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GENERALIZED QUANTILE PROCESSES

By Joun H. J. EInMaHL! AND DaviD M. MAsoN 2

Eindhoven University of Technology and University of Delaware

For random vectors taking values in R? we introduce a notion of
multivariate quantiles defined in terms of a class of sets and study an
associated process which we call the generalized quantile process. This
process specializes to the well known univariate quantile process. We
obtain functional central limit theorems for our generalized quantile pro-
cess and show that both Gaussian and non-Gaussian limiting processes can
arise. A number of interesting example are included.

1. Introduction and main results. The classical real-valued quantile
process continues to have wide ranging applications in statistics and probabil-
ity. Refer, in particular, to the books of Csorgé and Révész (1981), Csérgd
(1983) and Shorack and Wellner (1986). The purpose of this paper is to
introduce a notion of multivariate quantiles defined by means of a class of sets
and to investigate functional central limit theorems for the associated quantile
process. This process will be seen to be a natural generalization of the classical
real-valued quantile process. It should prove to be a useful new tool to deal
with inference about multivariate data, for instance in the construction of
goodness of fit tests, especially generalized @-@ plots.

To begin with, let X;,..., X,, n > 1, be independent random vectors taking
values in R%, d > 1, with common distribution function F. Further, let A be a
subset of the Borel sets B on R? and introduce the pseudometric d, defined on
B by

do(By, By) = P(B, 2 B,), for B;, B, €B,

where P is the probability measure on (R¢ B) pertaining to F. Define the
empirical measure P, on B by

1 n
P,(B)=—Y 15(X), BEB,
i=1

where 15 denotes the indicator function. Now let A be a real-valued function
defined on A. By the quantile function based on P, A and A we shall mean the
function

(1.1) U(t) = inf(A(A): P(A) > t,AcA}, 0<¢<]1,
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and by the empirical quantile function,
(1.2) U,(t) =inf{A(A): P,(A) =t, A €A}, 0<t<1(inf¢ = x).

Often, a natural choice of A is to be Lebesgue measure A, on R¢. In this case
U,(t) is roughly the “volume” of the smallest set in A that contains at least
fraction ¢ of the data points. A definition similar to (1.2) was used to define
minimal multivariate spacings in Deheuvels, Einmahl, Mason and Ruymgaart
(1988); this idea is also latent in Pyke (1984) and Rousseeuw (1985).

Depending on the smoothness of the sets in A, other choices for A that may
be feasible are the length of the perimeter of a set, its diameter or a (probabil-
ity) measure evaluated at the set; in short, whatever may be reasonable in a
given setup. For instance, for data on a circle a natural choice for A is the set
of all arcs on the circle and A is the arc length.

By selecting A and A appropriately, our generalized quantile function can
describe various features of the underlying distribution function F. When
d = 1 by choosing A = {(—x, x]: x € R)} and A((—, x]) = x, we get from (1.1)
and (1.2) the definitions of the quantile and empirical quantile functions in
the classical real-valued case; by setting A = {[a,b]: —® <a <b < x} and
Ma, b)) = b — a, U,(t) becomes the length of the shortest interval containing
fraction ¢ of the data (shortt for short) as studied by Griibel (1988) in
connection with robust scale estimation. For further details along this line, see
Rousseeuw and Leroy (1988). The shortt along with some true multivariate
examples is considered in more detail in Section 2.

In order to establish the above mentioned functional central limit theorems,
we must impose some regularity conditions on the class A and the function A.
First we require that:

(C,) A is continuous on A with respect to the pseudometric d, and A and A
are such that the U,, n > 1, are finite valued on (0, 1) almost surely.

(Cy) There exists a countable subclass D of A such that for any A € A there is
a sequence {D,, n > 1} in D with 1, (x) = 1,(x) for all x € R%.

[Assumption (C,) is assumption (SE) in Lemma 20 of Gaenssler (1983), page
108; we impse it here to avoid measurability problems.]

Let A* = A U {R¢, ¢}. Following Dudley (1978) and Gaenssler (1983), Chap-
ter 4, let

S, = {¢: A* > R: ¢ is bounded and uniformly d,-continuous}

and set, with 8, denoting the unit mass at x,

k
S={¢=y¢,+d:¢;€Spand = ) a,5,
i=1

for some a; € R, x; € R?, k € N}.
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Finally, equip S with the supremum metric p:
p(Y',y") = :ug*ll//(A) —¢"(A)|, fory',y"€S.
Define for each n > 1 the empirical process indexed by A* to be
a,(A) = n/*(P,(A) - P(A)}, AeA*.

By Lemma 20 of Gaenssler (1983), assumption (C,) implies that «, is a
random element in S, where S is provided with the o algebra generated by
the open balls. We shall assume that:

(C3) a, converges weakly in (S, p) [in the sense of Dudley (1978)] to Bp, a
bounded, mean zero Gaussian process indexed by A*, uniformly continu-
ous in d, on A*, with covariance function P(A; N A,) — P(A,)P(A,),
A, A, € A%,

Assumption (C3) implies that A is totally bounded and, furthermore, by the

Skorohod-Dudley-Wichura representation theorem [e.g., Gaenssler (1983),

page 82] there exists a probability space (Q,F, P) carrying a version Bp of Bp

and a sequence of versions &, of @, such that

(1.3) sup |&n(A) - BP(A)I -0 a.s.
AeA*

Henceforth, without confusion, we will drop the tildas from the notation.

We shall need some additional technical assumptions on A, P and A, which
in the classical real-valued case are trivially fulfilled under standard smooth-
ness assumptions [see Shorack and Wellner (1986)]. These are the following:

(C,) Forall A€ A, 0<P(A)<1.

Set T, ={¢}, T} = {R%} and

(1.4) T,={Ae€A:A(A)=U(t), P(A) =t} forO0<t<1.
We assume

Cy) T,+¢pforall0<t<1

and

(Ce) for every £ > 0 there exists a § > 0 such that whenever 0 <¢,, ¢, <1
with [¢; —t,] <dand A, € T, thereisan A, € T, with do(A;, A,) <e.

Forany 0 <t <1let
(1.5) B(t) = sup Bp(A).
AeT,

We note that if T, contains at least two sets A, and A, with P(A, 2 A,) > 0,
then B(t#) is not a normal random variable and EB(¢) > 0. Observe that (C,)
and (Cq) imply that B is continuous on [0,1] with B(0) = B(1) = 0 almost
surely. Also from assumptions (C,), (C,) and (Cy) it is straightforward to infer
that U,(¢) is measurable for each ¢ € (0,1), and, moreover, since U,(¢) is
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constant on (i — 1)/n,i/n]for i=1,...,n — 1 and on (1 — 1/n,1), we see
that for each 0 < a < b < 1, U, (-) is a random element in D,[a, b], the space
of left continuous functions with right limits on [a, b]. Furthermore, (C,) and
(Cq) imply that U is continuous on (0, 1).

Finally we require two more assumptions. Let

1. L=1 =1l .
(1.6) tlf!(}U(t) and R ”nllU(t)

Assume:

(C,) U is strictly increasing on (0, 1) with inverse H = U~! having a continu-
ous derivative h on (L, R). [Note H(x) = sup{P(A): A(A) <x}, L<x <
R.]

(Cg) For every & > 0 there exists a & > 0 such that whenever A € A satisfies
0<t-8<P(A) <t<1land A(A) < U(#) there is an A’ € Ty, 4y, such
that d (A, A) <e.

Denote g = h - U and consider the generalized quantile process
(1.7) B.(t) = g(t)n'2(U,(t) — U(¢)), 0<t<1.

We are now prepared to state our first theorem.

THEOREM 1.1. Under assumptions (C,)-(Cg) forall 0 <a <b < 1, on the
probability space of (1.3),

(1.8) sup [B.(t) + B(t)| >0 a.s.asn > .

a<t<b

In the classical real-valued case, this theorem reduces to the well known
Hajek-Bickel result [see Theorem 1 in Shorack and Wellner (1986), pages
640-641). Our next theorem shows that under additional assumptions the
convergence in (1.8) can be extended to the entire interval (0, 1).

THEOREM 1.2. In addition to the assumptions of Theorem 1.1, suppose A is
nonnegative, 0 < h(L + ) < », h is nonincreasing in a left neighborhood of R.
If lim,, p h(¢) = 0, assume moreover that k' exists in a left neighborhood of R
and for some 0 <M < o,

(1.9) limsup (1 — H(t))|K(¢)|(h(2)) "> < M.
tTR

Then on the probability space of (1.3),

(1.10) sup |B.(¢t) + B(t)|>p 0 asn — .
0<t<1

We note here that condition (1.9) is a right-tailed version of the Csérgé and
Révész (1978) condition. Refer to Shorack and Wellner (1986) for a detailed
account of conditions under which (1.10) holds for the classical real-valued

quantile process.
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REMARK 1.1. It is clear from our setup that the sample space R? can be
replaced by a general metric space. Moreover, it is easily seen that the only
feature of weak convergence that we use in our proofs is statement (1.3). For
the latest word on representations as in (1.3), refer to Dudley (1985).

Discussion. Our notion of multivariate quantiles is not intended to provide
a recipe for ordering data in R¢, but rather to offer a flexible technique to
summarize properties of multidimensional data by means of a univariate
quantile type of function. It is, however, roughly related to a number of
methods that have been suggested for ordering (multidimensional) data, two of
the most prominent of these being the idea of peeling the convex hull of the set
of data points X;,..., X, and that of ordering by means of an auxiliary
function ¢, that is, x <, y if and only if ¢(x) < ¢(y). The first method was
originally suggested by Tukey (1975) and the second came out of the discus-
sion by Plackett (1976) of Barnett’s (1976) stimulating paper on multivariate
ordering; see also Chapter 2 of Reiss (1989). [For other approaches to multi-
variate quantiles refer to Pyke (1975, 1985) and Eddy (1985).] Our quantiles
are related to the first method in that a class of sets is used in the definition
and to the second method, as pointed out by one of the referees, in the
following way: Choose A to be the class of all sets of the form

A ={x:¢(x)<r}, -—wo<r<owo,

and set A(A,) = r. In this case U,((i/n) — ), i = 1,...,n, become the order
statistics of ¢(X,),i=1,...,n.

This referee also remarked that one can further generalize quantile func-
tions of this form by regarding them as functions indexed by both ¢ and . For
example, let ¢;(x) = x;; that is, the projection on the jth coordinate, 1 <j < d,
of x. Also, for each 1 <j < d, let A; be the class of sets

A, ;={x:x;<r}, TreR,

r,Jj
and set A;(A, ;) = r. Then for each coordinate j we get an empirical quantile
function U, ; and U, ;((i/n) —), i =1,...,n, become the ordered values
of the jth ‘Goordinate of the X,, i =1,...,n. For instance, (U, (1 -),...,
U, 4(1 —)) is the d-variate maximum studled in multivariate extreme value
theory [see Resnick (1987)].

2. Examples. The following two propositions will be very useful in pre-
senting some of our examples.

PROPOSITION 2.1. Assume that F is a distribution function on R%, d > 1,
such that
(2.1) F has a continuous density fon R?,

for all 0<c<w, Agdx: f(x)=c} =0, with A; being

(22) Lebesgue measure on R?.
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Then for any 0 < t < 1 there exists a c(t) > 0 such that with C, = {x: f(x) >
c(t)},

(2.3) P(C) =1,

C, minimizes A ,(C) among all Lebesgue measurable sets C
(2.4)  such that P(C) = t and, moreover, if C is Lebesgue measur-
able, A (C) = A4(C,) and P(C) = ¢, then A4(C aC,) = 0.

Proor. Assertion (2.3) is an easy consequence of (2.1) and (2.2). The
second part of the proposition follows directly from the generalized
Neyman-Pearson lemma given in Lehmann [(1986), page 96] with u = A,
m=1fi=fand f,=-1. 0O

REMARK 2.1. Proposition 2.1 says that if A is chosen to be A,;, F satis-
fies (2.1) and (2.2) and for each 0 <¢ <1 there is an A, € A such that
AMA, a2 C,) = 0, then A, is the essentially unique A € T, determining U(?).

In order to state our next proposition, we need to introduce the following
notation and assumptions: Let F' be a distribution function on R¢, d > 1, with
a density f (w.r.t. Lebesgue measure A,;) such that:

Al. conditions (2.1) and (2.2) hold;

A2. f(Tx) = f(x) for every x € R® and orthogonal transform T on RY;

A3. for any ¢ > 0, {x: f(x) = c} is either empty or a closed centrally symmet-
ric, convex set.

Assumptions A2 and A3 imply that whenever {x: f(x) > ¢} is nonempty for
some ¢ > 0, it is necessarily a closed ball with center 0, from which it easily
follows that

(2.5) sup f(x) ==D <o
xeR?
and
(2.6) {{x: f(x)=c}:0<c <D} ={rE:0<r <o},

where E is the closed ball with center 0 and radius 1.

Distributions which satisfy A2 are called spherical. For a discussion of
properties of spherical distributions along with many examples, see the book of
Muirhead [(1982), pages 32—40].

Let T denote the set of all orthogonal transforms T: R? — R¢ and S be the
set of all scale transforms on R¢; that is, each S € S is of the form
a; 0
S = , wherea;>0,i=1,...,d.
0 ay

For each S € S, write |S| = [1¢_,a; = determinant of S. Consider the class of
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all closed ellipsoids
E={TSE+2:TeT,S€ES,zecR%.

Under the preceding assumptions we can show, using Theorem 1 of Anderson
(1955), that for each T€ T, S€S and z € R?, z # 0,

(2.7 P(TSE + kz) is strictly decreasing in & € [0, ®).
For any S€ S and z € R? write Eg(z) = SE + z and for any 0 < r <
denote by B, = rE the closed ball of radius r centered at 0.

PropoSITION 2.2. Under assumptions A1-A3, for all € > 0, there exists a
8 > 0 such that whenever A € E satisfies

(2.8) P(B,) - P(A) <9,
where A = TSE + z for some T€ T, S€ S and z € R?, and r = |S|'/%, then
(2.9) P(B,2A) <.

Proor. First by A2 we can restrict our consideration to the subclass
{Eg(2): S€ S, z € RY of E.
For R > 1 and n > 0 define with r as in (2.8),

Y(R,n) = sup{P(B,AES(z)): lzl <m, R"' < ISV <R,

2.10
( ) ISI'/¢ — min(a,,...,a,) 577},
(2.11) Yo(R,n) = inf(P(B,) — P(Eg(2)): Izl >, R"' < [S|"/? <R,
IS|*/ ¢ — min(aq,...,a4) < 77],
¥3(R,n) = inf{P(B,) — P(Es(0)): R"* < IS|"/? <R,
(2.12)

ISI'? — min(ay,...,a,) > 17}.

It is readily verified using Proposition 2.1, A1-A3 and (2.7) combined with
continuity that for each R > 1and i =1,2,3,

(2.13) $;(R,m) >0 and ¢;(R,n) >0 asnl0.
Set

(2.14) 8(R,n) = min(y(R, ), ¥3(R,n))

and

(215) &(R,m) = 2P(Bg-1) + 2(1 - P(Bg)) + (R, m) + 5(R, ).
We claim that for all R > 1 and 5 > 0 whenever, with r = |S[*/¢,

(2.16) P(B,) — P(Es(2)) <8(R,m),
then
(2.17) P(B,2Eg(z)) <e(R,n).

To see this we must consider a number of cases.
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Case 1. R-'<r<R,lzl <n, IS|"?% - min(ay,...,a,) < 7. In this case
(2.17) holds by definition of (R, ).

CasE 2. R '<r <R, |zl >n,|8"? - min(a,,...,a,) < n. By definition
of ¢,(R, n), (2.16) cannot hold in this case.

Case 3. R '<r <R, I8"% - min(a,,...,ay) > n. In this case by (2.7),
P(B,) - P(Es(2)) = P(B,) — P(Es(0)) = ¢3(R,m),
so (2.16) is not satisfied.

Case 4. R~!> |S|*“. Here we have trivially
P(B, s Eg(2)) < 2P(Bg-),
which implies (2.17) by definition of (R, n).

Cast 5. |S|Y¢ > R. By elementary bounds,
P(B, s Eg(2)) < 2(1 — P(Bg)) + P(B,) — P(Es(2)).
Thus (2.16) implies (2.17).

Since by (2.13), for each R > 1, both 6(R,n) — 0 and
(2.18) e(R,n) - 2P(Bg-1) + 2(1 — P(Bg)), asnlo0,

and the right side of (2.18) converges to zero as R 1 «, a routine argument now
yields the assertion of Proposition 2.2. O

ExampLE 1. Let F be a distribution function on R¢ satisfying Assumptions
A1-A3 of Proposition 2.2 and set A = Eand A = A,. For such an F, A and A it
is immediately obvious that assumptions (C,), (C,), (C,) and (Cg4) of Theorem
1.1 hold. To verify (C,;) we first recall the well known fact that the class of
closed ellipsoids forms a Vapnik—-Cervonenkis class and then combine this with
(C,), which implies by the Pollard (1982) central limit theorem that (C,) is
fulfilled. Assumption (C,) follows by elementary analysis. In fact, here the
function A is strictly decreasing, L = 0 and ~(0 + ) = D, with D as in (2.5).
Finally, after a little reflection, it follows that in this case (Cg) is a consequence
of Proposition 2.2 and (C,).

Choose T€T, S€S and z € R Then a little computation shows for
X,,...,X, iid. F and Y;=TSX; +2, i=1,...,n, that for all 0 <¢ <1,

Y(t) = BX(t), where BX and B are the generalized quantile processes corre-
sponding to X;,..., X, and Y;,...,Y,, respectively. Thus, from the above, we
see by Theorem 1.1 that (1.8) holds for B} with 0 < a < b < 1 being arbitrary.
Moreover, whenever (1.9) is satisfied, (1.10) holds. It is readily checked that
the process B which arises is the standard Brownian bridge. [Use Proposition
2.1 and property (2.6).] For related work, see Davies (1987).



1070 J. H. J. EINMAHL AND D. M. MASON

An aside (A natural way to choose the class A). Assume that Y,,...,Y,
are i.i.d. f(x;0), where {f(x;8): 6 € 0} is an exponential family of densities on
R< of the form

>

Gﬂ}(x))h(x),
Jj

C(o )eXP(
1
where © contains an open subset of R* and T,,..., T, are linearly indepen-
dent real-valued measurable functions on R¢ and % is a nonnegative measur-
able function on R<.
Since the class of functions

k
Y 0T, 06=(6y,...,0,) €0,
j=1

is finite dimensional, one can show using Theorem 7.2 in Dudley (1978) that
the class of sets

{{x: f(x;08) >c},0 € 0,c >0} = A*

is a Vapnik-Cervonenkis (VC) class. If a little continuity is assumed, then the
necessary weak convergence assumptions hold for the class A*, since VC plus
measurability implies ‘“weak convergence.”

In the case when the f(x, #) are the densities of the d-dimensional normal
random vectors, the ellipsoids are generated in this way.

ExampLE 1(a) (Multivariate normal). It is simple to verify that all nonde-
generate multivariate normal distribution functions are included within the
setup of Example 1 and that they satisfy (1.9). Specializing to the case when
Y,,..., Y, are ii.d. bivariate normal random vectors with mean (u,, u,) and
variance—covariance matrix

ol po0,
po,03 0'22 ’

where —1 < p < 1 and oy, 0, > 0, we obtain on the probability space of (1.3)
as n — o,

1-1)

T

1
sup n1/2{Un(t) - 710g(—)} + B(¢)| =4 0,
0<t<1 1-1¢

with 7 = 27a,05(1 — p?)'/2 and B a standard Brownian bridge.

ExampLE 1(b) (Length of shortt). Let F be a distribution function on R
with density f which is positive, continuous, strictly increasing on (—, 0] and
symmetric about zero. Such an F satisfies conditions A1-A3 of Proposition
2.2. Here the class E = {[a, b]: —© < a < b < =} and choosing A = A;, we get
Ult)=2F Y1 + t)/2) and g(t) = f(F~X(( + t)/2)). For a sample Y,,...,Y,
iid. F((- = p)/o), p €R, o > 0. Uyt) is easily seen to be the length of the
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smallest closed interval that contains at least fraction ¢ of the observations.
This we call the length of the shortt. We have in this case that for all
0<a<b<1,u€Rand o> 0 on the probability space of (1.3) as n — o,

sup |07 1g(t)n/2(UL(t) — oU(t)) + B(t)| > 0 aus.
a<t<bd

This result agrees with Theorem 3 of Griibel (1988). Note that he requires
slightly more regularity conditions on the density. We should mention here
that Kim and Pollard (1990) have previously remarked that Griibel’s result
can be obtained by means of abstract empirical process methods. Our next
example extends Example 1(b).

ExampLE 2. Let F be a distribution function with a density which is
positive and continuous on (a, B) where —» < a < 8 < © and zero elsewhere.
Furthermore, assume that for some ¢, € («, B), f is nondecreasing on (a, ¢,]
and nonincreasing on [¢,, B). Let A = {[a, b]: « <a <b < B} and A = A;. Now
(C—(C,) are trivially fulfilled. For the verification of (C5)-(Cg) the following
observation is crucial: For every A € T,, 0 < ¢ < 1, there exists a c(¢) such
that

{x: f(x) > c(t)} A c{x: f(x) = c()}

and, moreover, c(¢) = h(¢), where h is as in (C;). From this, (C;)—-(C,) are
readily derived.

Condition (Cg) can be established using an adaption of the proof of Proposi-
tion 2.2. We sketch here the modifications. For every 0 < ¢ < 1, let A(¢) be
the unique element of T, with the property that for every A € T,, A{(¢) = A —
z for some z > 0 and A,(¢) be the unique element of T, such that for A € T,
Ay(t) = A + z for some z > 0. For 7 € (0,1/2) and n > 0 write

¥(r,m) = max[sup{P(Ay(¢) a (A(t) —2)):r<t<1l-1,0<z<mn}
sup{P(Ay(t) a (Ay(t) +2)):7<t<1-17,0<z<n}],

8(7,m) = min[inf{P(A(¢)) — P(A((¢) —2):7<t<1—1,2>n},
inf{P(Ay(2)) = P(Ay(t) +2):r<t<1-1,2>n}],

e(r,m) = 41 + ¢(7,7m) + 8(7,m).

With these notations the reader can now easily check the validity of (Cg).

The message of this example is that the asymptotic distribution of the
length of the shortt can possibly be nonnormal. In fact it may happen that
B(#) is normal for certain values of ¢ and nonnormal for others. When F is the
uniform (a, B) distribution, B(#) is nonnormal for each 0 < ¢ < 1. See the next
example.

ExampLE 3 (Multivariate uniform). Let X,,..., X, be ii.d. uniform I d
where I = (0,1) and A be A,.
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ExaMpPLE 3(a). Set A = {IT% (0,5,]:0 <b,<1,i=1,...,d}. Here U(t) = ¢
and T, = {A € A: A4(A) = ¢}. All the assumptions (C,)-(Cg) are satisfied and
also (1.9). [Actually, lim,,; £(¢) = 1 here; hence (1.9) is not needed.] We get
from Theorem 1.2 that as n — o,

sup |n'/2(U,(t) —t) + B(¢t)| —»p 0.

0<t<1

In this case when d > 2, B is a continuous non-Gaussian process on [0, 1] with
EB()>0forall 0 <¢<1.

ExampLE 3(b). Now set A = {IT¢ |[a;,b,): 0<a;<b;<1,i=1,...,d).
Then everything holds true verbatim as in Example 3(a). Note that the process
B that arises in this example is not the same as that of Example 3(a) and is
non-Gaussian for all d > 1.

ExamMpPLE 3(c). Everything also works if A consists of all closed convex
subsets of 1¢, d < 2, but not for d > 2. Assumption (C;) no longer holds when
d > 2; see Bolthausen (1978).

3. Proofs of the theorems. For the proofs of Theorems 1.1 and 1.2 we
shall need Proposition 3.1. Before we can state it we need some notation. Set

(3.1) P(t)= sup P (A), 0<t<l1,
AMA)<U@)
AeA
P,(0) == 0 and P,(1) := 1. Consider the process
(3.2) a,(t) =n?(P,(¢) -¢t), 0<t<l.
ProposITION 3.1. Under assumptions (C,)—(Cg), on the probability space of
1.3),
(3.3) sup |a,(¢) — B(t)| >0 a.s.asn — .
0<t<1

Proor. Notice that for any 0 < ¢ < 1,

B(t) —a,(t) <B(t) - n1/2{ sup P,(A) - t}
(3.4) P

< sup | Bp(A) — a,(4)|.
AeA

Thus by (1.3)
(3.5) limsup sup (B(¢) —@,(t)) <0 aus.
1

noo 0<t<
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Also we have for any 0 <t < 1,

© MA)=<U®)
t—n"t<P(A)<t

a,(t) —B(¢) < {nl/z( sup P(A) - t) - B(t)}
(3.6)

v{n1/2( sup Pn(A)—t)—B(t)}.

P(A)<t—-n~1/4
The second term on the right side of (3.6) is

< n1/2( sup (P,(A) - P(A))) +|B(#)| - ni7*.
P(A)<t

This last term is, uniformly in ¢,
< 2sup |Bp(A)| + sup |a,(A) — Bp(A)| — n'/*,
AeA AeA

which by (1.3) and boundedness of By converges to —o with probability 1 as
n — . Next consider the first term on the right side of (3.6). For any
0 <t < 1, this term is

< n'/? sup (P,(A) — P(A)) — B(%)

AMA)<U®)
t—n"Y4<P(A)<t

< sup |e,(A) — Bp(A)| + { sup Bp(A) — B{?),.
MA)<U®) AMA)<U®)
t—n"Y4<P(A)<t t—n"4<P(A)<t

We see now from (1.3) and (3.5) that the proof of (3.3) will be complete if we
show that for every o € (},

(3.7 sup { sup Bp(A) - B(t)} -0 asn —> o,
0<t<1 AMA)<U@)
t—-n~V4<P(A)<t

By (Cg) combined with (Cg) and (C,), and uniform continuity of B, for any
n > 0, we have for all large n

(3.8) sup sup Bp(A) — B(t)|<n.
0<t<1 AMA)<U®@)
t—n"/4<P(A)<t
Since 1 > 0 is arbitrary, this implies (3.7). O
We introduce notation
(3.9) V,(s) =inf{t: P,(t) 25,0 <t <1}, 0=<s<]l,

and
(3.10) B.(t) =n'3(V,(t) —t), 0<t<l.
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The following two corollaries are essential to our proofs of Theorems 1.1 and
1.2. For the proof of the first one we need the following version of Lemma 1 in
Vervaat (1972).

Facr 3.1. For each n > 1, let x,, be a nondecreasing function on [0, 1] with
x,(0) = 0 and x,(1) = 1. Moreover, let y be a continuous function on [0, 1]. If
as n — o,
sup |n'/%(x,(t) —t) - y(¢)| -0,

1

0<t<

then
sup |n'/%(x;Y(t) — t) +y(¢)| - 0,
1 .

0<t<
where x,;(¢) = inf{u: x,(u) > #},0 <t < 1.

COROLLARY 3.1. On the probability space of (1.3),

(3.11) sup IB_n(t) + B(t)l -0 a.s.asn > o,
0<t<1
COROLLARY 3.2. On the probability space of (1.3),
(3.12) sup |V (t) —t|>0 a.s.asn —> «.
0<t<1

Corollary 3.1 is a consequence of Proposition 3.1 and Fact 3.1; Corollary 3.2
follows (obviously) from Corollary 3.1.

Proor oF THEOREM 1.1. We begin with a lemma. Define U(0) = L.
LEmMA 3.1. With probability 1 forall 0 <s <1,
(3.13) Uy(s) = U(V,(s)).

ProOOF. From the definition of V, it follows that with probability 1 for all
0<s<l,

U(Vy(s)) = inf{U(t): sup P,(A)>s,0<t< 1}
AMA)<U®)

- inf{r: sup P(A)>s, L<r< R}.

AMA)<r
Recall that
U,(s) = inf{A(A): P,(A) > s, A € A}.
Write
S, = {r: sup P,(A)>s,L<r <R}
MA)<t
and

S, = {A(A): P,(A) > s}.
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If r € S,, then there exists an A € A with A(A) <r and P,(A) > s. Hence
there is an x < r with x € S,. This implies

(3.14) U,(s) < U(V,(s)) as.
It remains to show o
(3.15) U(Vi(s)) < U(s) as.

If re€8, with L <r <R, then there exists an A € A with A(A) =r and
P,(A) > s. Hence

sup P,(A) >s,
MA)<r

which yields r € S,. This implies (3.15). O

We are now ready to complete the proof of Theorem 1.1. Foreach a <t < b
we get by the mean value theorem and Lemma 3.1, that almost surely

&(t) ( &(t) )
(1) + B(t)} - | =—= - 1| B(®),
20 Ba()) + B} = | 55 (t)
where 6, lies between ¢ and V,(¢). Assertion (1.8) is now a trivial consequence
of (3.11) and (3.12). O

(3.16) B,(t) + B(t) =

Proor oF THEOREM 1.2. The proof of Theorem 1.2 requires three addi-
tional lemmas.

LemMma 3.2. Let {Y, ), .1 ,>1 be a double sequence of random variables
such that for each n, k €N, Y, , is binomial (n,27*). Then

(3.17) Y, = sup2*Y, ,/n =03(1) asn - =,
keN

where P denotes the probability measure on the space on which these random
variables are defined.

Proor. Choose any ¢ > 0. It suffices to find a D > 0 such that

(3.18) P(Y, >D) <e¢ foralln.
We have for any D > 0,

P(Y,=D) < ¥ B(Y, , = Dn27%).
k=1

Notice that if Dn2~* < 1, then
(Y, , = Dn27*) = B(Y, , > 0) =1- (1-27%)" <n27".
Hence

(3.19) Y B(Y,.,=Dn27%)< ¥ n27*<2/D.
k:Dn27%<1 k:Dn2 %<1
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Now consider Dn27* > 1. In this case for D large and with D = D — 1,
P(Y, , > Dn27%) = If"(n_l/z(Yn,k -n27%) > ﬁn1/22_k),
yvhich by Bennett’s inequality [see, e.g., Shorack and Wellner (1986), page 440]
is
< exp(—D?*n27*"'y(D)),
where ¢ is a function that ¢(2) ~ (2log2)/z as z —» ». Thus for all large
enough D,
(3.20) Y  PB(Y,,=Dn27*) < ¥ exp(—2'"%log D) < 2D'*.
k:Dn27%>1 ieN
Inequalities (3.19) and (3.20) yield (3.18). O

LEMMA 3.3. On the probability space of (1.3),
(3.21) sup (1= )/(1= V(1)) = Op(1).

0<t<
Proor. For any k €N choose A, € T;_,+ and for 1 - 2% <t<1-—
27%~1get A, = A,. Now we have
sup (1-¢)/(1 -V, (¢)) = sup (1-P,(2))/(1-¢)
0<t<1

0<t<1

= su inf (1-P,(A 1-¢
0<tgl /\(A)sU(t)( ( ))/( )

<2v { sup (1 - Py(A,))/(1 - t)}

1/2<t<1
<2v {sup2“1(1 - Pn(Ak))}.
k=1
An application of Lemma 3.2 now completes the proof. O

LeMMA 3.4. Under the assumptions of Theorem 1.2, especially (1.9), there
existsa 8 > 0 such that for1 —86 <t <s <1,

(3.22) g(t)/g(s) < (1 —¢t)/(1—s)™.

Proor. Simple analysis; see, for example, Shorack and Wellner [(1986),
page 644]. O ‘

We are now prepared to finish the proof of Theorem 1.2. An easy adaptation
of the proof of Theorem 1.1 using the assumption that 0 < A(L + ) < « shows
that forall0 <n < 1,

(3.23) sup |B,(t) +B(t)| >0 as.asn — o,

0<t<l—n
If lim, ,  A(#) > 0, necessarily meaning R < =, then (3.23) holds with n = 0
by the same proof as before. So from now on we assume lim, ,  2(¢) = 0. From
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(3.16) we obtain that for any 0 < n < 1 almost surely

&) —

sup |B,(t) + B(t)|< sup (t) + B(t

1—11$t<1l ( ) ( )l . 1-n=t<1 g(an) (B ( ) ( ))
g(t) )

+ su —1|B()|.

1—1,sl:<1 (g(on) (®)
Next by Corollary 3.2, with probability 1 for all small enough n > 0,

(3.24) sup g(¢)/g(6,) < sup g(t)/g(tV6,)
1-n<t<1 1-n=<t<1

for all large enough n, which by Lemma 3.4 is

3 ( 1—t¢ M
S e (l—t)A(l—Vn(t))) ’

This last expression is, in turn by Lemma 3.3, Op(1). Thus we obtained that
for all small enough n > 0,

(3.25) sup g(2)/g(¢V 6,) = Op(1).

1-n=<t<l1
This in combination with Corollary 3.1 says that for all small » > 0,
g() -~
3.26 sup B,(t) + B(t))| = op(1).
(3.26) o8 g(on)( (¢) + B(t))| = op(1)
Now for all n > 0 small, with probability 1 for all large n,

t
1_sup . (:((0 )) - 1)B(t)
(3.27) n=ts "
<2 sup —i(l— sup |B(t)|.

1-n<t<1 8(EV 0,) 1 n<i<1
From continuity of B at 1 and B(1) = 0 a.s. we have

(3.28) lim sup |B(t)|=0 as.

nl01-n<t<1
Finally a routine argument based on (3.23), (3.26), (3.27), (3.25) and (3.28)
establishes that (1.10) holds. O
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