c, 22‘3) for (p,y) € 7.
Then for any C: - €,

¥(C) =n(pc,yc), where pe(c) = P(C™'(c))

and
vo(e) = [ ¥(x)P(dx).

Now 7 is concave on #. Indeed, suppose w,,w; € # and 0 <t < 1. Set
w, = twy, + (1 — Hw, = (p,,y,). Then

n(w,) = X pt(C)qﬁ(c, 2AS) )

cel pt(c)
e o) | (- 0pe) 7(©)
= LR p@ T e mlo)
7o(0). »(e)
zg{tpo(C)cﬁ( o] T oms|e 25

=tn(wo) + (1 —£)n(wy).

Now, for two vectors u,v € #™ we define the ordering relation u < v if
u = v orif u; <v;, where i is the first coordinate j for which u; # v;. Thus,
by Proposition 2, there exist an integer m and an m X k(n + 1) matrix A
such that

n(w') <n(w) if Aw' < Aw.
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Aw has the form

Aw = A(p,y) = Z{(G(C)p(c) + Q(c)y(c))

for some a(c) € #™ and some m X n matrices Q(c). In particular, for C:
X— €,

A(peye) = [ __P(dx)(a(C(x)) + Q(C(x))Y(x)).

xE€

Define C: % — ¢ by
C(u) = argmin, s(a(c) + Q(c)u),

where for f: € > #™, argmin,_ ., f is the smallest ¢ € ¢ at which f attains
its minimum.

It is clear that C~(c) is convex for any c. Moreover, since the ordering in
R™ respects addition and multiplication by nonnegative scalars, it is clear
that A(pcr, yo) < A(pe, yo),where C' = C(Y). Thus n(pe, yo) < n(pe, ye), s0

V(C(Y)) = ¥(C') = n(pcyer) <1(pe,ye) = ¥(C)

and the proof is complete. O

The geometrical interpretation of Theorem 1 is that for any i, j € €, 1 <,
there exists a hyperplane that separates the set (i) from the set ¢~1(j). It
follows that C~(7) is the convex set obtained as the intersection of % with an
intersection of half-spaces. For the case % = #' (k arbitrary), we have that
C~Xe), ¢ =1,2,...,k, are disjoint line segments, that is, C~*(c) has one of
the four forms:

c—1 c—1

,°) or [yThy) or (y7hyl or [y,
where if %= (y,y;) or [y, y;) or (3, y5] or [y,, y,] then y° =y, and y* = y,.
If & is a finite set with m members, then the complexity of a full search for
a partition C that minimizes ¥(C) is £™. On the other hand, Theorem 1
implies that there exists an algorithm, polynomial in m, for finding a mapping
C that minimizes V. This statement relies on a well-known theorem [e.g.,
Cover (1965)], which states that given some set of m points in %", the
number of possible divisions of the set into two linearly separable subsets (.e.,
into two subsets that may be separated from each other by an hyperplane) is
bounded by

(v

which is polynomial in m. This result implies that the number of possible
divisions of the m points into %2 linearly separable subsets (i.e., & subsets,
where each may be linearly separated from any other subset) is also polyno-
mial in m. Thus, by Theorem 1, when searching for the best partition, one
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needs to compute the objective function ¥, only for these polynomial number
of subsets.

3. Characterization and examples. In this section we give a decision-
theoretic characterization of the objective function (1). We formulate a general
partitioning problem in decision-theoretic terms and show that both the
appearance of a concave function and the reduction of U (or Y) to its
conditional expectation in (1) follow naturally from the assumption of a linear
loss function. We shall also describe some specific instances of this problem in
clustering, statistical decision theory, classification and regression.

Let 2 be a sample space, P be a probability distribution on 27, and Y:
2 — % be any random variable. Let &/ be a set of actions and let L:
o X YU —> R be aloss (cost) function. Suppose that when we observe x € 2~
we select an action d(x) € & according to some decision function d: 2" — 7.
The expected cost of this process is

(3) r(d) = EL(d(X),Y(X)) = LegP(dx)L(d(x),Y(x)).

Now let ¢ be a finite set of classes and for each class ¢ € ¢, let &, € &7 be
some set which specifies the actions which are allowed for c¢. Suppose that we
require the strategy d to be of the form d = J(Q), where C: 2" — ¢ is some
partition of 2~ into classes labeled by ¢, and d: € — &7 is some choice of
allowed action d(c) € o7 for each class ¢ € €. In other words, for a given
partitioning function C, we only allow strategies (decision functions) d which
select the same action d(c) for all x assigned to the class ¢ = C(x). The lowest

possible cost for a given C is
¥(C) = inf{r(d(C))|d(c) € o forall c € ¢},

where the infimum is taken over the set of allowed decision functions d:
€ > .

The partitioning problem is to find a partition C of small or minimum cost
W(C). We shall investigate partitioning assuming the following linear struc-
ture: L(a,y) = Ly(a,y) + L(y) where L, is affine linear in y; that is,

Lo(a,tyy + (1 —t)y,) =tLo(a,y,) + (1 — t)Ly(a,y,)

for all yg,y, € and 0 <t < 1.

We shall show in the examples below how various questions in clustering,
decision theory, classification and regression can be viewed as instances of this
general problem for appropriate choices of %, &/ and L.

Define ¢: € X % — #* by

é(c,y) = inf{Ly(a,y)|a € o},

where the infimum is taken over the set of allowed actions a for the class c.
The linearity property of L implies that ¢(c, y) is concave in y. It is easy to
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verify [simply note that r(d(C)) = £, .oP(C X e)Ly(d(c), E(YIC(X) = c¢))
+ const.)] that ¥(C) can be expressed as

v(C) = f P(dx)¢(C(x), E(Y|C(x))) + const.,
xeZ
where const. = [, . ,-P(dx)L(Y(x)) and where E(Y |C(x)) is a shorthand nota-
tion for E(Y|CXC(x)). E(Y|C): € — % is the conditional expectation

Jemio P (dx) Y (x)

(4 E(YIC)(0) = BYIC(X) = o) = S prs s

We thus see that the objective function (1) is a natural choice for the
partitioning problem.

In many of the examples below, ¢ can be interpreted as a measure of
impurity or uncertainty, so that ¢(c, E(Y|C(X) = ¢)) can be viewed as the
impurity of the class ¢, and ¥(C) can be viewed as the average impurity of the
partition C.

4, Examples.

Clustering. Let Y: 2" — % be a measurable function. In clustering we
wish to partition £ into classes labeled by ¢, and for each class choose a
centroid a = d(¢) € % so as to minimize the average within-class squared
deviation

r(d(0) = Elv(x) —d(cx)| = [ Pan)]¥(x) -d(cel”

The clustering cost can be viewed as an instance of the general cost (3) if we
take &/= %, and let L(a,y) = |ly — al®

This L satisfies the linearity condition with L(a,y) = lla — ylI* — Iyl If
we allow all maps d: € — & (so that o7, = o for all ¢), then ¢(y) = —|lyl>.
This is the multidimensional extension of Fisher’s problem [Fisher (1958)].

Bayesian decision theory. Let 2" be a measure space, let O be a finite set,
and let P be a probability distribution on 2°x @. Let &7 be a space of actions
andlet L: &/ X ® — %' be aloss functlon which gives the cost L(a, 6) of 8 if
action a is selected.

We wish to choose a decision functlon d: 2 — & which minimizes the
Bayes risk

5 r(d) = P(dx,de)L(d(x),0).
(5) (@) = [, el (@ d0)L(d(x),0)

The Bayes risk (5) can be expressed as an instance of the general cost (3) as
follows. Let % be the n — 1 simplex in #" for n the cardinality of O; we
view % as the space of probability vectors on ®. Let P be the marginal
distribution of P on 2 and let Y: 2" —> % assign to x € £  the conditional
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(posterior) distribution (probability vector) y = {y,}yc e = {P(81X = x)},c ¢ on
0. Finally, let L: &/ X % — %! be the average cost

L(a,y) = Z@yoi(a,ﬂ)-

Since this L is linear in y, we can take L, = L. From (4) and the definition
of Y it follows that E(Y|C)c) = P(-|C)c) and so the cost ¥(C) is given by

¥(C) = E®(C(X), P(-|C(X))) = [xegzP(dx)qs(C(x),15(~|C(x))).
Some specific choices of o7 and L are:

1. Error rate. Let &/= © and let L(#,0) = 0 if ¢ = 6 and 1 otherwise. Then
r(d) is the probability of error if we guess that 6 equals d(x) when we
observe x € &

2. Cross entropy. Let &/= % be the space of probability vectors on ® and let

L(a,8) = —log a,. Then the cross entropy between y and a is
L(a,y) = = ¥ y,loga,.
60O

3. Coding length. Let o7 be the set of valid encodings of ® and let L(a, 8) be
the length of the codeword for  in the encoding a. Then r(d) is the
expected codeword length. This example is, of course, closely related to the
previous one.

If we allow all maps d: € — 7 (so that o7, = &7 for all ¢), then it is easy to
calculate ¢: € X  — #* in these examples:
1. Error rate. ¢(c,y) = min,_o(1 — y,).
2. Entropy. ¢(c,y) = —Lyc 0¥ 10g ¥y
These ¢ have well-known interpretations as measures of uncertainty (impur-

ity). Note that in example 2, the cost W(C) is just the familiar conditional
entropy of {y,}ce given the class of x.

Classification. In the setup of the previous example, let &/= € and as-
sume that the only allowed action for class ¢ is a = ¢ (so that 27, consists of
the single element ¢). Then ¢ = L and

¥(C) = [(x’o)egrx(;ﬁ(dx,da)i(C(x),e)

is the usual classification cost, for example, the probability of misclassification
in the case of zero—one losses.

Regression. Let 2 be a measure space and let P be a probability measure
on "X R". Let

2 ((B,B)|Be 2™, pean,

where B is arranged as an n X n matrix.
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_ Let L: /X B" > R be the following loss function which gives the cost
L(a, w) of w if action a = (B, B) is selected:

L(a,w) =|B(w - B)|I° for w e Pn.
This is the cost of the affine transformation, represented by a = (B, 8) on w.
We want to choose a class C(x) for each x € 2~ , and choose an affine

transformation d(c) = (B(c), B(c)) € o7 for each class ¢ € € so as to mini-
mize the average squared deviation

(6) r(d(C))= [

(x’w)egwnﬁ(dx, dw)l{B(C(x))(w _ l?(C(x)))“2_

(Note that this generalizes the clustering example.) Some specific choices of
&/ are:

1. Translations. &= {a = (B,B): B = Identity}.
2. Volume preserving maps. o/= {a = (B, B): det B = 1}, where det is the
determinant.

The regression cost (6) can be expressed as an instance of the general cost
(3) as follows. Let P be the marginal distribution of P on y, and let Y-
2 — U assign to x € 2 the cross-products matrix and the mean vector of
the conditional distribution of P given «x:

Y(x) = (Yy(x),Yy(x)) = ([ E%nww‘“ﬁ(dwlx),fe@ﬂwﬁ(dwlx)) €,

U = {(U, w)|U € ,9?”2, w € X", U~ uu' is nonnegative deﬁnite},
where w' is the transpose of w. Then it is easy to see that r(d) is given by (3),
with L: o/ X % — %' given by
L(a,y) = tr{B - cov(y) - B} +| B(y, - B,

where cov(y) =y, — y,5§,

where tr is the trace and B is the transpose of B, for y = (y;,y,) € % and
a = (B,B) € &. Since L is linear in Y, we can take L, = L.

For the examples 1 and 2 we can calculate ¢ using (7) and (for example 2)
Proposition 3:

(7)

1. Trace. ¢(y) = trcov(y). ‘
2. Normalized generalized variance. ¢(y) = n det!/” cov(y) [Anderson (1984)
defines det cov(y) as the generalized variance of yl.

These ¢ has well-known interpretations as measures of uncertainty.

APPENDIX A

We collect here some facts about convexity which were needed in the body of
the paper. All our results are simple corollaries of the following separation
theorem.
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THEOREM 2. Let I be a nonempty convex subset of #" and let w € B" \
. Then there exists a nonzero A € R™ such that A -t > A -w forall t € I.

For a proof see, for example, Rockafellar (1970), Theorem 11.3.
We begin with a version of Theorem 2 which involves strong inequalities.
We first define the following ordering relation on the elements of %#™:

For any two vectors u,ve X", u<v if u=v or if
u; <v;, where i is the first coordinate j for which u; # v;.

ProposITION 1. Let I be a nonempty convex subset of #" and let
wE R\ 7. Then there exist an integer m < n and an m X n matrix A such
that At > Aw ift e T.

Proor. We use induction on dim(.9"), the dimension of  [dim(.9") < n].
The case dim(J ) =1 is easy since then  is an interval. For arbitrary
dim(.9"), we use Theorem 2 to find a nonzero A € #" such that A - ¢ > A - w
forall t € . Let #={u € #*A-u=A-w}, so that dim #=n — 1. Then
by the inductive hypothesis applied to the convex set 9 N # whose dimension
is less then n, there exist an m <n — 1 and an m X n — 1 matrix A’ such
that At > Aw for all t € I N H#.

Define the m + 1 X n matrix A by A = (2) Then clearly At > Aw for all
te 7. 0O

We next apply Proposition 1 to concave functions.

PROPOSITION 2. Let n: 2 — R be a concave function defined on a convex
subset 9 of R" and let d, € D. Then there exist an integer m < n and an
m X n matrix A such that n(d) < n(d,) if Ad < Ad,,.

Proposition 2 follows by taking 7= {d € 9In(d) > n(d,)}, w=d, in
Proposition 1 (and noting that if .7 is empty then Proposition 2 holds
trivially).

APPENDIX B

Let T be a nonnegative definite n X n symmetric matrix. For % a set of
n X n matrices, let

p#(T) =inf, . & tr U'TU,
where tr is the trace and U" is the transpose of U.

PROPOSITION 3. pg(T) = n det'/™(T) for = {Uldet U = 1}.

Here det is the determinant.
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Proor. If detU =1 and {A;} is a complete set of eigenvalues for the
symmetric matrix U'TU, then

1 1 1/n
(8) —trUTU=-Y A > (I—[Ai) ~ det'/" U'TU = det'/" T.
n n i

The middle inequality is the familiar one between arithmetic and geometric
means, and the last equality holds since det is multiplicative. On the other
hand, since T is nonnegative definite, there exists an n X n matrix S such
that 7 = S'S. Then if U = (det!/” S)S~! det U = 1 and

(9) tr U'TU = tr(det> " S)I = ndet? " S = ndet'/" T.
The statement follows from (8) and (9). O
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