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EFFICIENT ESTIMATES IN SEMIPARAMETRIC ADDITIVE
REGRESSION MODELS WITH UNKNOWN
ERROR DISTRIBUTION

By Jack Cuzick

Imperial Cancer Research Fund

Several authors have shown how to efficiently estimate B in the
semiparametric additive model y = x'8 + g(¢) + error, g(¢) smooth but
unknown when the error distribution is normal. However, the general
theory suggests that efficient estimation should be possible for general
error distributions with finite Fisher information even when the error
distribution is unknown. In this note we construct a sequence of estimators
which achieves this goal under technical assumptions. .

Several authors [Heckman (1986, 1988), Chen (1988), Speckman (1988) and
Cuzick (1992)] have shown to efficiently estimate 8 in the model y = x'B8 +
g(t) + error, g(¢) smooth but unknown when the error distribution is normal.
However, the general theory of semiparametric models suggests that efficient
estimation should be possible for general error distributions with finite Fisher
information even when the error distribution is unknown [Wellner (1986),
Bickel, Klaasen, Ritov and Wellner (1992) and Cuzick (1992)]. Cuzick (1992)
showed this to be possible for general known error distributions, and that
approach is extended here to construct a sequence of adaptive estimators
which are efficient for a large class of error distributions when certain techni-
cal assumptions are satisfied.

1. Statement of the result. We use the notation of Cuzick (1992).
Consider the model

(1) yi=x;B+g(t) +e, i=1,...,n,

with (x;,¢;, ¢,;) iid replicates from (X, T, ¢), where ¢ is independent of (X, T'),
E(¢) =0, E(¢2) < « and (X, T) is some bivariate distribution on [0, 1]%. As-
sume ¢ has density f, ¢ = —(log f) exists and E¢?(¢) < .

Split the data into two subsamples; the first of size N - », N = o(n) and
for each subsample order the data so ¢; < -+ <t¢y and ty,,; < -+ <t{,.
Define local linear least squares smoothing matrices A; and A, of orders
M,, M,, where, for a dataset of size n, the smoothing matrix of order M has
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elements
2M+ ( )(J _)2, M<i<n-M;l1<li-jl<M,
le|i—l|sM(tl‘_3ti)
1 (ti_-ti)(tj_-ti) i=k+lorn—-Fk,1<k<M,;
a. ==t —, 1 . k
Y 2k Ticu-n<i(ti =) <li-jl<k,
1, (i=1,j=2)
or(i=n,j=n-1),
0, otherwise,
where
LE=cCM)™" ¥ t, foM<i<n-M
1<li-ll<M
and

f,=@2k)' ¥ t, fori=k+lorn—k,1<k<M.
1<li-ll<k

Using the first subsample define the preliminary estimator

((I - A1)X)I(I —A)y
(1 - Apx|®

B = b
where x = (x4,...,xy) and y = (y,...,y5)". When A, is a spline smoother,
this is the least squares estimator originally considered by Rice (1986) and
subsequently studied by several other authors. More generally if 8 is known,
then g, = A(y — xB) can be viewed as a smoother for g = (g(¢,),..., g(¢,))’,
so that when B is unknown, it is reasonable to estimate it by minimizing
lly — xB — gﬁll2 =1 -AXy - xﬁ)llz, which leads to ﬁ This estimate can
also be derived from the general theory of semiparametric models [Cuzick
(1992)]. Under weak conditions it can be shown to be N!/2.consistent for
general errors with finite variance and is fully efficient when the errors are
normal.

Also define a smooth estimate ¢, of the influence function based on the
first N samples as follows:

Let Fy be the empirical distribution function of the pseudoresiduals é;
from the first subsample, where (4,,...,8y) =& = — A Xy — Bx). Let

v(x) = vy 'w(xy~") where v(x) = (27)~'/%exp(—x2/2) is the standard normal
den81ty, and let Fy = Fy* v and fN =Fy, where * denotes convolution.
For y = yy 10, § =85 10, L = Ly 1® at rates which are specified below,
define

on(x) = (Iy *v,)(%),



SEMIPARAMETRIC ADDITIVE REGRESSION 1131

where
In(x) = { (%) /Fu (%)} ag,

A = {w:{fi(®) ()| < L},
B = {x: fNy(x) > 5}.

Now use the remaining data to refine the estimate of B via
A a Li-nsiion(€)

2 B=B+ AN
2) Zi=N+1u%¢N(8i)

where u; = {(I — A))x); and &; = {(I — A,)X(y — Bx)}; are based on samples
i=N+1,...,n. This can be seen as an approximation to the usual one-step
estimator based on a likelihood, but here the influence function has been
estimated from the first subsample by ¢y, pseudoresiduals £; replace the usual
residuals and u; is used instead of x;.

TuEOREM. Consider the model (1) and the estimator (2), where the
smoothing matrices A, and A, have bandwidths M; and M,, respectively.
Assume N 1w, N =o(n), M, = o(N3*), M, =o0(n**), M/*y% — o,
(N~ + M;Yn'2Ly~2 = 0o(1) and the following conditions hold:

(@) T has a density bounded away from zero.
(i) g(¢) and w(t) = E(X|T = t) are twice continuously differentiable.

Then, as n — «, B is asymptotically linear, regular and

n1/2(§ - B) - N(0, ofg),
where
o2 = o2E(Var( XIT) E(¢%(¢e)))

is the lower bound for the variance of any regular estimator.

Remargs. (i) It is not difficult to exhibit a set of rates for the various
constants which satisfy the conditions of the Theorem. For example N = n?/3,
M, =n'/?*% 1/9 <a <1/4, M, = N3 =n*° &§=y=M;/*%=n"1/%,
L'=n'/18 gives MM4y25 = M}/16 5 o, M2—1n1/2L,y—2 —n-2+1/9 5 0 and
N-1xl/2Ly~2 = n~1/18 1 0, In general, one must always have Nn~'/2 — o,
M,n~'% > w, L = 0o(n'/*) and n'/®y — ». The most efficient choice of rates
or indeed the practical value of this construction remains unclear.

(ii) Bickel (1982) and Schick (1986) have outlined general procedures for
constructing efficient estimators in semiparametric models. Because of the
smoothing implicit in our approximate score function u;¢y(£;), it does not act
on iid triples (y;, x;, ;) so their results cannot be directly applied. Instead we
show that our estimator is asymptotically linear by direct means.



1132 dJ. CUZICK

(iii) It is not essential to use the particular form stated above for the
smoothers A, and A, What is needed is a boundedness criteria such as
la;;| < M~ and good bias control so that {(I — A)g};, = O, , 5 — t;_p)>.

2. Proof of the theorem. All sums are from { = N + 1 to n. The proof
is based on two approximations:

n Zu;on(8) Zuon(e) _ -1/2
@) ‘“’ )t Tuton(z) ~ TutenGen| ")
and
Luon(e;) Lu;e(s;) _ -1/2
@ Tulon(e) | Talel(e)| A" )
giving
A Lu;p(e:) -1/2
BT Tagey T

from which the result follows from the methods of Cuzick (1992) when
N = o(n). We first show (4) follows from

(5) Ey(¢n(e) — ¢(£))? = 0 in probability,

where E; refers to expectation conditional on the first subsample and conver-
gence in probability is with respect to that subsample.
The left-hand side of (4) is bounded by

Lu(en(e) — 4’(3;'))
©® T u%™(e))
L u¥(¢*(e,) = (e
@ HZ (o) (Zu%qo(;ei))(zf%z;v(si))) |

Now the denominator of (6) is equal to Kn(1 + 0,(1)) for some K > 0 by the
law of large numbers. To bound the numerator, recallu = (I — A,)x and write
X=w+r where w;,=E(X|T=t), i=N+1,...,n. Then {(I - Ay)w}, =
0,(n™1/?),
El({(I - Az)r}i|tk, Ep, k = N + 1, ceey n) =0

and

El({(I - Az)r}l{(I - Az)r}Jltk, Sk, k = N + 1, ceey n) = 0
for [i —jl >2M,,i,j=N+1,...,n, is bounded when i = j and is bounded
by a constant times M, ' for 1 < |i — j| < 2M,, so

2
El(Z {( - A)r}i(en(e) — 4’(5;'))) =o(n)

since Ey(py(z;) — ¢(£;))* = 0(1). Thus the numerator in (6) is 0,(n'/?), leading
to the conclusion that the whole term is 0,(n~'/2). A similar argument implies
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that the first term in (7) is O,(n'/?) and the law of large numbers applied to
the denominator establishes that (7) is

0,(n=32 L (0%(2:) - ev()])-

This is 0,(n"'/?) by the law of large numbers and the observation that
E(¢%(e) — ¢y(¢)) = 0 in probability, which is a consequence of (5) and
E,¢N(e) = E,pn(e)¢(e). The truth of (5) is demonstrated in Lemma 1.

To obtain the bound (3), expand ¢5(é;) about ¢; to two terms in the
numerator and its derivative to one term in the denominator, use

suplefyl < sup|((Fi/frr) Ian)* | < Ly~

and '
(8) 5i_5i=vi+(ﬁ_l§)ui_(A2€)i»
where v, = {(I — A,)g};, to bound the left side of (3) by

OP[(n‘IIE u;(v; - (Azﬁ)i)ﬁo'zv(ei)l +n 'Ly 2 ) lul(e; - 51‘)2)
X(l +n Ly 2Y ulle; - €,|)] .

Now |u;| < 1 and Elgj(e;)| < e, so the first part of the first term of (9) will be
0,(n~1/?) if it can be shown that

(10) T loyl = 0,(n'/).

Since g € C,, a Taylor expansion shows it is enough to bound

2
> (ti—M2 - ti+M2) <2MZY (4ien — ti)z»

where ¢,,,, =1¢, if i +M22n and ¢;_, = Ens1 if i — M, < N. But the {z;}
have the same law as F~"u;_y,), where F is the distribution of T and the
{u( J)) are uniform [0, 1] order statistics. Since we have assumed that F has a
density bounded away from zero, this can be used to show that X (¢,,; — ¢,)* =
0,(n™"), which suffices to establish the result since M, = o(n®*).

To bound the second part, compute

(9)

B( S ui(Ae)iein(en)

= Z Z Z uiujaikajkE(sz)Ez(G"'zv(e))
(11) i k
+Z Zul j lj J;Ez(quN(e))

+L L ula%, E(e,){E(ey(2))’ — E%y(e)}
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Now it can be shown [Cuzick (1992)] that

(12) suplaul o(M;*)

and since |¢)y| < Ly~%, the last two terms of (11) are O((Ly~")%nM; '), which
is adequate to achieve the required bound since L = O(n'/2). The first term in

(11) is more delicate and requires that we use the probabilistic structure of the
{x;}. We have

(13) Z Z E UU;iq;rajp =||AI2(I —A2)x||2.
ik

Write x =r + w, where w;, =E(X|IT=¢), i=N+1,...,n. Then, since
w(t) € Cy by using (12) and the methods used for boundmg X ly,l, it can be
shown that || A5(1 - ADw® = 0,(Min=2) = 0, (1).

Now, since given t the components of r are orthogonal and have conditional
variances bounded by unity, E,||A(I — Ar|? < tr - A))A,A(T — Ay),
which is O(nM; ') by (12). Thus the first term of (11) is O,(Ly~1)?nM;") as
before.

For the other parts of (9), use (8) and the bounds E(8 — B)% = O(N~1) [see
Cuzick (1992)], Lv? = 0,(M3n~3) = 0,(1), which can be obtained in a manner
similar to (10), and E(AE)2 o(M; 1Y to find that

E*n ' Yle;—&l)<n 'Y E(s; — 8)° =0(N~1'+ M;"),

which is adequate to achieve the required bounds. The proof is completed by
proving (5), which is done in the following two lemmas.

LEMMA 1. Assume M; 1%, vy 10, 8 |0 and M{/*y%5 — «. Then

E(on(2) — o(£))” = 0 in probability,

where E| refers to expectation conditional on the first subsample and ¢ is
independent of this subsample.

ProoF. In view of the definition of ¢, above (2), one must show that

(14) Ey(Iy*v,(¢) — ¢(¢))" = 0 in probability.
Letting f denote the density of &, the left-hand side of (14) equals

[/ =) = e@)m ) dy) f(x)
S ff(lN(x -y)— (p(x))2vy(y) f(x) dydx

= Ey(Iy(e +vZ) — 0(¢))’
(15) < 2{Ey(In(e +7Z) = 0,(2 + v2))" + (e, (e + ¥2) = 9(2))’},
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where Z is a standard normal variable independent of the first subsample and
of &, ¢, =f,/f, and f, =f=*v . Now Bickel [(1982), page 665] has shown

Y
¢,(e + yZ) is uniformly square integrable, so the second term in (15) tends to

zero when y — 0. Now f’ € L,(u) where u is Lebesgue measure, so f, — f"
a.e. and C

| fay = Ml < v 21 Fy = Fll < 2y *E17*| Fy(e) — F(e)]

by Lemma 2 below. To bound this expression, let ¥ be the empirical distribu-
tion function for the ¢;, i = 1,..., N, in the first subsample. Then

E(E,|Fy(¢) — F(¢)|) < E|Fy(¢) — F(¢)| + E|F(e) - F(e)|.
Now
E|F(e) - F(e)| < BV2(F(e) - F(z)): < N-1/2
and

E|Fy(e) — F(e)| < N"'E

N
Z I(B E (&5, €:)}
i=1

S E|F(£l) - F(é\l)| S KEIGi - €l| = O(Ml—l/2)
where K = sup, f(x) is bounded because of the assumption that ¢ has finite
Fisher information. Thus

(16) I fioy = £l = Op(y "M /%) = 0,
so fy, — [’ in probability a.e. Similarly
(17) I vy = £yl = Op(y ™M1 /*) > 0,

so fy, — f in probability a.e. and thus fy., /fx, — ¢ in probability on {f> 0}
It follows that EI 4p,c — 0, so E(¢ (e + yZ)I 45,c)* — 0 in probability, and
to bound the first term in (15), one need only consider

2

EI(IAB(@(E +vZ) - %(5 + YZ))
fay =1y

fN‘y
ol ) 5]
fN‘y AB fy fN'y

< 257 fivy = F1I2 +1 vy = £, LB 0, + v2))"}

= 0,(8y*M}/*)*

by (16), (17) and the uniform square integrability of ¢, (¢ + yZ). This last
expression tends to zero by assumption. O

2
<2 ) +E,

El( Y

LEMMA 2. Assume F is a continuous distribution function and G is a
nondecreasing right continuous function. Then for p > 1,

IF = Gll. < ((p + DIF = Gllz,am)"" "
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In particular forp = 1,

IF = Gll. < (2IIF = Gllzm)>.

Proor. Let A =||F — G|l». Given any & > 0, there exists ¢ such that
A-e<F@#)-G@t)<A or A—e<G(#)—- F(t) < A. Assume the former
and let § = F(¢) — G(¢7). Then

IF = Gl ry = ['|F(s) = F(to) " dF(s),

where ¢, is chosen so that F(¢,) = F(t) — 6. Now let x = F(s) — F(¢,) and
change variables to get

8 -
IF - GI% ) > foxpdx = (p+1)7ter+1,

and since this is true for any ¢ > 0 we can replace 8 by A and the result
follows. O
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