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ORDERING DIRECTIONAL DATA: CONCEPTS OF DATA
DEPTH ON CIRCLES AND SPHERES'

By REGINA Y. Liu aAND KESAR SINGH

Rutgers University

Three notions of depth for directional data, angular simplicial depth
(ASD), angular Tukey’s depth (ATD) and arc distance depth (ADD), are
developed and studied. The empirical versions of these depths give rise to

" center-outward rankings of angular data which may be regarded as exten-
sions of the usual center-outward ranking on the line. Three medians
derived from these depths are examined and compared. Applications in
nonparametric classification and in implementing the bootstrap to con-
struct confidence regions for directional parameters are briefly discussed.

1. Introduction. The purpose of this article is to develop three concepts
of data depth for directional data, namely, angular simplicial depth (ASD),
angular Tukey’s depth (ATD) and arc distance depth (ADD). ASD extends the
notion of simplicial depth (SD) in Liu (1988, 1990) from R” to circles and
spheres. ATD is an analog of Tukey’s depth (TD) [Tukey (1975)] on R” for
populations and data on circles and spheres. A notion equivalent to ATD has
been introduced by Small (1987). L, distance in the Euclidean space gives rise
to the notion of ADD for spheres and circles.

The concept of depth on spheres leads to a proper notion of center (or
median) and a ranking of directional data in the order of centrality. In
particular, such ranking leads to detection of “extreme” data values, a natural
definition of interquartile range (on the circle) and analogs of linear combina-
tions of order statistics of directional data in general. The rankings derived
from ASD and ATD can be justified as natural extensions of the usual linear
ranking by the following argument. When the entire distribution is concen-
trated on a semicircle, the distribution could be regarded as being on the line
segment [— /2, 7/2]. In such a case one would naturally expect the angular
depths (being zero throughout the other semicircle) to coincide with their
parent notions of depth on the line. Both ASD and ATD possess this consis-
tency property. As a result, the center-outward rankings based on the decreas-
ing values of these depths completely agree with that based on the usual order
statistics on the line. As an illustrative example, suppose the angular data (in
degrees) are 62, 73, 85, 96, 97; then the ranking in the order of centrality
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provided by the linear ranking, ASD or ATD is 85, (73, 96), (62, 97), where a
pair ( , ) indicates a tie.

The center-outward ranking given by ASD or ATD has several interesting
applications. Specifically, we mention the following two:

1. On classification problems: Suppose two training samples (X, ..., X, ) and
(Yy,...,Y,) from two different spherical populations are given. Consider the
problem of classifying a new data point Z to one of the two populations.
First, compute, respectively, the center-outward ranks of Z with respect to
X;’s and Y}’s. Let these ranks be denoted by ry and ry. The proposed rule is
to classify Z to the X population if ry/m < ry/n, and to the Y population
otherwise. This classification rule is studied in Gross and Liu (1989).

2. On implementing the bootstrap: Let 6 be the parameter of interest on S, a
d-dimensional unit sphere, and let §, be its associated estimate. A center-
outward ranking is essential for implementing the percentile method to
form a bootstrap confidence region for 8 [see Efron (1979) for the percentile
method]. The procedure is as follows: First, obtain a certain number of
bootstrap replicas of én; second, assign the center-outward rank (according
to ASD or ATD) to each replica; finally, delete 100a% of the “outmost”
replicas. The smallest convex patch on S, containing the remaining repli-
cas is then a (1 — a) bootstrap confidence region of . Properties of this
bootstrap confidence region will be reported elsewhere.

The constancy of ASD and ATD throughout a circle or a sphere presents an
interesting situation. Of course, their parent depths are never constant on R¢.
We have fully studied the constancy, and the main results are distributional
characterizations in terms of constant depth (cf. Sections 3 and 4).

All three notions of angular depth give rise to medians on S;. Some detailed
comparisons of those medians are presented later. The definition of a median
on a circle given in Mardia [(1972), page 28] is in spirit the same as the median
derived from ADD, although in some unusual cases the definition can lead to
only a local maximum of ADD if the definition is followed literally.

For simplicity we restrict ourselves to continuous distributions on the unit
circle and absolutely continuous distributions on the unit sphere; in each case
we take the origin (denoted by O and O, respectively) as the center. Through-
out this article, —6 is used to indicate the diametrically opposite point of 6.

Section 2 contains basic definitions ‘and notation.

In Section 3 we present the following properties of ASD w.r.t. a spherical
distribution:

1. Computational simplicity of ASD: Checking that a point belongs to a
spherical triangle is equivalent to solving a 3 X 3 linear system of equa-
tions.

2. A differential formula for ASD and its applications: The derivative of
ASD(-) on a circle has a simple explicitly formula [see (3.1)] which yields
many interesting properties of ASD. These properties include a monotonic-
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ity property of the ASD and a characterization of an antipodally symmetric
distribution on the circle as having a constant ASD value, 1/4.

3. An equation connecting ASD and SD and its applications: Equation (3.4)
[(3.6)] connects ASD on a circle (a sphere) with the SD on a line (a plane).
This equation can be used to characterize antipodally symmetric distribu-
tions on the sphere by the constant value of ASD = 1/8 throughout the
sphere.

We show in Section 4 that ATD(-) has the appropriate properties to justify
itself as a notion of data depth. The maximum value for this depth does not
exceed 1/2 and it is attained, for instance, at the mode of any member of the
von Mises class of distributions. )

Section 5 discusses the robustness aspect of Mardia’s median and medians
given by ASD, ATD and ADD in terms of influence functions and a “break-
down’’ concept. Some illustrative examples are also given.

Some concluding remarks are made in Section 6.

2. Definitions and notation.

Angular simplicial depth. The angular simplicial depth which we propose
in this article is a natural analog for directional data of the simplicial depth for
data on euclidean spaces, introduced in Liu (1988, 1990), which we now
describe briefly.

In RY a simplex (xy,...,%;,,) with (d + 1) vertices x,...,% ., is
defined to be the closed convex hull with extremities at these points. Let F(-)
be a distribution and x a point in R¢. The simplicial depth of x w.r.t. F,
SD(x), is then defined to be the probability that x be in a simplex
HXy, ..., Xy00), where X,,..., X, , are (d + 1) i.i.d. observations from F.
In RY, O(X,, X,) is simply the closed line segment joining X, and X,, say X, X,,
and SD(x) = Pp(x € X, X,) [= 2F(x)1 — F(x)), assuming that F is continu-
ous]. In R%, O(X,, X,, X,) is the closed triangle with vertices X,;, X, and Xj,
say A(X, X,, X3), and SD(x) = Pr(x € A(X,, X,, X;)). The simplicial median
is then the point which maximizes SD(-) (or the average of such points if there
are many). Note that in R! the simplicial median divides the line into two
half-lines of equal probabilities and it agrees with the ‘‘usual”’ median. In Liu
(1990) it is argued that SD(-) can be viewed as a measure of data depth, and
that the simplicial median possesses many desirable features of a notion of
median.

The edges of a simplex in R? are the line segments connecting pairs of
points (vertices). When we move to the sphere, it is natural to replace such a
line segment by the ‘‘shortest curve’ joining a pair of points on the sphere.
Let p, and p, be two points on a sphere. It is known that such a shortest
curve is the short arc joining p, and p, on the circle which passes through p,
and p, and has the same center as the sphere. (Such a circle is referred to as a
great circle.) Evidently this shortest curve can be generalized to spheres of any
dimension and is ambiguous only in the nongeneric case where p, and p, are
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diametrically opposite each other. The idea of the shortest curve allows us to
generalize the notion of simplex to the spherical case. We discuss only the
cases of the circle and the two-dimensional sphere, although it will be clear
that the definition extends inductively to any dimension. For any two points
p; and p, on a circle the corresponding simplex is the short arc joining p, and
P, [denoted by arc(p,, p,)], and for three points ¢,, g, and g5 on a sphere it is
the spherical triangle [denoted by A (g, g4, ¢5)] bounded by the three short
arcs arc(qy, ¢,), arc(q,, q3) and arc(q,, ¢5). We now define the angular simpli-
cial depth to be

(2.1) ASD(p) = Py(p € arc(W;, W,))

if p is a point and H a distribution on a circle, and W, and W, are i.i.d.
observations from H,

(2.2) ASD(p) = Py(p € Ag(W;, W, Wy))

if p is a point and H a distribution on a sphere and W;, W, and W are i.i.d.
observations from H. Note that if H is continuous on a circle and absolutely
continuous on a sphere, then the ambiguous simplicies occur with probability
zero. A maximum point of ASD(-) is defined to be an angular simplicial
median (ASM). Evidently this median is rotation invariant.

We define the empirical version of ASD(-) as

(5) T 1(p = arc(w, w,))

1]

(2.3) ASD,(p)

for a point p on the circle, where W,,..., W, is a random sample from a

circular distribution and L, runs over all possible pairs of (W, , W, ), and as
n -1
(2.4) ASD,(p) = (5) L I(pea(W, W, W,))
X %

for a point p on the sphere, where W,,..., W

n

spherical distribution and T ., runs over all possible triplets (W,

iy

is a random sample from a
W, W,).
3
Angular Tukey’s depth. Following Small (1987), we define the angular
Tukey’s depth for a given spherical distribution H as follows:

(2.5) ATDy(0) = inf _(Py(S)),

where the infimum is taken over the set of all closed hemispheres S contain-
ing 6 in their boundaries or in their interiors.

We call a maximum point of ATD(-) an angular Tukey’s median (ATM).
Note that ATM is also rotation invariant. See Example 4.4.4 in Small (1987)
for more invariance properties of ATM.

In defining the empirical version of ATD(-), ATD,(-), we replace Pg(-) in
(2.5) by its corresponding empirical probability.
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Arc distance depth. We define ADD of a point 6 on the sphere S, as
ADD(9) =~ [U(6, ¢) dH(g),

where [(0, ¢) is the Riemannian distance between 6 and ¢; that is, the length
of the short arc joining 6 and ¢ on the great circle determined by 6 and .
Again, the empirical version of ADD is defined by replacing H(-) by H,(-). A
maximum point of ADD(-) is referred to as an arc distance median (ADM).
This idea of minimizing L, distance was used by Gower (1974) to define a
generalized median in R?. Its extension to circles was given in Mardia (1972)
and to spheres in Fisher (1985).

3. Properties of angular simplicial depth.

Computational simplicity of ASD. We first point out that determining
whether or not a point on a circle (a sphere) lies on the short arc joining two
data points (the spherical triangle three data points) can be reduced to solving
a simple system of linear equations. This shows that computing ASD(-) is
quite straightforward. Let H(-) be the population distribution defined on the
unit circle centered at the origin O. Given a point 6 on the circle and any two
data points W, and W, from H(-), 8 lies on the short arc arc(W,, W,) if and
only if the line segments O0 and W,W, intersect. In other words, 8 €
arc(W;, W,) if and only if there exist « and B such that 0 <a,8 <1 and
af® = BWY + (1 — B)Wy. Here the notation *° stands for the Euclidean coor-
dinates of the point *. For the spherical case this observation becomes the
following: 0 is on the spherical triangle A (W, W, W,) if and only if 06
intersects the Euclidean triangle A(W;, W,, W,). This is equivalent to a6° =
BW! + yWs + (1 — B — y)W5 for some «a, B and y such that 0 <a,B,y <1
and 0 < B + y < 1. The same observation holds for any general S,. This
computational simplicity of ASD should greatly enhance its applicability.

A differential formula for ASD and its applications. Let H(-) be the
distribution on the unit circle and let A(-) be its density if it exists. Here 6 can
be simply expressed as an angle between 0 and 2.

ProposiTioN 3.1. Suppose that h(+) exists and is continuous at 6. Then

(3.1) , % ASD(8) = 2(A, — Cy)h(0),

where A, and C, stand for the probabilities of the semicircles joining 6 and
—6 in the counterclockwise and clockwise directions, respectively.

Proor. For a 0 and a positive increment 80, the difference [ASD(9 + 66) —
ASD(0)] involves only those pairs of observations {W;, W,} from H(-) which
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have the following property:

{6 € arc(W,,W,) and (0 + 89) & arc(W,, W,))}
or

{6 & arc(W,, W,) and (0 + 60) € arc(W,, W,)}.

These two situations will occur if and only if either W, or W, lies on
arc(, 8 + 56). Using this fact and the equality

P(E,) - P(E;) = P(E, - E;) - P(E, - E)),

for any two events E,; and E,, we obtain
0+50

(3.2) ASD(6 +66) — ASD(6) = 2(4A, — C(,)f h(a)da + 0(86).
0

The proposition follows. O

We define a point 6 to be regular w.r.t. a distribution H(-) if H(-) has a
continuous density in a neighborhood of 8. We also define a point to be a
median axis on the circle if the diameter passing through 6 and —6 divides
the circle into two semicircles with equal probabilities. The following proposi-
tion asserts that ASM is always a median axis.

ProposiTioN 3.2. If 0, is a median axis with h(8,) > h(—0,) and the
points 6, and —0, are regular, then 6, is a local maximum of ASD.
Conversely, if 0, is a local maximum of ASD and 0, and —0, are regular
with h(6y) > 0, then 0, is a median axis and h(8,) > h(—0,).

ReEMARK 3.1. (i) On the circle ADD(-) also allows a simple differential
equation, namely,

d
%ADD(()) = (A, - Cp)
provided that A(-) exists at § and —6. The proof is given in Mardia [(1972),
page 31].

(ii) The equation in (i) immediately implies that statements similar to
Proposition 3.2 hold for ADD. '

CoroLLARY 3.1 [Monotonicity of ASD(-)]. Suppose h(-) is symmetric about
its maximum point 8, and decreases monotonically on both sides of 0, until its
diametrically opposite point —80,. Then ASD(-) is also monotonic nonincreas-
ing in both directions from 6, to —80,. In particular, 0, is a maximum point of

ASD().

The next property of ASD(:) on a circle will allow us to characterize
antipodally symmetric distributions. These are defined as follows.
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DerFiNiTION. Let H be the distribution of a random variable W on
d-dimensional sphere S,;. H is said to be antipodally symmetric (about the
origin) if the distribution of (—W) is also H, where (— W) stands for the
diametrically opposite point of W. If H has a continuous density, then
antipodal symmetry is equivalent to 2(6) = h(—9) for all 6 on S,.

ProposITION 3.3.  Assume that h(-) is continuous. Then ASD(6) = ¢, for a
positive constant ¢ and all § € [0,21), if and only if h(8) = h(—0) for all 6.
Moreover, the constant ¢ must then be 1/4.

Proor. (=) Suppose ASD(#) = ¢ throughout. Then by Proposition 3.1,
either A, = C, or h(8) = h(—0) = 0 holds for every 6. Thus, 2(6) = h(—6) for
all @ in view of the continuity of A(-).

(<) If h(0) = h(—6) for all 6, then A, = Cy and d ASD(0)/d6 = 0 for all
6, which implies ASD(8) = ¢ for some constant c.

To show that ¢ must be 1/4, we need only show that ASD(0) = 1/4 since
the same argument applies to a general point 6 after a rotation of the axes by
6. Due to antipodal symmetry [i.e., h(8) = h(—6) for all 8], we have

ASD(0) = 2[ (4 - H(a))h(a) da.
0
It suffices to check that
(3.3) [H(a)h(a) da - }.
0
This is done by letting H(a) = y and converting (2.3) into [}/?ydy. O

Note that an alternative proof of Proposition 3.3 can be given [in fact under
the weaker condition that H(-) is continuous only] using the connecting
equation in Proposition 3.4.

REMARK 3.2. On a circle this characterization by the constancy of ASD(-)
also holds for ADD(-). The constant ¢ there is 7/2.

REMARK 3.3. It may be of interest to note that if the underlying distribu-
tion has its probability mass concentrated on a semicircle only, then the depth
ASD(-) is zero for all points on the complementary semicircle.

An equation connecting ASD with SD and its applications. Equation (3.1)
for the rate of change of the ASD was the main tool in our study for the
circular case. For the sphere, there does not seem to be any such simple
equation. Instead we focus on a reduction of the sphere to the plane tangent to
the sphere at a given point. Such a process is often called an exponential map.
This will allow us to apply some known properties of SD on R2. To make the
discussion clearer, we begin with the construction in the case of circles.
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Let H(-) be the distribution and 8 some fixed point on the unit circle. There
is a natural length-preserving mapping g, from the circle (without the point
—0) to the segment (-, 7) of the tangent line L, at 6. For a point ¢ on the
unit circle (¢ # —0), the absolute value |g,(¢)| is simply the length of arc(8, ),
and the sign of g,(¢) being — or + depends on whether the direction in going
from 6 to ¢ is counterclockwise or clockwise. H,(-) is used to represent the
resulting distribution on the tangent line L, with its entire probability mass
on (—m, 7). Let SDy(+) be the simplicial depth on the tangent line L, w.r.t. the
distribution H,(-). The depth functions ASD(-) and SD,(-) are connected as
follows.

PrOPOSITION 3.4 (On the circle). If H(-) is continuous, then for all 6 on the
circle

(3.4) ASD(6) + ASD(—6) = SD,(0).

Proor. Let {W;, W,} be a random sample from H(-). Except for a null set
the following three events are equivalent:

{0 € 8o(W1) go( Wz)}’
{W, and W, are on two different sides of the diagonal joining 6 and — 6}
and
(3.5) {6 € arc(W;, W,)} U {—6 € arc(W,, W,)}.

The proposition follows from the fact that the intersection of the two events in
(8.5) has probability 0. O

We now turn to the two-dimensional sphere. Similarly we let H(-) be a
distribution and @ a fixed point on the unit sphere. Let P, be the tangent
plane to the sphere at 6. For a point ¢ (¢ # 0, —0), consider the great circle
which passes through 6 and ¢. The plane of this circle cuts P, along a line
L, , which is just the tangent line to the circle at 8. This means that if we
restrict our attention to this circle and line L, , we are exactly in the situation
of the circle discussed in the previous paragraph. In particular, the construc-
tion described there applies and ¢ can be mapped into a point gy(¢) on the line
Ly , between (-1, ). As ¢ moves sideways on the sphere, it is evident that
the line L, , will rotate on the plan¢ P,. The sphere without —8 will be
mapped by g, into a disc in P, with center 6 (which is the origin of P, now).
As before, we use Hy(+) to denote the resulting distribution on P,, which has
its total probability mass on the disc centered at the origin O with radius 7.
The analog of (3.4) for the sphere can now be stated as follows.

ProposITION 3.5 (On the sphere). Assume that H(+) is absolutely continu-
ous. Then

(3.6) ASD(8) + ASD(—-0) = SD,(0),
where SDy() is the simplicial depth on the plane corresponding to Hy(-).
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Proor. Fix W, and W,. The great circles joining {W;,0} and {W,, 6},
respectively, split the sphere into four pieces. Let S(W;, W,, 8) be the smaller
piece which does not contain W, and W,. (This exists with probability 1.) For
any W37

0 € A(gy(W,), 8y(W,), g(W,)) ifandonlyif W, € S(W,, W,,0).

The event W; € S(W,, W,,0) can be divided into the following two mutually
exclusive events:

(I) Both 6 and W, lie on one of the two hemispheres determined by the
great circle joining W, and W,,. .
(IT) Both —6 and W, lie on one of the two hemispheres determined by the
great circle joining W, and W,

Note that (I) is equivalent to the event that 6 € A (W, W,, W;) and (II) to
-0 € A (W, W,, W,). This proves the assertion. O

We now derive the following simple characterization of antipodally symmet-
ric distributions on the sphere.

ProrosiTiON 3.6 (On the sphere). Assume that h(-) is continuous. Then
ASD(0) = 1/8 for all 8 if and only if h(8) = h(—0) for all 0.

Proor. (<) If H(-) is antipodally symmetric [i.e., A(0) = h(—0)], then
ASD(0) = ASD(—-0). It is clearly so because for an observation W from such an
H(-) the random variables W and —W have the same distribution. The
induced distribution H,(-) is symmetric about the origin O on the tangent
plane P,. As a result [see Theorem 4 of Liu (1990)],

SDy(0) = 1,

and the result follows.

(=) Suppose ASD(0) = 1/8 throughout. Then by Proposition 3.5 we have
SD,(0) = 1/4 for all 8. However, it was shown in Liu (1990) that if the SD(-)
is equal to 1/4 on the plane at some point, then the distribution H(-) is
symmetric around that point. Since this is true for all 0, the distribution H(-)
assigns probability 1/2 to each hemisphere. Therefore £(8) = A(—6) for all 6.

O

The corollaries below follow from Propositions 3.4 and 3.5, and they provide
upper bounds for ASD(-) on the circle and on the sphere, respectively.

COROLLARY 3.2 (On the circle). Under the conditions of Proposition 3.4,
ASD(8) < 1/2 for every 8 on the circle. The equality holds at a point 8, if and
only if the entire probability mass is on a semicircle and H(6,) = 1/2.

The claim is based on the fact that SD,(¢) < 1/2, which holds since
SD,() = 2H,(o)1 — Hy(p)]
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CoROLLARY 3.3 (On the sphere). Under the conditions of Proposition 3.5,
ASD(0) < 1/4 for any 0 on the sphere. The equality holds at a point 0, if the
entire distribution is concentrated on a hemisphere containing 0, and the
induced distribution Hy (+) is symmetric around the origin.

Corollary 3.3 is obtained by combining Proposition 3.5 with Theorem 4 of
Liu (1990).

Statistical applications of Propositions 3.3 and 3.6. The result of Proposi-
tion 3.3 (Proposition 3.6) gives rise to a simple test of whether a given circular
(spherical) distribution is antipodally symmetric about the center of the circle
(sphere). We may use

(3.7) sup| ASD,(9) — 4]
6

on the circle and

(3.8) sup| ASD,(6) — 4]
6

on the sphere as test statistics. Large values of (3.7) and (3.8) indicate that the
distribution is unlikely to be antipodally symmetric. Needless to say, the actual
implementation of these testing ideas would require knowledge of the exact or
approximate sampling distributions of these test statistics. Perhaps an approx-
imation of the sampling distribution can be obtained from some resampling
procedures, for example, the bootstrap method. A different method has been
suggested by Fisher (1989) for obtaining the sampling distribution under the
null hypothesis of antipodal symmetry: Use random reflection (through the
origin) of the original data set to produce 2" new samples (each of size n) and
compute 2" values for test statistic (3.7) [or (3.8)]. The histogram based on
these 2" values is an approximation of the desired sampling distribution. A
detailed study of the proposed tests (3.7) and (3.8) and their comparison with
Ajne’s test [Ajne (1968)] shall be reported elsewhere.

4. Properties of angular Tukey’s depth. It may be instructive to
consider first the case where the underlying distribution H is supported only
on a semicircle (hemisphere). In this case we can easily relate ATD(-) to
Tukey’s depth on the line (plane).

ProrosiTiON 4.1. If H(") is a distribution concentrated on a semicircle, say
from 0 to m, then ATDy(-) assumes the familiar form of Tukey’s depth on the
line, namely, for 0 < 6 < 27,

(4.1) ATD,,(8) = min{H(8),1 — H(6)}.
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Clearly ATDy(-) vanishes outside the interval [0, 7). Furthermore,

ATD,(6) = min{H,(6),1 — H,(6 —)}.

Consider the center-outward ranking of data points based on decreasing
ATD,(-) values. Proposition 4.1 implies that the above ranking coincides with
the center-outward ranking based upon the usual order statistics on the line, if
the distribution is supported on a semicircle.

In the spherical case we assume that H(-) is supported on a hemisphere S,,.
Given any point 8 on S, we consider the stereographic projection, with pole at
— 0, from the sphere to the tangent plane at 0. The distribution H(-) on the
sphere then induces a distribution on the tangent plane which we denote by
Hy(-). Now, given any hemisphere S containing 0 in its interior we can find
another hemisphere, say S’, containing 0 in its boundary satisfying P(S’) <
P(S). We can visualize S’ as follows. Let L be the line of intersection between
the planes supporting the boundaries of S and that of S,. Rotate the
boundary of S around L as axis until it passes through 0. One of the two
hemispheres thus obtained will have probability less than or equal to P(S),
and this is the one we take as S’. This implies the following proposition.

ProrosiTiON 4.2. Let H(-) be a distribution supported on the hemisphere
Sy. Then the following hold: (a) ATD,(0) = 0 for all 8 & S,. (b) For any 0 in
Sy, ATDy(8) agrees with Tukey’s depth (2.5) taken w.r.t. the distribution
Hy(-) induced on the tangent plane at 6 by stereographic projection from —@.

We discuss now some more general properties of ATD(-).

PROPOSITION 4.3.  On the circle as well as on the sphere, ATD(") is bounded
above by 1/2. The value 1/2 is achieved at a point 6 on a circle (8 on a sphere)
if and only if each semicircle (hemisphere) containing 6 (8) has probability
greater than or equal to 1/2.

In particular, the bound 1,2 is achieved at the mode of any member of the
von Mises class of distributions, and everywhere if the distribution is uniform.

ProrosiTiON 4.4.  On the circle (sphere) ATD(-) has the constant value 1/2
throughout if and only if any semicircle (hemisphere) has probability 1/2.

Since the property that each semicircle (hemisphere) has probability 1/2
can be viewed as an alternative definition of an antipodally symmetric distribu-
tion, Proposition 4.4 is a characterization of antipodally symmetric distribu-
tions.

These observations may suggest that a distribution with constant ATD
would have to be antipodally symmetric and that the maximum ATD for any
distribution is always 1/2. Neither statement is true, as is shown in the
following example.
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ExampLE 4.1. Let ¢ = 1/28, and let H(-) be a distribution on the unit

circle with the density function A(-) defined as
(5 +3¢)(m/2)"", for0<6<Lim,
8(17/4)71, for i < 0 < 3,
(i - 28)(77/4)_1, for 37 <0 <,
(i—e)(ﬂ'/Z)fl, for m < 6 < 3,

L _2e)(m/4)™", forim <6 < In,

4 2 4

e(m/4) !, * for Im < 6 < 27.
1

h(6) =

For this distribution ATD,(0) = 1/2 — 1/14 for all 6, 0 < # < 27. To check
this we note that each one of these three semicircles: from 7 /2 to (3 /2)m, 7 to
21 and (7/4)m to (3/4)m has probability 1/2 — 2¢. This also turns out to be
the minimum probability over all semicircles.

This example contrasts with the following fact related to ASD: The ASD is
constant on a circle if and only if the distribution is antipodally symmetric and
the value of the constant is always 1/4 (cf. Proposition 3.3).

We now state the key monotonicity property of ATD(-).

PropoSITION 4.5. Let 0, be a point on the sphere. We introduce for each
point 0 the Euler angle ¢, 0 < ¢ < mw, which is the angle between 00, and
00, in other words the latitude of 0. If we fix a meridian, the position of 0 will
be characterized by ¢ and its longitude m, 0 < n < 2, and a density h on the
sphere is just a function of (¢, n). Assume we have a distribution with density
h($, ) which decreases in ¢ for each m, and satisfies h(¢p,n) = h(p,n + 7).
Then

ATDy(8) = ATDy((4,7))

is a monotonically nonincreasing function of ¢ for each n. In particular, it
attains its maximum 1/2 at 0.

Proor. The argument relies upon the following observation: If a hemi-
sphere contains 0, then it has probability greater than or equal to 1/2; if it
does not then it has probability less than or equal to 1/2.

Fix a longitude 7. Consider two latitudes ¢; and ¢, such that 0 < ¢, <
¢, < 7. We claim that

ATDy((61,m)) < ATDy((3, 7))

To show this we consider any hemisphere S such that it contains (¢,, n) but
not (¢y,m). Let S~ represent the complement which obviously contains
(¢35, m). Evidently S* also contains the mode 0. In view of the above observa-
tion we obtain P(S*) > P(S ™). The proposition follows. O
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We omit the discussion of the similar monotonicity property in the circle
case.

Next, we point out a simple but peculiar property of ATD, which also
contrasts with the general strict monotonicity of ASD.

PropoSITION 4.6.  For any distribution on the sphere (circle), there exists at
least one hemisphere (semicircle) where the ATD(-) is constant and the value
of the constant is its minimum value.

In fact if we let S be a hemisphere with the smallest probability, then
ATD(0) will be equal to P(S) for any point 0 in S. This observation will be
useful for the comparisons in Section 5. °

Evidently, Proposition 4.6 applies to the empirical version of ATD also. This
property of ATD suggests a natural trimming of angular data, namely, to trim
off all the data points with the minimum ATD.

Finally, we state without the proof the connection between ATD and
median axis in the next proposition, which can be seen as the counterpart of
Proposition 3.2 for ATD.

ProrosiTION 4.7. Proposition 3.2 holds with ASD replaced by ATD.

5. Aspects of robustness. The notion of breakdown described in
Hampel, Ronchetti, Rousseeuw and Stahel (1986) is an intuitive measure of
robustness in R”. The following definition is a natural adaption of breakdown
for directional functions. Under this definition the breakdown is nonzero for
all three medians.

DerINITION. Let H be a distribution on S, with 6, as a median. We define
the breakdown of this median as the infimum of & such that the median of

H, = (1 —¢)H + G is — 0, for some contaminating distribution G.

Under this definition the following proposition establishes some lower
bounds of the breakdown for the three medians.

ProposiTiON 5.1. On a circle, for any distributions H and G, we have

(i) | ASDy; (0) ~ ASDy(6)] < 2,
(ii) |ATD,(6) — ATD,(6)| < e
and
(iii) | ADD, (6) — ADD,(6)| < e,

where H, = (1 — ¢)H + €G.

The inequality (i) implies the following: if 6, is an ASM on the circle and the
depth of 6, is strictly higher than that of —6,, then the breakdown of this



ORDERING DIRECTIONAL DATA 1481

median is nonzero. The same statement applies to ATM and ADM. In fact,
Proposition 5.1 implies
ASD(6,) — ASD(—-6
breakdown of ASM > (6o) 1 (~8) ,
ATD(6,) — ATD(—86,)
2

breakdown of ATM >

and

ADD(6,) — ADD(—6,)

breakdown of ADM >
21

Proor. (i) Let {W,, W,} be a random sample from H;{Z,, Z,} from G; and
{ny, no} from a Bernoulli distribution with P(n; = 1) =1 — ¢ and P(n; = 0) =
e. We assume that the W;’s, Z,’s and 7,’s are all independent random variables.
Define

i

e [Wo i m- L,
S \z, if u,=0.

13

We obtain
ASD,, (8) = P(6 € arc( Wy, Wy"))
=P(0 € arc(W*, W) N (0, =1,m,=1))
+ P(G €arc(W*, W) N (n; =1,m, = 1)6)
= (1 - £)*ASD,(6) + R,

where 0 < R < 2¢. The result follows from the fact that 1 — (1 — £)? < 2e.
(i) The inequality on ATD is easily deduced from the observation that for
any semicircle S, |P,(S) — Py(S)| <e.
The proof of (iii) is straightforward and is thus omitted. O

REMARK 5.1. In the case of a sphere, the bound for ATD and ADD in
Proposition 5.1 remains the same, and it becomes 3¢ for ASD.

Besides the notion of breakdown,  the influence function is another com-
monly used tool for the study of robustness. See Hampel, Ronchetti, Rousseeuw
and Stahel (1986) for the description of the influence function of a statistic.
Since the influence functions of most circular location estimators are bounded,
Ko and Guttorp (1988) proposed to divide the influence function by a measure
of scale and then take the supremum over the circle and a reasonable class of
distributions. If the supremum is bounded, then the estimator is considered to
be standardized-bias robust (SB-robust). Ko and Guttorp (1988) show that the
directional mean is not SB-robust; however, on the von Mises class of distribu-
tions, Mardia’s median (or ADD) is SB-robust. For a symmetric unimodal
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circular distribution with the modal angle u, the influence function (IF) of
Mardia’s median is

sign(0 — ug)
f(ro) = F(—ro) ,

where sign(x) =1, 0 or —1 as x >0, x =0 or x < 0. The result (5.1) is
obtained in Wehrly and Shine (1981). It is easy to show that the three medians
ASM, ATM and ADM, when they are uniquely defined, all have the same form
of influence function as (5.1). Thus they are typically SB-robust. In view of
Propositions 3.2 and 4.7, the three medians may be uniquely defined even if
there are multiple median axes and multiple modes (see also Example 6.1).

It is not surprising that all the circular medians discussed here give the
same influence function. After all, the Euclidean versions of the three depth
functions in this article give rise to the same median on the real line. Clearly
these circular medians coincide under unimodal symmetric distributions. How-
ever, outside this class of distributions it is not known to us if they still
coincide as they do on the real line.

Finally, we demonstrate through an example a comparison related to a
qualitative robustness aspect of the center-outward ranking of data points
based on the decreasing ADD,(-) and ASD,(-) [or ATD,(-)] value.

1
(5.1) IF(6; Mardia’s median) = 3

ExampLE 5.1 (On a unit circle). Let the data set be 0,5,10,15,100,
105, 110, 115, 120, (in degrees). The center-outward ADD ordering is
100, 105,110, 115,120, 15, 5, 0. However, if the data point 100 in the data set
is replaced by 20, then the new ordering will be 20, 15, 10, 5, 0, 105, 110, 115,
120. Note that the ordering is drastically altered even though only one data
point is changed. In fact, either of the two data situations is likely to arise if
“both heaps” of the underlying bimodal distribution have 50% probability.
This drastic alteration in ordering is due to the fact that ADD ordering
depends on distance and is clearly absent in the case of the ordering based on
ASD,(-) or ATD,(-) [which are the same as the ordering based on the usual
order statistics on the line, namely, 100, (15, 105), (10, 110), (5, 115), (0, 120)].

6. Concluding remarks.

REMARK 6.1. The achievable upper -bound for ASD is 1/2 and 1/4 in the
circular case and the spherical case, respectively. For ATD it is 1/2 in both
cases. For antipodally symmetric distributions, ASD equals 1/4 throughout
the circle, 1/8 throughout the sphere, while ATD is 1/2 throughout a circle as
well as a sphere. In general the upper bound for ATD is more hkely to be
attained than that of ASD.

REMARK 6.2. Consider the densities which are monotonically decreasing
from 6, to —6, in a symmetric way (e.g., the von Mises class). In such a case,
ASD decreases monotonically from 6, to —6, in each direction; whereas ATD
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decreases up to halfway in each direction and becomes a constant afterwards.
The value of ATD at the mode of a unimodal distribution equals 1/2, whereas
that for ASD at the mode (on a circle) ranges from 1/4 to 1/2. The value 1/2
for ASD at the mode occurs if and only if the entire distribution is concen-
trated on a semicircle. Thus we note that the maximum value of ATD at the
mode is the same as its constant value in the case of the uniform distribution
(= 1/2), while the notion of ASD makes a clear distinction between the two
situations.

REMARK 6.3. For symmetric unimodal distributions (e.g., the von Mises
class), ADM, ASM and ATM all coincide with the mode. The example given
below further shows that ASD, ATD and ADD may help one pick out the
“centralmost” point in the presence of multiple median axes and multiple
modes.

ExampLE 6.1. Let A(:) be a density function on the unit circle defined as
follows:

6 1 for 0 < 6 T
w/2 7’ rr=rv=9
(8 Tl <o
= —~ — <0<
(9) 2 = g <m,
1
_—, for m < 0 < 27.
21

In other words, the distribution is triangular on [0, 7] and uniform on (7, 27).
It is easy to check that there are two perpendicular median axes along the two
axes. On the other hand, there is a unique maximum point of ASD(-), namely,
the point /2. This seems more sensible because among the four median
candidates 0, /2, = and 37 /2 suggested by median axes, 7/2 stands out as
the point with the highest probability concentration around it. The claim of
unique maximization at 7 /2 can be verified by using Proposition 3.1 and the
following fact:

T 3
A,—C,>0 forde (0,5) U (—2—,277)

and
A,—C,<0 forb (" ikl
- < o el|l—,—1.
6 0 r 2’ 9 )
Thus, ASD and ADD decrease monotonically in the ranges m/2 to 3w /2
clockwise as well as /2 to 37w /2 counterclockwise. Similarly, ATD decreases
monotonically on both sides of 7 /2 with strict monotonicity between 7/2 and
7/2 + 7 /4. Beyond this range, ATD stays constant and assumes its minimum
value.
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Now, in this example a new mode can actually be created at 7= or 0 by
altering the density locally, thus creating another mode keeping the maximum
point of ASD(-), ATD(-), ADD(-) and the two median axes unaffected.

REMARK 6.4. In comparing the rankings derived from three depths, we
note that the ranking based on ADD is not even consistent with the linear
ranking when the distribution is on a half-circle (cf. Example 5.1). As for ASD
and ATD, even though they both satisfy this consistency property, ATD is
unable to distinguish all points lying on the hemisphere with the smallest
probability (cf. Proposition 4.6 and Remark 6.2). In conclusion, ASD seems to
provide a finer ranking of data points in the order of centrality, which is
particularly useful in detecting outliers [see Collett (1980) for a discussion on
outliers in circular data]. On the other hand, ATD may be expected to be
superior in terms of the robustness of the associated ‘‘center.” Another
advantage of ASD is that, in general, ASD seems easier to compute than ATD,
especially for S, d > 2.
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