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A RANK STATISTICS APPROACH TO THE CONSISTENCY
OF A GENERAL BOOTSTRAP

By Davip M. MasoN® AND MicHAEL A. NEwTON 2

University of Delaware and University of Washington

A general notion of a bootstrapped mean constructed by exchangeably
weighting sample points is introduced. Consistency of this generalized
bootstrapped mean, which includes proposals of Efron and Rubin among

- others, is proved by classical linear rank statistics theory. The consistency
of generalized bootstrapped empirical and quantile processes is also estab-
lished.

1. Introduction. We introduce a generalized bootstrap procedure and
study some of its properties by means of rank statistics methods. To motivate
our generalized bootstrap, let X, X,,..., X, be iid. F. Efron’s (1979) boot-
strapped mean can be written as

n
(11) X,/,n = Z Mn,zXL7
i=1
where M, = (M, ,M, ,,..., M, ,)is 1/n times a multinomial random vec-

tor formed from n draws on n equally likely cells, and independent of
X, ..., X,. Notationally,

nM, ~Mult(n;1/n,1/n,...,1/n).

Analogously, Rubin’s (1981) Bayesian bootstrapped mean can be written as

n
(1.2) )_(_@,n =X D, X,
i=1
where D, = (D, |, D, ..., D, ,) is equal in distribution to the vector of n

1 spacings of n — 1 ordered uniform (0, 1) random variables independent of
X, ..., X, That is,

D, ~ Dirichlet(n;1,1,...,1).

[If instead, D, is chosen to be Dirichlet (n;4,4,...,4), then X ,n corresponds
to a suggestion of Weng (1989), Remark 2.3, and Zheng and Tu (1988),
Remark 5.]

A natural generalization of these two forms of the bootstrapped mean is the
following. Consider a vector of random weights W, = (W, |, W, ,,..., W, )
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independent of the data X,,..., X,. Assume that for each integer n > 1, the
components of W, are exchangeable. Now form the generalized bootstrapped
mean corresponding to the weight vector W, :

n
(1.3) XW,n= )y W, . X
i=1
Note that X , , and X, , are special cases of X w.n- Typically, the weights W,
will also satisfy

(") Ww,, >0, i1=1,2,...,n,n>1,
n
(71) Y W.i=1,
i=1
and for some ¢ > 0,
n
(#m) nY (W,;=1/n)" >pc asn— o
i=1
Let X, denote the sample mean of X, ..., X, and S2, the sample variance,

" (X, —X,)?/n. Assuming that 0 < Var X := 02 < , it is known in the
two special cases (1.1) and (1.2), that uniformly in ¢,

(1.4) P(Vn (X, ,-X,)/S, <t|X,,...,X,) » ®(t) as,

as n — o, where ® is the cumulative distribution function of the standard
normal random variable. A bootstrap procedure satisfying (1.4) is said to be
consistent. See Bickel and Freedman (1981) for the case #'= .# and Lo (1987)
for #'= 9. For Edgeworth expansions of the conditional distribution in (1.4),
refer to Singh (1981) when #' = .# and Weng (1989) when #'= 9.

In Section 2, we prove a theorem which provides conditions on the weights
W, under which (1.4) is true. In particular, this yields (1.4) for #=.# and
¥'= 9 as special cases. Our approach relies heavily on a classical result due to
Hajek (1961) on the asymptotic normality of linear rank statistics. We remark
in passing that a natural extension of the Singh (1981) and Weng (1989)
results is feasible using Edgeworth expansions for linear rank statistics as in
Does (1983) and Schneller (1989). In Section 3, we consider generalized
versions of bootstrapped empirical and quantile processes. Our treatment of
these processes is indirectly based on rank statistics methods through our use
of Theorem 24.2 of Billingsley (1968).

Zheng and Tu in a series of papers [see Zheng and Tu (1988) and the
references therein] have studied and established the consistency of a method of
random weighting which is essentially a special case of (1.3). The novelty of
our point of view is that classical linear rank statistics theory provides a ready
method for verifying the consistency of a variety of bootstrap procedures.

2. Consistency of the generalized bootstrap mean. We begin with a
theorem on the asymptotic normality of linear combinations of exchangeable
arrays. This theorem is an extension of Theorem 1 of Chernoff and Teicher
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(1958) and relies on Theorem 4.1 of Hajek (1961). It is our basic tool for
establishing the consistency of the generalized bootstrapped mean.

Let {X, ,: k=1,2,...,k,, n > 1} be an array of real-valued random vari-
ables sitting on a probability space (Q,, o7}, P,). Let {Y, ,: £ =1,2,...,k,,
n > 1} be another array of real-valued random variables independent of the
X, , array, and sitting on a probability space (£, &%, P,). Suppose that
k, > © as n » » and for each n, the variables Y, |,Y, ,,...,Y, , are ex-
changeable Let X, and Y, be the row averages of these arrays. Define the
following random varlables

(2.1) Z, = 1/2>
(Zl(Xn i Xn)ZZJ(Yn i n) )
(2~2) Un,k = (Xn’k - Xn) 1/2°
(Zi(Xn,i - Xn) )
(2.3) i (Yo~ ¥)

(mv. 7))

(We define 0/0 = 1.) Note that Z, are governed by the product measure
P, X P, while U, , and V, , are governed by the respective marginal mea-
sures P, and P, Each w, € (; defines two infinite arrays of constants
%, 0 =X, p(0)), u, , =U, (0), and similarly each w, € Q, defines arrays
Yne = Yo wl@3), v, 4 =V, 1(wy).

We have the following main theorem.

THEOREM 2.1. Suppose that as n — «,

2.4 U2 0 a.s.P,
(2.4) pax Uiy =0 as Py
2.5 V2, 0,
(2.5) max —p,

and for almost every w, € Q, and all 7> 0,

(26) Dn(T) = Z Z ui,in? l [knun z‘/n2 > T] —-) O

Then for almost every w, € Q; and uniformly in t,
(2.7) P(Z, <t|X, (0) =x,,,k=1,2,...k,) > O(t),

where ®(t) is the standard normal cumulative distribution function.

Proor. Choose a point w; € Q, for which max,_,_, U?,(»,) — 0 and
D,(7) = 0 in P, probability. The proof relies on the introduction of ranks as
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follows. Let (R, |, R, 5,..., R, , ) be a random vector taking each permuta-
tion of (1,2,...,%,) with equal probablhty, and independent of the X, , and
Y, & Construct a permuted version of Z, as

\/EZan,k(Yn,R,,,k - ?n)

Z* = 2 /2"
(Zi(Xn,i - Xn) ZJ(YM‘ B ?") )

n

It is a simple consequence of the rowwise exchangeability of Y, , that Z* has
the same distribution as Z,. Thus it suffices to prove (2.7) w1th zZ, replaced
by Z*.

Let %, , and y, , be two arrays of real ‘numbers (dimensioned as X, ,) with
row averages X, and Y., and define u, , and v, , as in (2.2) and (2. 3)

u _ (xn,k _"En) v _ (yn,k —yn)
- n,k _ .2\1/2
(Zj(yn,j—yn))

n,k _o\1/20
(Zj(xn,j - x,) )
and set for 7 > 0,

dn(’f') Zunz njl[k n,i Ilj>T]

Introduce the linear rank statistic

\/k—n_zkxn,k(yn,Rn.k - yn)

(Zi(xns = 2L, (9, — 70)

T =

n

2)1/2'

Note that the randomness in T, comes only through the ranks (R, ,,...,
R n,k )

Hajek’s Theorem 4.1 [actually its proof combined with that of the Linde-
berg-Feller theorem as given in Billingsley (1968)] says that for every ¢ > 0
there exist 6 > 0 and 7 > 0 such that whenever

2.8 max u2 , <38, max v2, < 3§, d <4,
( ) L<k<k, n,k L<k<k, n,k n(T)

then uniformly in ¢,
|P(T, <t) — ®(t)| <e/2.

Treating x, , and y, , as realizations X, ,(w,) and Y, ,(®,) and noting that
given these realizations T,=2ZF we get 1mmed1ately when (2.8) holds that
uniformly in ¢,

no

(2.9) |[P(ZF<t|X, h=%0 s Yoo =0nnr b =1,...,k,) — ®(t)| <e/2.

In what follows, we use an obvious abbreviated notation for the variables being
conditioned on.
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Almost sure convergence of max,_,_, U?, to 0 means that for every
5> 0 and almost every w; there exists N, = Ny(w;,8) such that for all
n> N, max,_,_, u%, <38 Let

— . 2
B, = {w2 € Q,: max v, , > 5}
l<k<k,

and for any 7 > 0 set
Co(7) = {wy € Qy: d (1) > 5}.

By assumption, there exist N, = N,(3,¢) and N; = Ny(w, 5, ¢, 7) such that
for all n > N,, Py(B,) <e/4 and all n > N,, P,(C, 7)) <e/4. Combining
these facts with (2.8), we have for n > max{N,, N,, N,}, uniformly in ¢,

P23 < t1X,, 4(w) = ©()]
= [1P(25 < X, (00), Y, a@2) = ®(0)] dPy( ;)
< i one PUEE < K0 402), Yo 4(@2)) = @(8)] dPy(w2)
i Bnucn(T)dPQ(wz)
< (/2) Py B; 1 Ci()) + Po((B,) + Po(Cy(7))

<e/2+e/4+e/d=c¢.

By the arbitrary choice of ¢ > 0, the proof is complete. O
We remark that the proof of our Theorem 2.1 was based on ideas in the
proof of Theorem 1 of Chernoff and Teicher (1958).

The following two corollaries provide useful sets of sufficient conditions for
the assumptions of Theorem 2.1 to hold.

CoroLLARY 2.2. Suppose X, , =X, k=1,2,...,k,, where X;, X,,... are
ii.d. Fwith 0 <Var X = 0% < », and also assume that (2.5) holds. Then
(2.7) follows.

Proor. It is well known that EX? < « if and only if

(2.10) max |X;|/Ym -0 as. P asm — .

l1<j<m
Also we have

(2.11) S2 > 0% as. Plasm — .
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From these two facts, we easily infer (2.4). By (2.5), we get for any 7 > 0 and
0 <& <1 that for all n sufficiently large with P, probability greater than
1-—e¢,

kn

Y ui’in’jl[knui’j > T/E]
1j-1

D,(7) < |

1

A
LM

bl

= ui’jl[knui’j > T/E] = A,(7/¢).
Jj=1

Now A,(7/¢), which does not depend oni the weights V, ;, converges almost
surely P; by the strong law to

1 r0?
A(r/e) = ;EE{(XI -1 (X, - ) > —}}

where u = EX,. Since A(7/¢), in turn, converges to 0 as ¢ goes to 0 (by finite
variance of X,), we easily see that (2.7) holds. O

COROLLARY 2.3. Assume, in addition to (2.4) and (2.5), that for some
c>0,

ky,

(2.12) k, (Yn’l - Yn)2 —p, C aAsSN > ©
i=1

and

(2.13) lim lim sup E{Ynz,l]-[?nz,l > TD =0,

n—o

where ¥, | = k,(Y,

n n

1 Y,). Then (2.7) holds.

Proor. Forevery 7> 0and 0 < £ < 1, we get after applying some elemen-
tary bounds along with (2.4) and (2.5) that for all large enough n with P,
probability greater than 1 — ¢,

k, k,
D,(7) < u VZ(V2; > 1/¢)
i=1j=1
2 ka —\2 — 2
< - g kY, , - Y,) 1[(kn(Yn,j - Yn)) >7/e| = n»(T/g).

From exchangeability we obtain

ET,(7/¢) = %E{?jll[?jl > 1/e]}.
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Next, assumption (2.13) says that
lim limsup ET,(7/¢) =0,

T n—oo

from which we readily conclude (2.6) and hence (2.7). O

In the two examples to follow, we show how Theorem 2.1 is used to
establish the consistency of various bootstrapped means.

ExamPLE 2.1 (A generalized randomly weighted mean). Let X;, X,,... be
iid. with 0 <VarX, =¢® < and set -X, , =X, for k=1,2,...,n and
n > 1. Independent of the X,’s, let £, ¢,,... be a sequence of i.i.d. strictly
positive random variables with E¢2 < o and set

Yn,kz'fk/25j, k=1,2,...,n,n>1.
j=1

It is clear that the assumptions of Corollary 2.2 are satisfied with k&, = n. Also

(2.14) Yoy, -7  =ny 5}/( y a) 1,
j=1 1 i=1

j=
which converges almost surely as n - » to

pf = E&1/(Bé)" - 1.
From (2.7) we get uniformly in ¢,
(215)  P(Va(X,., —X,)/(S,pe) <t|X,.... X, ) > 0(2) as,
asn - o Here W, = (Y, ,Y,,,...,Y, ).

ExampLE 2.2 (Efron’s and Rubin’s bootstrapped means). Let X, X,,... be
ii.d. F, where F is in the domain of attraction of a normal law. This can be
shown to be equivalent to
(2.16) max X?/(nS?) —»p 0 asn — .

l<i<n !
[See Section 5 of S. Csorgé and Mason (1989) and the references therein.] Now
by the subsequence principle, (2.16) holds if and only if for every subsequence
{1} of {n} with [, » « as n — o« there is a further subsequence {&,} c {l,}
with k£, — « as n — » such that

(2.17) max Xiz/(ankzn) -0 as.P asn — o,

1<i<k,

Now let X, ; = X; fori=1,2,...,k, and n > 1. Obviously (2.4) follows from
(2.17). Next set Y, ; = W, , again with i =1,...,k, and n > 1, where W, ,
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equals either the multinomial weights M, . in (1.1) or the Dirichlet weights
D, , in (1.2). For either choice, routine calculations show that

lim E(k,(Y,, - ¥,)) <=,
from which (2.13) readily follows by Chebyshev’s inequality. That assumptions
(2.5) and (2.12) hold for the Dirichlet weights is a consequence of the discus-
sion in Example 2.1, since in this case, the vector of D, ; is equal in
distribution to the vector of ¢,/X j’;lf ;» where &£, &,,... are ilLd. exponential
random variables with mean 1. That these two assumptions also hold for the
multinomial weights follows from our Lemma 4.1 in the Appendix and Theo-
rem 1 of Hoeffding (1951).

From all of this we can conclude, using Corollary 2.3 and the fact that ¢ = 1
in (2.12) for both multinomial and Dirichlet weights, that uniformly in ¢, as

n—)OO,

(2.18) P(V&, (Xyi, — X0 )/Sh, <tX1,..., X, ) > 0(1) as. P,

where # equals .# or 9. Consequently, by the subsequence principle we
obtain that uniformly in ¢,

(2.19) P(Vn (X, - X,)/S, <t|X,,..., X,) —=p ®(1)

as n — . The case #'=.# has been previously proved in Section 5 of S.
Csorgé and Mason (1989), where it is shown that for (2.19) to hold, it is
necessary that F be in the domain of attraction of a normal law. If 0 <
Var X, < «, then from (2.4) we get (2.17) along the full sequence {n}, which
implies that (2.18) also occurs along {n}.

Note that Theorem 2.1 does not allow the weights W, ; of (1.3) to depend
upon the data themselves. Theorem 2.1 can be reformulated such that the
weights are conditionally exchangeable given the data X,,..., X,.

3. Consistency of the generalized bootstrapped empirical and
quantile process. Let X, X,,..., X, be a sequence of i.id. F random
variables and for each integer n > 1 let

]_ n
(3.1) F(x)=—Y 1[X, <x], —® <x < %o,
nia

denote the empirical distribution function based on the sample with corre-
sponding empirical quantile function or inverse of F,:

(3.2) Q,(s) = inf{x: F,(x) >s}, 0<s<L1.

The quantile function @ of F is defined as in (3.2) with F replacing F,,.
Throughout this section, {W, ;: i = 1,2,...,n, n > 1} will denote an array

of random weights independent of X,, X,,..., which are exchangeable on

each row and satisfy (#7), (#7) and (#{;). The generalized bootstrapped
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empirical distribution becomes

(3.3) Fy (x) =Y W, 1[X, <x], -0 < x < o,
i=1
Notice that exchangeability of W, ,,..., W, . and (#7;) imply that
E(Fy (2)|X,,...,X,) = F (%), —0 < x < o,

The bootstrapped empirical quantile function @, , is the left-continuous
inverse of F),

(3.4) Qy .(s) = inf{x: Fy, ,(x)-> s}, 0<s<1.

We now define the generalized bootstrapped empirical process to be
(35) @y, (x) = nV3(Fy () ~F(x)), —=<x<w,
and the generalized bootstrapped quantile process to be

(3.6) Bya(s) = 1% (Q,(s) = Qy.u(s)), 0<s<L.

The following theorem establishes the consistency of these two bootstrapped
processes and is the analog of Theorems 4.1 and 5.1 of Bickel and Freedman
(1981).

THEOREM 3.1. Suppose that in addition to (#7), (#3) and (W), and
exchangeability, the weights satisfy

(3.7) max nW?, -, 0 asn — .
l<i<n ! 2

Then along almost all sample sequences, given X,, ..., X,,

(3.8) ay , converges weakly to c'/*?B(F),

where B is a Brownian bridge. Furthermore, if F' has a positive continuous
density quantile function f(Q), then along almost all sample sequences, given
X, forall 0 <a <b <1,

(3.9) By, converges weakly to c'/*hB
on D;[a, b] (the left-continuous version of Dla, b]), where h = 1/f(Q).

Proor. For integers n > 1, set

(3.10) W(t)=X W,,, 0<t<l,

i<nt
where the empty sum is defined to be 0 and let
(3.11) V,(¢) =influ: W,(u) >t,ue[0,1]}, 0<t<l,

be the left-continuous inverse of W,.
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The assumptions on the weights allow us to apply Billingsley’s (1968)
Theorem 24.2 to infer that the process

w,(t) =n"? ) (W,,—1/n), 0<t<l,
i<nt
converges weakly to ¢!/2B. Moreover, since it is readily checked that
sup |@,(t) — n*Wy(t) —t}| >0 asn — =,
0<t<1
we then conclude, with I denoting the identity function, that

(3.12) n'/?(W,(I) — I) converges weakly to c'/?B.
Furthermore, from (3.12) and Theorem 2-of Vervaat (1972), we also get more
generally that
(n'72(W,(I) = I),n"*(1 = V(I)))

converges weakly to (¢'/?B, c'/?B).
Next, the Skorokod representation theorem permits us to construct a probabil-
ity space on which there sit sequences of probabilistically equivalent versions

W, and V, of W, and V,,, respectively, for n > 1, and a fixed Brownian bridge
B such that almost surely both

(3.13)

(3.14) sup Inl/z(Wn(t) —t) - cl/zB(t)| -0 asn >
O0<t<1

and

(3.15) sup |n/2(t — V,(t)) - ¢'/?B(t)| > 0 asn > .
O0<t<1

Now extend this probability space to include a sequence X;, X,,... of iid. F

random variables independent of {(W,,V,): n > 1}, and B. Moreover, since
{X,}, 21 =2 {QWU,)), .., where U,,U,,... is a sequence of independent uni-
form (0,1) random variables, we can assume that the probability space is

formed so that
(3.16) X,=Q(U,), n=x1

By exchangeability of W, ,,...,W, ., ay , is equal in distribution (condi-
tioned on X,,..., X,) to

n
(3.17) n1/2( Wn,il[Xm)i) < x] - Fn(x)),
i=1
where X, ;) <X, 9 < - <X, , are the order statistics of X;,..., X,.
Therefore, conditioned on X,..., X,

nF,(x)
a?/,n(x) =9 n1/2( Z Wn,i - Fn(x)
i=1

= VAW, (F,) - F,)(x) by (3.10)
9 nl/z(Wn(Fn) - Fn)(x)
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Now the Glivenko-Cantelli theorem combined with the almost sure uniform
continuity of B and (3.14) implies that almost surely along X, X,,... as

n—)OO’

(3.18) sup |n/3{W,(F,(x)) - F,(x)} — ¢V/2B(F(x))| - 0.

—o<xy <®

This establishess the first part of Theorem 3.1.
To prove the second part of Theorem 3.1, we require some facts. Define the
uniform empirical quantile function based on Uj,..., U, for n > 1 to be

U,(s) = inf{u: G,(u) 2s,u€[0,1]}, 0<s<1,
where G, is the empirical distribution based on U, ..., U,. Let
u,(s)=n"?{s —Uys)}, 0<s<l,
denote the uniform quantile process. By the Glivenko-Cantelli theorem

(3.19) sup |U,(s) —s| >0 as.asn - =

O<s<1

We shall also require the following fact that can be derived from results in
Mason (1984) [refer also to pages 581 and 582 of Shorack and Wellner (1986)],
that forall M > 0, as n — o,

(3.20) sup sup  |u,(s+h)—u,(s)|—>0 as.
O0<h<M/n'/2 0<s<1-h

This fact will be very useful when it is combined with

(3.21) sup n'/2|t — V(t)| = ¢¥/% sup |B(t)| as.asn -,
0<t<1 O<t<1

which is a direct consequence of (3.15).
Finally, we observe that conditioned on X, = QU,)),..., X, = QU,),

By.n =2 n2(Q(U,) - Q(U,(V,))}.

Now for each 0 < a < s < b < 1, we can write

n1/2{Q(Un(s)) - Q(Un(Vn(s)))} = h(s))n}{U,(s) - U,(V(5))}
for some s, between U, (V (s)) and V,(s), which in turn equals

¢V2h(s)B(s) + {h(s))n/*(s = V,(5)) = c*/*h(s) B(s))

+h(51){u(s) = u,(Vi(9))}
=: c'/2h(s)B(s) + D, y(s) + D, 5(s).
By continuity of &, (3.15), (3.19) and (3.21), we get

sup |D, (s)| >0 as.asn — o,
a<s<b

and from (3.19), (3.20) and (3.21) along with boundedness of A on [c, d] for
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any 0 < ¢ < d < 1, we have likewise

sup |D, ,(s)| >0 as.asn — .
a<s<b

Thus along almost all sample sequences X;, X,,... as n — o,

sup |By .(s) — c/?h(s)B(s)| > 0 as.,

a<s<b
which finishes the proof of the second part of Theorem 3.1. O
The proof of the second part of our Theorem 3.1 follows roughly the lines of

the proof that Swanepoel (1986) provided for the original Bickel and Freedman
(1981) theorem on the bootstrapped quantile process.

APPENDIX

LEMMA 4.1. Consider the scaled multinomial weights M, defined in (1.1).
For any integer r > 2, as n — o,

n
(4.1) n"UY M, - 1/n| >,EIN(1) - 1/,
Jj=1

where N(1) is a Poisson random variable with mean 1.

Proor. Introduce a sequence of ii.d. uniform (0,1) random variables
U, U,, ... and define the counting process G,(¢) = L7_;1[U; < ¢]. One way to
construct the scaled multinomial n vector M, is by putting

1

forl <j<n.

For real ¢, let N(¢) be a Poisson process independent of U, U,,... and
scaled so that N(¢) ~ Poisson(#). Put N, = N(n). It is easy to verify that
Gi(t) = L= 1[U, < t] is another Poisson process with G(¢) ~ Poisson(nt).
Mimicking (4.2), define the n vector M* to have elements

1 l
(4.3) My, =—{Gi(j/n) = GI((j - 1)/n)}

n

for 1 <j < n. The elements of M} are 1/n times iid. mean 1 Poisson
variables. Hence, by the weak law of large numbers,

(4.4) Y | My - M| - REIN(L) - 11,
j=1

where M* is the average of M + ;. On account of (4.4), using the triangle and
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Markov inequalities, we see that to prove (4.1) it suffices to show that for each
r>2, ES, — 0, where

n
(4.5) S, =n"VY |M}, -Mi-M, ;+1/n|.
j=1
Upon conditioning and using exchangeability, we have ES, = ET,, where

(4.6) T,=nE(|M:, - M, , - M + 1/n[|N,)

(4.7) -E N,|.

Y (U <1/n] - 1/n)

ie(n,N,)

The notation i € (n, N,) above means that the summation is from » + 1 to
N, if N, > n, from N, + 1to n if N, <n, and 0 if N, = n. Applying Lemma

1.1 of van Zuijlen (1978), there exists a constant A, such that for all n > 2,

(INn—nI INn*nlr)
. + .

(4.8) T, <A

n r

n n

A standard inequality [Loéve (1977), page 276] and Liapunov’s inequality
(alternatively, the law of large numbers plus uniform integrability) now readily
yield ET, > 0as n — ». O
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