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APPROXIMATION OF STOCHASTIC INTEGRALS WITH
APPLICATIONS TO GOODNESS-OF-FIT TESTS!

By ALex J. KoNING

Erasmus University

In this paper stochastic integrals with respect to the basic martingale
are approximated by Gaussian processes. The probability inequalities gov-
erning this approximation are used to study goodness-of-fit tests based on
sublinear functionals of weighted versions of these stochastic integrals. As
special cases of these tests, generalized rank and supremum-type tests are
considered.

1. Introduction. Let ({2, &7, &) be a probability space and %, a subset
of #0,x). At stage n, each of the independent random variables X,,..., X,,,
Y,,..., Y, maps (Q, &) into ([0, ©), %,). The probability measure induced by
these random variables is denoted by P,. Each pair (X;, Y;) is assumed to have
the same distribution.

The distribution of Y;, referred to as the censoring distribution, does not
depend on n. Hence, there exists a cumulative distribution G such that
G(t) = P(Y; < t) for each n. Defectiveness of G is allowed.

The distribution of X;, called the failure time distribution, is more compli-
cated since it depends on n. This dependence is given structure in the
following way: There exists a cumulative distribution function F, indexed by 6
belonging to some set ® and a sequence of points {6, _, such that F(¢;6,) =
P(X, <t) for every n € N (i.e., 0, is the actual value of 6 at stage n).

Now suppose 6, is an element of ® which is of special interest to us, say
because we want to know whether 6, could possibly be equal to 6,. Usually,
this question is investigated by using techniques which are based on the
empirical distribution function of the sample Xj,..., X,,. In some situations
encountered in cancer-research or life-testing, however, the phenomenon of
censoring occurs: The failure time X, cannot be observed if it exceeds the
censoring time Y,. All that is observed in these situations are the random
variable Z,,...,Z, and §,,..., 6, defined by

(1) Z;=X;\Y,
(2) % = lix,<vy-
The random variable §; is called the censoring indicator. Depending on the

value of the censoring indicator, the random variable Z; is called the observed
failure time (8; = 1) or the censored failure time (5; = 0).
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The pair of random variables (Z,, §;) follows the random censoring model.

The sample (Z,,6,),...,(Z,,8,) can be represented without loss of informa-
tion by means of the empirical distribution functions
n
(3 Hy)t)=n""Y 1z ¢ 5-1
i=1
n
(4) H, (t) = n~! Z 1(Z,-<t)'
i=1

Observe that H(¢) may well be defective and that H, _(¢) is left-continuous.

The understanding of the random censoring model has benefitted much
from approaching nH}(t), the number of failures occurring in the time inter-
val [0,¢] as a counting process [see Aalen (1976), Aalen and Johansen
(1978), Gill (1980, 1983)]. The compensator of this counting process is
nfi(l — H,_(s)) dA(s;0,), where A(¢;0) = —log(1 — F(¢;0)) is the cumulative
hazard function belonging to F(¢;6). The difference between nH(¢) and its
compensator is the martingale part of the Doob-Meyer decomposition of
nHX(¢) and provides the entry-point for invoking central limit theorems. Since
this process arises in a natural way, it is sometimes believed that it is the most
basic representation of the randomness in the sample (Z,, §,),...,(Z,,8,).
Hence, an appropriately rescaled version of this process has become known
under the name basic martingale [see Shorack and Wellner (1986), page 296].

If 0, equals 6, (denote the probability measure corresponding to this
situation by P, and the situation itself by under P), then the basic martingale
takes the form

@) Me0) = {0 - [0~ H, (5) dAGsi00)|.

Note that we only know that M,(¢;6,) is a martingale under P,. If 6, is
arbitrary (refer to this situation as under P,), then the process M, (¢;6,) is in
general not a martingale. Nevertheless, we shall also call M,(¢;60,) a basic
martingale. Although misleading, this does not lead to difficulties since we do
not encounter the original basic martingale M,(¢; 6,,) anymore.

The view that M,(¢;60,) is under P, the most basic representation of
randomness in the sample gives rise to the conviction that M,(¢;6,) should
give us an excellent answer to the question whether 6, equals 6,. Hence, tests
for the simple null hypothesis that 6, equals 6,, on which we focus in this
paper, should preferably be based on statistics constructed from the basic
martingale, a view first expressed in Khmaladze (1981, 1982) and shared in
Hjort (1990). In Section 3, we study tests based on a special type of functional
of a weighted version of a process @,(¢), which is a stochastic integral with
respect to the basic martingale, that is,

(6) Q1) = [ ‘L(s) dM,(s;6,).

Here the weight process L,(t) is a stochastic process satisfying certain condi-
tions.
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The probability theory underlying the results in Section 3 is presented in
Section 2, where the process @,(¢) is approximated. The common way to
approach a stochastic integral with respect to the basic martingale is by
martingale methods. In this paper an empirical process approach is followed,
based on an alternative representation of M,(¢;6,) in terms of empirical
processes. A slight drawback of the empirical process approach is that we must
assume that both F and G are continuous on the complete real line. However,
this assumption has its rewards: the knowledge obtained by the empirical
process approach is far more precise than can be obtained by using standard
martingale methods such as Rebolledo’s central limit theorem.

Define the cumulative distribution functions H'(¢;6,) and H(¢;6,) by

() H56,) = PAZi < 6,8, =1) = [(1-G(s)) dF(s;0,),

(8) H(#;0,) = P(Z, <t) =1-(1-G(¢))(1 - F(%;9,))
and the empirical processes UX(¢;60,) and U,_(t;6,) by

(9) U\ (t;6,) = n'/*{H,(¢) — H'(t;6,)},

(10) U,(¢;6,) = n'/*(H, _(¢) — H(;6,)}.

Then we may decompose M, (¢; 8,) conveniently into three parts:
(11) M,(t:0,) = UN(t:0,) + [T, _(5:0,) dA(s:8,) + n'/2D(;6,,6,)
0

[compare to the decomposition given in equation (7.12) in Shorack and Wellner
(1986)]. The first two parts involve empirical processes, and can be handled by
empirical process theory. The third part is nonrandom and involves the
function

(12) D(t;8,,0) = [‘(1 — H(s;0)){dA(s;0) — dA(s;0,)}.
0

Observe that if 6 coincides with 8, then D(¢; 6, 6) is identical to zero. As can
be expected, the function D(¢;6,,6) will show up frequently in our results.
Loosely speaking, it reflects the distance between the distribution functions
F(t;6) and F(¢;0,).

Although for the empirical process approach it is needed that G is continu-
ous on the complete real line, we may show that our approximation results
remain true on [0, £*), where t* = sup{¢: G(¢) < 1} is finite, if G is continuous
only on (—, t*), by appropriately modifying G on the interval [¢*, ©). Thus,
our results also have implications for Type I censoring.

Finally, we point out to the reader that Sections 2 and 3 contain results
only, and that proofs are gathered in Section 4.

2. Probability inequalities. In this section, we present probability in-
equalities which concern the approximation on the halfline [0, =) of (a centered
version of) the process @,(¢) by a one-parameter Gaussian process, both under



APPROXIMATION OF STOCHASTIC INTEGRALS 431

P, as under P,. For treatment of the former situation, the following condition
is needed.

ConpITION 1. There exist constants 0 < @ < 1/2 and ¢, < ® such that
[ (1= F(5;6))" dA(s;6,) <,
0
for every 0 € 0.

Essentially, Condition 1 relates the right tail behavior of F(¢;6) to the right
tail behavior of F(¢;6,). Note that if (1 — F(¢;60))/(1 — F(¢;6,)) remains uni-
formly bounded in 6, then Condition 1 is satisfied for any a > 0. Observe that
Condition 1 implies

) l-a
(13) | D(21;80,0) — D(¢5;00,0)| < cy(1 — H(t; A t5;0))

where ¢; =c, + 1/a. From (13) it immediately follows that D(t;60,,0) re-
mains bounded by c;.
The weight process L,(t) is assumed to satisfy Condition 2.

ConpITION 2. There exists a positive nondecreasing function g(¢) such
that:

(@ L,(-)/q(‘) is a random element in (the left-continuous right limits
version of) D[0, ©) endowed with the .7, metric.

(b) There exists a constant ¢, not depending on 6, such that

sup |L,(t)|/q(¢) <czy  V(L,(-)/a(")) <cqy
tE[O,oo)
with P,-probability 1 [here V(f) denotes the total variation of f].

(c) There exists a deterministic function L(¢;6,) such that for every B <
1/2,

P sup |L.() ~ L(5:6,)1/a(t) > eqn™®) < cgn,
t€[0,x)
where c;—c; are positive constants not depending on 6,.
(d) There exist constants cg—c; > 0 such that for every x > 0,

Po( sup |L,() = L(t:00)|/a() > n=%(cglog n + x)) < e exp( —cqx}.
te[0, )

Condition 2 implies that both supte[oyw)IL(t;()n)l/q(t) and V(L(-;6,)/q(-)
do not exceed c,.

Subsequent results may be viewed as bearing upon Q,(t)/q(¢) rather than
upon @Q,(¢) itself. Hence, the choice of q(¢) will often be inflicted by the
prajected application of these results. For example, to study processes of
the type (1 — F(¢;0,))°/¢(1 — F(s;60,) " dM,(s;6,) for some p > 0, choosing
q(t) = (1 — F(¢;0,)) " would be appropriate.



432 A. J. KONING

Under Conditions 1 and 2, we have the following result. The expectation
operator under P, is denoted by &,.

THEOREM 1. There exists a sequence {W,(t)},_, of mean zero Gaussian
processes which have covariance function
cgr’ng(tl)Wn(tZ) = Hl(tl A t2; on) - D(tl; 007 on)D(t2; 007 on)

(14) + [7"™(2D(s;6,,6,)
0

—D(¢1;60,8,) — D(t5;60,6,)} dA(s;8,)
such that for every B < (1/2 — a) A 1/6, there exist positive constants cg—Cy,
not depending on 6, such that

P, {én(t) - nl/szth(S) dD(S;OO’Bn)}

(e
te[0, )

(15)

/q(t) > cgn'B) < cron”n.

Moreover, there exist positive constants c,o—C,4 such that for every x > 0,

= [L(s;0,) dW,(s)

/q(t) > n~8(c,logn + x)?

Po( sup |@.(t) = ['L(s38,) dW,(s)
(16) tel0,) 0

< cjzexp{ —cy x}.

CoOROLLARY 1. Under P,, the sequence {Q,(t)/q(¢)},_, converges in distri-
bution to X(t;60,)/q(t), where X(¢;0,) is a time-transformed Wiener process
with variance function [{(L(s;0,))*> dH(s;8,).

In Theorem 1, a stochastic integral with respect to a Gaussian process
appears. This integral is defined in the usual way, that is, [{L(s;8,)dW,(s)
denotes L(¢;0,)W,(t) — [(W,(s)dL(s;8,).

There is a refinement of Theorem 1 worth mentioning. If the stochastic
process L,(¢) coincides with the function L(¢;6,) with P,-probability 1, then
(15) holds for every B < (1/2 — a). Moreover, the term n~1/% in (16) may be
replaced by n~1/2.

An approximation of @,(t) by a two-parameter Gaussian process, only valid
under P, and on some fixed closed interval, can be found in Einmahl and
Koning (1992), where it is used to derive complete analogues of the
Chibisov-O’Reilly theorem, the Lai—Wellner Glivenko—Cantelli theorem and
the James’ law of the iterated logarithm.
~ Convergence in distribution under P, of the sequence {Q,(¢)/q(¢)};,_, may
also be obtained by using Rebolledo’s martingale central limit theorem [Shorack
and Wellner (1986), page 895], provided that the weight process L,(¢) is
predictable. However, such an approach does not lead to probability inequali-
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ties of the same type as (16), which will prove to be essential for deriving
moderate deviation results for the test statistics considered in the next section.

3. Sublinear goodness-of-fit tests. In this section we study sublinear
tests for the simple null hypothesis that 6, equals 6,. These tests are based on
statistics of the form T(Q,(-)/q(-)), where T is a special type function
mapping D[0, ) into R. We consider the behavior of these test statistics under
the null hypothesis and under fixed and local alternatives, as well as efficien-
cies of the corresponding tests. Generalized rank and supremum-type tests
receive special attention and are shown to be in some sense optimal for specific
choices of the weight process.

ConpiTioN 3. The function T satisfies:
(a) There exists a constant ¢, such that

IT(&) —T(n)| <er s[up )|§(t) —n(t)| forevery ¢,n € D[0,»).
tel0, x
(b) T(¢ + n) < T(¢) + T(n) for every £, € D[0, ).
(c) T(c&) = cT(¢) for every ¢ = 0, ¢ € D[0, ).

By definition, Conditions 3(b) and 3(c) imply that T is a sublinear function.
In Borell (1975) [see also Adler (1990)] results are derived for the tail behavior
of a random variable T(¢), where T is sublinear and ¢ is a Gaussian process.
Condition 3(a), which appears in Komlés, Major and Tusnady (1975) and in
Inglot and Ledwina (1990), enables us to carry these results to some extent
over to non-Gaussian processes close to £.

Now, let . be the set of functions

S= {fe C[0,1]: f absolutely continuous and [w( f’(s))2 ds < 1}
0

[compare with Strassen (1964)] and define

(17) a={?:‘I;T(L'L(S;Bo)f'(Hl(s;Oo))dHl(S;Bo)/q('))} :

One may interpret /% as the norm of the function T induced by the
reproducing kernel Hilbert space [see Aronszajn (1950)] of the Gaussian
process X(¢;0,)/q(t), the limit in distribution of the sequence {Q,(¢)/q()};_,
under P,. Suppose that:

CONDITION 4. a is positive.

Theorem 2 describes the tail behavior of T'(X(-,8,)/q(-)) [and thus the tail
behavior of the asymptotic distribution of T(Q,(:)/q(-))] and presents a
moderate deviation result for T(Q,(-)/q()). It holds if equation (16) and
Conditions 3 and 4 hold.
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THEOREM 2. We have

Furthermore, _
(19) Ji_l)l:o(sn)_zlog PO(T(Qn(')/q(')) N sn) —

for any sequence {s,)._, such thats, > © and s, = o(n'/*®) as n - .

Since s, = &((log n)'/?) is a special case of s, = o(n'/!®), Theorem 2
implies that a moderate deviation result holds for T(Q,(-)/q(-)). Moderate
deviation results are important from a statistical perspective, because they
play a role in evaluating the performance of a test..

As with Theorem 1, Theorem 2 can be refined in the special case where
L,(t) coincides with L(¢;8,) with P, -probability 1. Now s, = o(n'/*®) may be
replaced by s, = o(n'/%), and thus we have obtained a Cramér-type large
deviation result. A Cramér-type large deviation result should be distinguished
from a Chernoff-type large deviation result which allows s, = &(n'/?).

To transform (18) into a moderate or large deviation result, probability
inequalities of the type (16) are needed. Hence, Theorem 2 does not follow
from Rebolledo’s central limit theorem.

It is possible to generalize Theorem 2 by relaxing Condition 3(a). For
example, in Inglot and Ledwina (1989), it is assumed that there exist a
constant ¢, > 0 and a weight function §(¢) belonging to some special class
such that

IT(¢) = T(n)|<er S[up) |£(¢) — n(t)|/4(t) forall §,m € D[0, ).
te [0,x
However, since the functions of our primary interest, those leading to general-
ized rank and supremum-type tests, already satisfy Condition 3(a), we have
preferred to present Theorem 2 in the simple version.

Since in general the distribution function H(¢;0,) is involved in a, practi-
cal problems arise when the censoring distribution G is unknown. In this case
it seems best to multiply the original weight process by the square root of an
estimator for a. Typically, estimators for a are obtained by replacing H(t;6,)
by [¢(1 — H,,_(s)) dA(s; 8,). Of course, it should be verified whether the newly
constructed weight process meets all requirements.

Next, we consider the behavior of T(Q,(-)/q(:)) under the alternative
hypothesis. Before turning to local alternatives, we first briefly discuss the
behavior under a fixed alternative. Suppose that 6 is an element of ©, not
necessarily equal to 6,, and that we have 6, = 6 for all n € N (we shall refer to
this situation as under P,). Combining equation (15) with Conditions 2(c), 3(a)

.and 3(c) yields for every g > 0,

(20) n7AIT(Q.(")/q(")) - nl/zT(/O.L(S;B) dD(S;Bo,B)/Q('))‘ —p, 0.
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To make treatment of the behavior under local alternatives possible, we
need additional notation and conditions. First we assume:

ConpiITION 5. O is a convex subset of R?.

The hazard function A(#; 0) is defined as the derivative with respect to ¢ of
A(t; 6). Let ¢,(t;6) denote the first order partial derivative of log A(¢; 6) with
respect to the ith component of 6 and ¢§;>(t;o) the second order partial
derivative of log A(¢; 6) with respect to the ith and jth component of 6.

ConDITION 6. For every 6 €© and i,j =1,..., p the functions A(¢;0),
¥(t;0) and ¢{}(¢;0) exist. For some B > 0, there exists a constant c¢,5 such
that for every 6 € 0,

[ (0i(5:0))°(1 - H(s;0)* P dA(s;0) <y fori=1,...,p,

0

[T (9 (s:0))°(1 — H(s;0))*" P dA(s;0) < ey fori,j=1,...,p.
0

In the description of the behavior of the test statistics under local alterna-
tives, the p-dimensional vector function K (¢) is involved. The ith component
of K (t) is defined by

(21) Koi(2) = [[L(s;00)¥i(5300) dH'(s3 o).

It is easily proved that K,,(t)/q(t) remains uniformly bounded in ¢ and 6,
under Conditions 1 and 6.

Recall that L(¢; 6) is the limiting function of the process L,(¢) under P,. Let
LM(¢; 0) denote the first order partial derivative of L(¢;0) with respect to the
ith component of § and L{®(¢;6) the second order partial derivative of L(%;6)

J
with respect to the ith and jth component of 6.

ConpiTioN 7. For every § € © and i, j = 1,..., p, the functions L{"(¢;6)
and LP(¢; 0) exist. There exists a constant ¢, such that for every 6 € 0,

sup (1 — H(t;0))?|LM(¢;0)|q(t) <cyg fori=1,...,p,
t€[0,)
sup (1 - H(t;0))  *|L(;0)| /q(t) <cyg fori,j=1,...,p.

te[0, )

THEOREM 3. Suppose the sequence {6, ), _, converges to the point 6. Let h
be the p-dimensional unit vector defined by h = lim,, _, (6, — 0,)/10,, — 0, and
let o denote lim,, _,., n'/20, — 0,|.

@ If o =, then |(n'/%0, — 0,D'T(Q,(-)/q(-)) — T(R"K (-)/q(-))| con-
verges to zero in P,-probability.

(b) If o < o, then {T(Q,()/q(-))._, converges in P -distribution to the
random variable T{X(-;0,) + ohTK ()} /q(*)).



436 A. J. KONING

Theorem 3 reveals three types of behavior of the sequence of test statistics
{T(Q,(-)/q(-))};_,, depending on the rate at which the alternatives converge
to the null hypothesis. If the rate is faster than n~!/2 then we have conver-
gence in distribution to the same limit as under the null hypothesis. If the rate
is of the order n~'/2, then we also have convergence in distribution, but to a
limit different from the one under the null hypothesis. If the rate is slower
than n~!/2, then the convergence in distribution is lost, since the sequence of
test statistics blows up as n tends to infinity.

Now that we have investigated the behavior of the test statistics, it is time
to evaluate the corresponding tests. For assessing the performance of a test, a
multitude of efficiency concepts are available. A few of them are discussed. We
start with approximate Bahadur efficiency.

DEFINITION 1. A sequence of test statistics {T},)%_, is said to be a standard
sequence if the following three conditions are satisfied.
(a) The sequence {T,,)7_; converges in P,-distribution to a random vari-
able T;.
(b) There exists a positive constant a; such that
lim¢ 2log Py(T; > ¢) = —a,/2.

t—> o

(c) For every fixed 6 € © — {§,), there exists a constant 5,(6) > 0 such that
In=1/2T;, — b,(6)| converges to zero in P,-probability.

The approximate Bahadur slope of a standard sequence {T},};_, is defined
as a;(b,(0))? The approximate Bahadur efficiency of a standard sequence
{T\,.},_, with respect to another standard sequence {T,,}"_, is defined as
the ratio of their respective Bahadur slopes a,(5,(0))?/a,(b,(6))%

By Corollary 1 and equations (18) and (20), it immediately follows that the
approximate Bahadur slope of the sequence {T'(Q,(-)/q(-))}_, is given by
a{T(f;L(s;0)dD(s;8,,0)/q(- )}

Approximate Bahadur efficiency has been subject to some criticism. Already
in Bahadur (1960) it is advocated that conclusions should not be entirely based
on approximate Bahadur slopes. In Wieand (1976) a condition is given under
which the existence of the limiting (as the alternative approaches the null
hypothesis) approximate Bahadur efficiency implies the existence of the limit-
ing (as the size of the test approaches zero) asymptotic Pitman efficiency and
the equality of the two limits. This condition obviates most of the difficulties
involved in the interpretation of approximate Bahadur efficiencies, at least for
0 in the vicinity of 6,.

DeFiNITION 2. A standard sequence {T,,):_, is said to be a Wieand se-
quence if there is a constant ¢* > 0 such that for every ¢ > 0 and 6 € (0, 1),
there exists an integer N such that

PB(|n_1/2Tin —b,(0)| > eb,(0)) <8
for all 0 satisfying (6 — 6, < &* and n > N /(b,(0))%.
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THEOREM 4 [Wieand (1976)]. Let {T,,)._, and {T,,),_, be two Wieand
sequences. Suppose lim,_, 4 b,(0) =0 for i = 1,2 and suppose that for every
p-dimensional unit vector, the limit

(22) Jim {a(6:(0))"} [{as(62(0))’)

exists if (6 — 0,)/10 — 8| tends to h. Then the limiting (as the size of the tests
approaches zero) asymptotic Pitman efficiency exists and is equal to the limit
given in (22).

THEOREM 5. Let h be a p-dimensional unit vector and let 6 approach 0,
from the direction h (i.e., lim,_,,(0 — 0,)/10 — 8ol = h). If

(23) e(h) = a{T (K"K (*)/a()))’

is not equal to zero, then {T'(Q,(-)/q(:))},_, is a Wieand sequence with
approximate Bahadur slope of the form

(24) 16 = 8o*{e(h) +o(1)}.

The Wieand approach to efficiency is based on letting both the size of the
test tend to zero and the alternative tend to the null hypothesis. However,
both operations are done separately. In Kallenberg (1983), a concept of effi-
ciency is proposed based on performing both operations simultaneously. It can
be considered as intermediate between the asymptotic Pitman and the exact
Bahadur approach.

DEFINITION 3. A sequence of test statistics {T},);_ is said to be a Kallen-
berg sequence if the following conditions are satisfied.
(a) There exists a positive constant a; such that

lim (s,) " log Po(T;, > s,) = —a;/2

for all sequences {s,}_, such that s, — « and s, = o(n'/®) as n — .

(b) There exists a positive function b;(9) such that n~'/%T;,/b,6,) = 1 in
P, -probability for all sequences {6, );_, such that 8, — 6, and »n'/?|6, — 6,| >
o as n tends to infinity.

If the sequences {T',,);_; and {T,,}); _, both are Kallenberg and if the limit
lim, . a,(b,(68,))?/a(by6,))* exists, then the asymptotic intermediate effi-
ciency of {T',)%_, with respect to {T,,},_; is defined as this limit.

Typically, b,(8) behaves near 6, as a linear function of |6 — 6,|, which
justifies introducing the intermediate slope lim,, _, ., @;(,(8,)/16, — 8,))?. If the
weight process L,(¢) coincides with L(¢;0,) with P, -probability 1, then
T(Q,(-)/q(-));_, is a Kallenberg sequence with intermediate slope equal to
the quantity e(h) defined by (23), as follows from refinements of Theorem 2
and Theorem 3.
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A variant of asymptotic intermediate efficiency, also proposed in Kallenberg
(1983), is weak asymptotic intermediate efficiency. Here only sequences {s,)7_;
such that s, » « and s, = &((log n)'/?) as n —  are considered. Observe
that the sequence {T'(Q,(-)/q(-)));_, has weak intermediate slope e(%), even if
the weight process does not coificide with its limiting weight function. Hence,
the weak intermediate approach yields the same picture as the Wieand ap-
proach.

The concepts in Kallenberg (1983) were proposed so as to correspond with
several types of moderate and large deviation results. In light of Theorem 2, it
is tempting to propose a variant of asymptotic intermediate efficiency, which
considers sequences {s,)>_, such that s, - » and s, = o(n!/'®) as n tends to
infinity.

In the beginning of this section, we assumed that the functional T is
sublinear. A close look reveals that Condition 3(b) is used in the derivation of
(18) only. Thus, we may set up an equivalent theory for functionals other than
sublinear, provided a result similar to (18) holds. As examples we mention the
functionals occurring in Cramér-von Mises and chi-square tests [see Durbin
(1973)].

However, we have preferred to restrict our attention to the class of sublin-
ear tests, since it comprises two particularly appealing subclasses, the class of
generalized rank tests and the class of supremum-type tests. The remainder of
this section is devoted to these two subclasses.

Generalized rank tests are based on tests statistics of the form Tx(Q,),
where the functional T, is defined by

(25) TH(£) = £(») for £ € D[0, ).

Examples of generalized rank tests can be found in Breslow (1975) [see also
Woolson (1981)] and Harrington and Fleming (1982). Supremum-type tests are
based on test statistics of the form T4(Q,), where T is defined by
(26) Ts(£¢) = sup £(¢) for £ € D[0,»).
t [0, )

For examples of tests of supremum type, refer to Aki (1986) and Harrington
and Fleming (1982).

It is easily seen that both Ty and T satisfy Condition 3. Hence, our theory
applies [set g(¢) equal to 1 for all ¢ € [0, »)]. Defining a r and ag according to
(17), with T replaced by T and Ty, respectively, it follows that

(27) ap=ag= {[{)""(L(s;@o))2 dHl(s;oo)}_l.
Similarly defining eg(h) and ez(h) according to (23), we obtain
(28) er(h) = ap{h"K (=)},

(29) es(h) = as{ sup hTKa(t)}z.

te(0,x)
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It should be noted that if the weight process coincides with its limiting
function with P,-probability 1, then T(@,) can be written as the sum of i.i.d.
random variables [see Proposition 3.1 in Aki (1986)] and hence results for this
special type generalized rank test may be proven in a simpler manner. For
example, Theorem 2 is now an immediate consequence of Theorem 1 on page
549 of Feller (1971). Observe that this alternative proof also leads to a
Cramér-type large deviation result.

As opposed to general sublinear tests, general rank tests do allow us to
compute asymptotic relative Pitman efficiencies. By Corollary 1 and Theorem
3(b), it follows that the asymptotic power against local alternatives 6, = 0, +
n~12h of the test based on T(Q,) of size & equals

Po(X(;00) > z5(ag) * — hTK (),

where z; is the (1 — &) quantile of the standard normal distribution. This
implies that the efficacy of the sequence of test statistics {T((@,))>_; is equal

to ex(h).
Since applying the Cauchy-Schwarz inequality to ATK () yields
(30) en(h) < j;)m(hTtﬁ(s;Bo))del(s;Oo),

where §(t;0,) is the p-dimensional vector with elements ¢,(¢; 8,), it follows
that ez(h) (and hence asymptotic relative Pitman efficiency, limiting approxi-
mate Bahadur efficiency and weak intermediate efficiency of generalized rank
tests) is maximized by those tests based on weight processes with limiting
weight function satisfying

(31) L(t;0,) a hTy(t;0,)

provided that the weight process conforms to Condition 2. Furthermore, it can
be shown [see Lemma 1 in Koning (1991)] that the Fisher information matrix
I(6,) equals the p X p matrix with elements

(32) () = [ “Ui(5300)W;(s5 6,) dH'(536,),

from which it follows that the upper bound for the efficacy derived in Rao
(1963) coincides with the right-hand side of inequality (30) and thus general-
ized rank tests based on weight processes with limiting weight function
satisfying (31) are asymptotically most powerful.

Clearly, the use of a generalized rank test instead of a classical test (the
likelihood ratio test, say) does not have to result in loss of asymptotic relative
efficiency. This raises the question whether the same conclusion holds for a
supremum-type test. After all, in contrast to the generalized rank test which is
not consistent against alternatives approaching the null hypothesis in a direc-
tion perpendicular to K (), the supremum-type test has the character of an
omnibus test. Needless to say, it is rather attractive to have an efficient
omnibus test at our disposal.
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Unfortunately, the asymptotic distribution of the supremum-type test
statistic is not normal. Although the concept of asymptotic Pitman efficacy can
be extended to test statistics which have nonnormal asymptotic distributions
[e.g., refer to Wieand (1976)], it turns out that in the case of the supremum-type
test, this efficacy depends on'the size of the test in a rather complicated way.

In virtually the same way as with ez(%), we obtain that eg(k) is bounded by
the right-hand side of (30) and that this upper bound is attained by supre-
mum-type tests based on weight processes with limiting weight function
satisfying (31). It follows that these tests have efficiency 1 (in the sense of limit
asymptotic Pitman efficiency, limiting approximate Bahadur efficiency and
weak intermediate efficiency) with respect to the locally most powerful general-
ized rank test based on the same weight process.

This last result may impel to question the usefulness of concepts which are
not able to distinguish between generalized rank tests and supremum-type
tests. However, as recent results on the tail behavior of the supremum of a
Gaussian process show, this inability is basically a consequence of letting the
size of the test tend to zero, which is the sensible thing to do if we are
committed to avoiding making errors, Type I as well as Type II. From Rubin
and Sethuraman (1965) it follows that minimizing the Bayes risk leads to
letting the size of the test tend to zero at a rate n~!. Observe that this is
exactly the situation to which weak intermediate efficiency refers.

For any nonnegative value of p, the foregoing theory is applicable to the
one-parameter family of alternatives,

1-[1+ (1~ F(£:00) " - L)exp(6 — 6,}] 7, ifp >0,

F(t;0) =
1— (1= F(t;8,))™ %, if p =0,
which was introduced in Harrington and Fleming (1982). A particularly attrac-
tive property of this family is the simple form of hTy(t;0) (here h is the
one-dimensional unit vector):

RTy(t;0) = (1 — F(t;0))".

By making use of the fact that the first order partial derivative of ATy (%;6)
with respect to 0 is equal to ATy(t;0XhTy(¢;0) — 1), we may verify our
conditions and reach the conclusion that the generalized rank and supremum-
type tests proposed in Harrington and Fleming (1982), based on weight
processes (1 — F(¢;0,))”, are optimal in the sense of limiting asymptotic
Pitman efficiency, limiting approximate Bahadur efficiency and weak interme-
diate efficiency. Moreover, the generalized rank tests are optimal in the sense
of asymptotic Pitman efficiency.

The family of Harrington and Fleming alternatives couples computational
simplicity with practical relevance. It includes proportional hazards alterna-
tives (p = 0) and logistic shift alternatives (p = 1) as important special cases.
Observe that in the theory of rank tests the score functions for these alterna-
tives lead to Savage and Wilcoxon tests.
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We end this section by stressing that generalized rank and supremum-type
tests are not the only sublinear tests worth noticing. For example, refer to Aki
and Kashiwagi (1989) for a sublinear test based on a functional other than T
and Tg.

4. Proofs. In this section we prove the theorems presented in Sections 2
and 3. We shall make repeated use of the following inequality, an adapted
version of the inequality of Fernique (1970, 1971) [see also Adler (1990)].

INeQuAaLITY 1. There exist positive constants c;; and c¢;3 such that for
every separable mean zero Gaussian process Z(t) satisfying

P sup 12(t)| <) = 1,
te[0,x)
and for every x > 0,

P( sup |Z(t)|>x{ sup E{Z(t)}z}l/z) < ¢y exp{—cgx?}.

t[0, ) te(0, )

Proor or THEOREM 1. As in Einmahl and Koning (1992), proof of Proposi-
tion 1 [see also Theorem 3.1 in Burke, Csoérgé and Horvath (1981)], let U,
denote the empirical process based on the uniform (0, 1) random variabls

Z,=8;H"(Z;;0,) + (1 - 8,){H'(=;06,) + H*(Z;;6,)},
where
H'(t;6,) = H(t;6,) — H'(t;9,)

is the cumulative distribution function of the censored failure times under P,.
Note that

UL(t;6,) = U,(H(¢:96,)),
Uy (£:6,) = U,_(H'(:6,)) + U,_(H'(=:6,) + H'(£:6,))
- (jn—(Hl(oo;on))’

where U,_(#) denotes the left-continuous version of U,(t). The approximation
theorem of Komlés, Major and Tusnady (1975) yields the existence of a
sequence {B,(+))2_, of Brownian bridges with continuous sample paths such
that for all x > 0,

(33) B sup [0,6) = B,(0)] > n"*(erglog n + ) < cxpexp( ~cpa),
te[0, )

where c¢,9—c,; are universal constants.
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Now define mean zero Gaussian processes BX(¢), B,(¢) and W,(¢) by
B,(t) = B,(H'(t;6,)),
B,(t) = B,(H\(t;6,)) + B,(H'(x;6,) + H°(£;0,)) - B,(HY(=;6,)),
W,(t) = Bi(¢) + ['B,(s) dA(s;0,).
0

The processes B(¢) and B, (t) are used to approximate UX(¢;6,) and U, _(¢;6,),
respectively. Thus, it follows by (11) that W,(¢) approximates M,(¢;6,) —
n'/2D(t; 6, 0,). Before studying the implications of this approximation, we
first pay attention to the covariance structure of W,(¢). Covariance calcula-
tions yield

& BL(81) By(t5) = H'(t, A t5;6,) — H'(t3;60,) H'(2,36,),

& Ba(t) B, (ty) = H'(¢, A t5;0,) — H'(1;0,) H(25;96,),

gan(tl)Bn(tZ) = H(tl A t2; on) - H(tl; Bn)H(t2; on)’
and hence (14). Observe that (14) implies

2
EW.(21) — W(22))

(34) = Hl(tl \Y% tz;on) - Hl(t1 A tz;on) - (D(tl;oo’on) - D(t2;00’ 0"))2
+ 2ftIVt2{D(S;00,0n) — D(t, V t5;8,,6,)} dA(s;6,),

t ALy
from which we may infer
2
fn{Wn(tl) - Wn(tZ)}
<H'(#; V ty;0,) — HY(t, A ty;6,)

(35) +2¢, [* (1 - H(s;6,))' ™" dA(s;6)
t ALy

< 022[1:2(1 — H(s;6,))"(dA(s;6,) + dA(s;6,)},
1 2
where c,, = 1 + 2¢,. To gain some probabilistic insight in the process W,(¢),
remark that
t Bn(s)
W.(¢t) — | ——————dD(s;8,,6
n(t) ](; 1 —H(S;On) (s’ 0> n)

is a time-transformed Wiener process with variance function H(¢;6,). More-
over, the process B,(t)/1 — H(¢;0,) is a time-transformed Wiener process
with variance function H(¢;6,)/(1 — H(¢;6,)).

Recall that W,(¢) approximates M,(¢; 0,) — n'/2D(¢;0,,96,,). As a direct con-
sequence we have that [{L,(sNdM,(s;0,) — n'/2dD(s;8,,6,)} is approxi-
mated by [{L,(s) dW,(s). Unfortunately, the latter process is not easy to work
with (it may not even be Gaussian), so we prefer replacing [{L,(s) dW,(s) by
JsL(s;6,) dW,(s). To evaluate the effects of this replacement, we make use of a
pure jump process o, (t), which is defined by

(36) J(t) = W,(x;,) fortel,,,
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where I, , =[x; ,,%;,,,) and 0 =x, , <x; , < --+ <x = is a grid

chosen so as to satisfy

[ (1= H(s;6,))"{dA(s;6,) + dA(s;6,))
(37) fr

m(n),n

< n—1/3f0°°(1 — H(s;6,))"{dA(s;6,) + dA(s;8,)}

for i =0,...,m(n) — 1. If the grid is chosen carefully, then there is no need
for m(n) to exceed n'/3 + 1. We shall assume that this is indeed the case.

It follows by (85) that the variance of the mean zero Gaussian process W, (¢)
is bounded by c,5c;, while the variance of the mean zero Gaussian process
J,(t) — W,(¢) is bounded by cy,c,n~'/3. Hence, by applying Inequality 1 we
obtain

(38) P,,( sup |J,(¢)|> x) < P,,( sup |W,(¢)|> x) < ¢q7 exp{ —cy3x?),
t€[0, ) t€[0, )

(39) B sup |J,(6) = W(0)] > a0~V <y expl—ep?),
te[0, )

where c,; = c15/(cg5¢;). Note that the application of Inequality 1 to J,(¢) —
W,(¢) is justified since this process is separable.
For any sequence {d,}} _; of points in (0, ©), we may now write

{Qn(t) =¥ ['L(5) dD(s;oo,o,,)}

sup
tel0, o)
(40) 6
~ ['L(s:6,) dW,(s) /q(t) < ¥ A
0 i=1
where

A= sup |Qut) — ['L(s){dW,(s) + n'/* dD(s;06,,6,)) /q(t),

tefo,d,] 0
A= sup |Q,(2) — Q.(d,)|/a(2),

teld,,»)

¢

A,s= sup |[ L,(s)dW,(s) /q(t),

teld,,») d,

|
An4 - n1/2 sup ft Ln(s) dD(S;oO, Bn) /q(t)a
teld,,») n

A5 = S;lp fOth(S){de(S) - ddJ,(s)} /q(t),

te[0, )
A, = sup (‘/:{Ln(s) — L(s;6,)}dd,(s) /Q(t)~

tel0, o)
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Observe that A,; and A,q relate to the replacement of [{L,(s)dW,(s) by
[¢L(s;0,) AW, (s).

Later in this proof we will meet two specific choices of {d ), _;. A first choice
leads to (15) and a second to (16). Both choices have in common that d, — »
as n — ». But before these choices are made, we explore the behavior of A ;,
i=1,...,6, for general sequences. Integration by parts yields, with P,-prob-
ability 1,

B = { s (L, (0/a0)]+ V(L()/a0)))

te[0,x

x{ sup | M,(t;00) = n'/*D(t:6,,0,) ~ W,(2)])
telo0,d,]

< zcz{ sup |UX(t:6,) - BA(1)|
telo,d,]

[ U (5:8,) = B,(5)) dA(s300)

+ sup
telo,d,]

< 2¢,(1 + 3A(d,;6,)) sup |U,(¢) - B,(1)],
tel0,1]

|

and therefore it follows by (33) that
P,(A,; > 2¢y(1 + 3A(d,,;00))n"/?(ciglog n + x))
< ¢y exp{ —Cpx}.

Observing that A,, =0if Z,., <d,, where Z, ., denotes the largest order
statistic of the sample Z,,..., Z,, we obtain

Pn(AnZ #* 0) =< Pn(Zn:n = dn)
<1~ (H(d,;6,))" <n(l - H(d,;86,)).
Twice integrating by parts yields, with P,-probability 1,

B < (VL) /() + sup |Lo(0)]/a(0))

te[0,)

(41)

(42)

t
x{ sup |/ q(s58,) dW,(s) /q(t)}
teld,,») | dx
S402 sup |Wn(t)_Wn(dn)|
teld,,»)

Thus, applying Inequality 1 yields

1/2
Pn(An3 > 402x{ sup éon{VVn(t) - Wn(dn)}z} )

(43) teld,, )

< cyqexp{ —cygx?}.
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Similarly, combining integration by parts with inequality (39) produces
(44) P,(A,5 > 4c,an™1/®) < ¢, exp{—cqx?}.

Furthermore, we have with P,-probability 1,

o

m(n)—1
X{{ Z I{Ln(xi+l,n) _L(xi+l,n;0n)}/q(xi+l,n)

i=0

fo’q(s;oo) dd,(s)

Ag < { sup
te[0,)

(45) _{Ln(xi,n) _L(xi,n$0n)}/(I(xi,n)|}

+ sup |Ln(t)—L(t20n)|/Q(t)}

tE[O,oo)
< (4n* +6){ sup [7,)[}{ sup |L.(t) - L(t:6,)|/a(0)}.
tel0, ) te[0,»)

A general investigation of the behavior of A,, is rather useless, since it
depends too much on the actual situation. Thus, we content ourselves with
(41)-(45).

Next we turn to the aforementioned specific choices of {d,);_;. For both
choices, the inequalities just derived are sharpened, supplemented by an
inequality for A,, and combined.

To prove (15), choose B <(1/2 —a)A 1/6 and d, so as to satisfy
H(d,;0,)=1-—n""Y where y = (1/2 — a — B)/a. Note that y > 0. Since

~a (d, ) a )
(4 (@300 < (1= H(dy;0.0) " [7(1 ~ H(530,))" dA(s:60)

<c,n'/?78,

it follows from (41) that
(47 P (A,; > 2¢5(1 + 3¢,)(1 + cy9)n~Plog n) < coon ™2,
By (42) we immediately have
(48) P(A,,#0)<n™.
From (34) we may infer for ¢t > d,,,

E{W,(£:60) = W,(d;00)) < ezaei(1 - H(d,36,)) 7,
and hence (43) implies

(49) P,L(An3 > 4cy{eggen ™ 2P log n}l/z) < cqn O,
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Integration by parts yields with P, -probability 1

A,, <2cyn'/? sup |D(t;6,,60,) — D(d,;0,,6,)|,
teld,,»)

which leads in combination with-(13) to

(50) P,(A,4 > 2coe,n™ V) = 0.

From (44) we obtain

(51) P,(A,5 > 4cyn~%(log n)'/?) < ¢n o,

Combining Condition 2(c) with equations (38) and (45), it follows that

(52) P,(A,¢ > 10c3n#(log n)1/2) < (¢4 + €pq)n a2

(note that we have used B + 1/3 < 1/2). Now, (47)-(52) together with (40)
yield (15).

If 6, = 6,, then we may obtain a sharper result by making a different choice
of d,. Let x > 0 and choose d,, so as to satisfy H(d,;8,) = 1 — exp{—x}/n.
By noting that A(d,;8,) < —log(1 — H(d,;6,)) = log n + x, we obtain from
(41)for n > 1,

(53) Py(A,; > 2¢on"2(5log n + 3x)(cielog n +x)) < cqo expf —Cgyx}.
Furthermore, we have by (42),
(54) Py(A,; # 0) < exp{—x},
and since by (34),
x sup E{W,(2) ~ W(d,)) <x(H'(;00) — H'(d;60))

teld,,,=)
<x(1-H(d,;0,)) <n™%,
it follows by (43)
(55) Po(A,s > 4cyn™?) < cpexp{ —cigx}.

As a simple consequence of the fact that D(¢;6,,0,) is identical to zero, we
have

Equation (44) implies
(57) Py(A,5 > 4cyn™ %) < 2¢,7 exp{ —cy3x},

while combining Condition 2(d) with equations (38) and (45) yields
(58) Py(A,e> 100718 2(cglogn +x)) < (c7 + c17)exp{ —(cg A ca3) %}
Hence, (53)—(58) together with (40) yield (16).

We conclude the proof of Theorem 1 with the remark that if L,(¢) coincides
with L(t;8,) with P,-probability 1, it suffices to bound the left-hand side of
(40) by £%_,A,,,. This yields the refinement of Theorem 1 mentioned at the
end of Section 2. O
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Proor oF THEOREM 2. Equation (18) directly follows from Theorem 5.2 in
Borell (1975).

To prove (19), observe that as a consequence of Theorem 1 there exists a
process X,(£;8,), equal in Py-distribution to X(#;6,), which satisfies

Po{ sup 1Q,(6) — X,(180)|/a(8) > n (g log n + 2)')

(59) t€[0,)
< cigexp{ —cyyx},

with y = 1/6 and 7 = 2. Now, let p = y/(2r — 1) and choose 77! < B < 2.
Note that for n — o,

n@=Pr(s )P > n@Pr > logn,
n@=Pr(s P = (n7*s,)" "*(s,)* >; (s2)%
(n7rs,)" " <1
(here @, > b, denotes b,/a,, — 0) and hence (59) implies

Po(IT(Qu()/a(+)) = T(X,(300)/a(*))| > exn®~#77(s,)"")

<P sup [Qu(1) ~ X,(1:09)|/a(t) > 0 8(s,)”")
te[0, )

(60)
< Cy3 eXp{_Cu(n(Z_B)p(sn)B — ¢y log n)}
< exp{—a(sn)2/2}.

Since T(X,(;0,)/q(-)) and T(X(-;6,)/q(+)) are equal in distribution un-
der P,, we may bound P (T(Q,(-)/q(+)) > s,) from below by

Po(T(X(+:00)/a(-)) > s,(1 + er(n7?s,)""))
— Po(|T(X(580)/a()) = T(Qu(+) /a())| > ezn@=A7(s,) ")
and from above by
Po(T(X(+:06) /a(+)) > 5,(1 = cx(n5,)*" "))

+ Po(|T(X,(360)/a(+)) = T(Qu(*)/a())| > exn®#7(5,)™")

and thus it follows that (18) and (60) together yield (19). This concludes the
proof of Theorem 2. O

The proofs of Theorem 3 and Theorem 5 make repeated use of the following
lemma, which holds under Conditions 1 and 6.

LEmmA 1. Let g(t;0) be a real-valued function, g{™(¢;0) the first order
partial derivative of g(t;8) with respect to the ith component of 6. Suppose
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there exists a constant cy, such that

(61) sup (1—H(£;0))"*g(t;8)] < cas,
t€[0,x)

(62) sup (1 — H(t;6)) %|g®(¢;0)| < ca
t<[0, »)

for every 6 € ©. Then there exists a constant cy5 such that

(63) sup | ['2(s;8) dD(s;0,,6)| < cssl6 — o,
te[0,) 170
¢ ¢
(64) sup fg(s;@) dH'(s;0) — [g(s;ﬂo)dHl(s;Oo) < cy5/0 — 6,
tel0,) 170 0 .

for every 0 € ©. Let g87(t;0) be the second order partial derivative of g(t;8)
with respect to the ith and jth components of 6. If

(65) sup (1 - H(2;0))%2(t;0)] < cy,
tel0, o)
(66) sup (1 — H(t;0))"?|g®(¢;0)| < cq,
te[0, »)
(67) sup (1 - H(t;0))1_“|gg.)(t;0)| < Coys
t<[0, »)
then
1
sup |['g(s;0) dD(s;6,,0)
tel0,0) 170
(68)

t
- fo (60— 05) " (5;680)&(s;0,) dH(s; 6,)
< cg5l0 — 90|2

for every 6 € 0.

COROLLARY 2. There exists a constant cy5 such that

< cg5/0 — 0]

[0‘(1 — H(s;8)) *dD(s;6,,0)

sup
te[0,x)

for every 0 € 0.

Proor oF LEMMA 1. For convenience, we introduce the functions
Ao(2;0) = A(;0) — A(2;0,),
Ao(2;0) = A(2;0) — A(¢;0,).

Let AP(t;0) and A{)(¢; 0), respectively, denote the first order partial deriva-
tives of Ay(¢;0) and A,(¢; 0) with respect to the ith component of 6. Further-
more, let A?Xt;0) and APX(¢;0), respectively, denote the second order partial
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derivatives of Ay(¢;60) and A,(¢; 8) with respect to the ith and jth components
of 6. By Condition 6 we have for every ¢ € [0, x),

[0~ H(s;0)"* 7| x0(s;0) | ds
= [ = H(5:0) 10, (530) | dA(5:0)
(69) < {jo°°(1 —H(s;e))"am(s;e)}l/2

o 1/2
><{f0 (4i(5;0))°(1 —H(s;e))”“‘fdA(s;o)}

< (e15/B)"%,
and hence
(1 - H(t;8))"* | AP(¢;) |
= (1 - H(£:0))"*7| [AP(s:6) ds
(70) 0

< ft(l - H(s;0))1/2—a|)t(i1)(s;0)|ds
0

1/2

< (e1s/B)".
Now, we find by using the identity
1 - H(t;0) = (1 — H(¢;0,))exp{—Ay(¢;0)}
that the first order partial derivative of [§g(s;0)A,(s;0X1 — H(s;0))ds with
respect to the ith component of 6 is given by

fot{{g,-‘”(s;ﬂ) — 8(s;0)AP(s;0)}A(s;0)

+g(s;0)AXP(s;0)}(1 — H(s;0)) ds

and is bounded in ¢ and 6, as follows from Condition 1, (61), (62), (69) and
(70). By expressing D(¢; 8,, 0) as [{(1 — H(s; 8))A,(s; 0) ds we obtain (63).

As for (64), by writing H(¢;0) = [{(1 — H(s;0))A(s;0)ds, it follows that
the first order partial derivative of [{g(s;8) dH'(s;6) with respect to the ith
component of 0 is given by

' fot{ 0(s;0) + g(s;0){w(s;0) — A(,-”(S;Q)}}(l — H(s;0))A(s;0) ds

and is bounded in ¢ and 4.
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Finally (68). For every ¢ € [0, »), we have

fot(l — H(s;6))"7[a)(s;0) | ds
- fla- H(530))"4(530) + b,(530)005(5:0) | dA(s:6)
< {f:a —H(s;e))’SdA(s;f))}l/2
(1) <{ [0’ - His; 00220 dA(s;")}m

© N 1/2
+{[o (Wi(5;0))°(1 — H(s;9))* " 2*# dA(s;o)}
1/2

X {f:(t/fj(s;ﬂ))z(l ~ H(s;0))" 7" dA(s;B)}

< (015//3)1/2 t Cy5

and
(72) (1 - H(t;0)) 7**|A2(¢;0)| < (c15/B)"* + cy5.

Note that the first order partial derivative of [{g(s;0)Ay(s;0X1 — H(s;0))ds
with respect to the ith component of 8 equals [{g(s;8,)y¥,(s;8,) dH(s;0,)
when evaluated at 6 = 6,. Furthermore, the second order partial derivative
with respect to the ith and jth component of 6 is given by

fot{{gf?’(S;G) — 8{7(s;0)AP(s;0) — g(5;0)AP(s;0)
—8(5;0)A2)(s;0) + &(5;0)AP(5;0) AP (s;0)}14(s;6)
+{g"(5;0) — g(s;0)AV(5;8)}AP(s;0)
+{g"(s;0) — g(s;0)AP(s;0)]XV(s;6)
+8(s5;0)A%(s;0) (1 — H(s;06)) ds.

Hence, (68) follows from Condition 1, Condition 6, (62), (65), (67) and (69)-(72).
This concludes the proof of Lemma 1. O

Proor or THEOREM 3. Let {W,(#))>_, be the sequence of mean zero Gauss-
ian processes given in Theorem 1. We may write

4
(73) sup [Q,(t) — n'/?[6, — 0,|R"Ky(2)|/a(2) < T A,

te[0, ») i=1
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where
Anl = Ssup {Qn(t) - nl/zftL'n(s) dD(s;007 on)}
t<[0, x) 0
— ['L(s36,) AW,(s) /q(t),
0
Bno= sup |['L(s;6,) dAW,(s) /q(t),
tef0,) 70

A,;=n'? sup
t€[0,)

/q(t),

];)tL(s;on) dD(S;GO’on) _‘lan - OOIhTKa(t)‘/Q(t)‘

[ (La(s) = L(5:6,)) dD(53 60,6,)

A,,=n'? sup
te[0, )

By (15) we have for B < (1/2 —a) A 1/6,
(74) P,(A,; > cgn™P) < cion™m.
From integration by parts we obtain with P,-probability 1

[a(s)/a(t) dW,(s)| < 4c, sup [W,(1)].
0 te[0,)

A,s < 2¢, sup
te[0, x)
Since by (35) and Condition 1 the variance function of the process W,(2) is
bounded by (c,,)?, it follows by Inequality 1 that

(75) P,(A,; > 4cya0x) < c1q exp{—cigx?}.
Lemma 1 yields the existence of a constant c,g such that
(76) An4 = 026n1/2{|0n - 00|2 + |(0n - 00) - Ion - 00|h|}’

and for every 6 € ® and B < 1/2,

P (n? sup [{(L.(5) = L(3:6,)) dD(si00,0)/a() > exld - o)
te[0,0) "0

sP,,(n" sup sup |L,(s) —L(s;6,)|/q(t) > 03)

te[0,o) 0<s<t?

[observe that L,(¢) — L(t;6,) does not depend on 6 and hence the first order
partial derivatives with respect to @ are all equal to zero]. Note that by
Condition 2(c) this last inequality implies

(77) Pn((n1/2|0n - (:?0|)_1An3 > c%n"’) < c4n”.
The first part of the theorem is now easily proved by means of the inequality
|(n27216, — 6,]) "'T(Qu()/a(")) — T(hTKa(‘)/q('))|

(78) 4
( S CT(nl/zfﬂn - 00‘) ! Z Ani'
i=1
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To prove the second part of the theorem, we first note that the supremum
over t of the absolute difference between the processes Q,(t)/q(t) and
{/¢L{s;8,) dW,(s) + n'/20, — 0,|hTK (¢)}/q(¢) is bounded by A,, + A,; +
A, 4 and hence converges to zero in P,-probability if n'/2%|, — 6, tends to a
finite limit as n — . Thus, it-remains to show that the latter process
converges in P,-distribution to {X(¢;0,) + ohTK (¢)}/q(t), which boils down
to the convergence in P,-distribution of [{L(s;6,) dW,(s)/q(¢) to
X(t;04)/q@@).

Let B,(t) be as defined in the proof of Theorem 1. Split the process
JEL(s;6,) dW,(s)/q(¢) into the two parts

¢ B,
i L(s;e,,){dwn(s) - ﬁj—?;,;)—du(s‘;eo,on)} /q(t)

and

t Bn
j(;L(s; Gn)l_—IIEZ‘?‘bn—)‘ dD(S;oo, on)/Q(t)'

The first part may be interpreted as a time-transformed Wiener process
divided by ¢(#), the time-transformed Wiener process having variance function
J4(L(s;60,)?dH(s;6,). It follows from Lemma 1 and Theorem VI.10 in
Pollard (1984) that the first part converges in P,-distribution to X(¢; 6,)/q(#).
Use Lemma 1 to show that the supremum over ¢ of the second part converges
to zero in P,-probability. This completes the proof of Theorem 3. O

Proor oF THEOREM 5. Let A,,, A,,, A,; and A, be as in the proof of
Theorem 3 and define b(6,) as T(/,L(s;8,) dD(s; 8,,6,)/q(-)). We may write

(79) |n 72T (@u(+) /a(+)) = B(6,) < Apy + Ay + A
Furthermore, we have
(80) |6(6,) = 16, — 0IT (KK () /a(*))| < epn™"/?A,,.

Since e(h) is not equal to zero, this yields the existence of positive constants &*
and c,; such that for 6, satisfying |6, — 6, < &*,

(81) ' Coq|0, — 04| < b(6,) < 1.

Now suppose 6 € ©® — {6,} satisfies |0 — 6,| < e* and set 6, equal to 6.
Choose ¢ > 0 and & € (0, 1). By (74) and (75), it follows that there exists an
integer N, not depending on 6 such that for n > N,

P)(A,; > (N))'%e/4cr) < 5/4,
Py(A,; > (Ny)?e/4cr) < 8/4.
Hence, for n > N, /(b(8))?, we have
(82) Py(n™2{A,, + A5} > eb(0)/2¢r) < 8/2,
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since n > N, and (N, /n)'/2 < b(#). Moreover, (77) implies the existence of an
integer N > N, depending on 6 such that for n > N,

(83) Py(8,5 > eb(0)/2c1) < Py((n/218 = 6,))"'A s > cre) < 8/2.

Combining (79)-(83) now yields that {T(Q,(-)/q(-))};_; is indeed a Wieand
sequence.

Finally, (24) immediately follows from (76) and (80). This concludes the
proof of Theorem 5. O
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Einmabhl for detailed comments on earlier drafts. :

REFERENCES

AaLEN, O. O. (1976). Nonparametric inference in connection with multiple decrement models.
Scand. J. Statist. 3 15-27.

AALEN, O. O. and JoHANSEN, S. (1978). An empirical transition matrix for nonhomogeneous
Markov chains based on censored observations. Scand. J. Statist. 5 141-150.

ADLER, R. J. (1990). An Introduction to Continuity, Extrema and Related Topics for General
Gaussian Processes. IMS, Hayward, Calif.

Axi1, S. (1986). Some test statistics based on the martingale term of the empirical distribution
function. Ann. Inst. Statist. Math. 38 1-21.

Ak, S. and KasHiwaci, N. (1989). Asymptotic properties of some goodness-of-fit tests based on the
L, norm. Ann. Inst. Statist. Math. 41 753-764.

ARONSZAJN, N. (1950). The theory of reproducing kernels. Trans. Amer. Math. Soc. 68 337-404.

BaHADUR, R. R. (1960). Stochastic comparisons of tests. Ann. Math. Statist. 31 276-295.

BoreLL, C. (1975). The Brunn—-Minkowsky inequality in Gauss space. Invent. Math. 30 207-216.

BresLow, N. E. (1975). Analysis of survival data under proportional hazards model. Internat.
Statist. Rev. 43 45-58.

Burkg, M. D., Csorcé, S. and HorvATH, L. (1981). Strong approximations of some biometric
estimates under random censorship. Z. Wahrsch. Verw. Gebiete 56 87-112.

DursIN, J. (1973). Distribution Theory for Tests Based on the Sample Distribution Function.
SIAM, Philadelphia.

EINMAHL, J. H. J. and KONING, A. J. (1992). Limit theorems for a general weighted process under
random censoring. Canad. J. Statist. 20.

FeLLER, W. (1971). An Introduction to Probability Theory and Its Applications 2. Wiley, New
York.

FERNIQUE, X. (1970). Intégrabilité des vecteurs gaussiens. C. R. Acad. Sci. Paris Ser. A 270
1698-1699.

FERNIQUE, X. (1971). Régularité des processus gaussiens. Invent. Math. 12 304-320.

FLEMING, T. R. and HARRINGTON, D. P. (1981). A class of hypothesis tests for one and two samples
of censored data. Comm. Statist. Theory Methods 13 2469-2486.

GiLL, R. D. (1980). Censoring and Stochastic Integrals. Math. Centre Tracts 124. Math. Centrum,
Amsterdam.

GiLL, R. D. (1983). Large sample behavior of the product-limit estimator on the whole line. Ann.

, Statist. 11 49-58.

HagrrINGTON, D. P. and FLEMING, T. R. (1982). A class of rank test procedures for censored
survival data. Biometrika 69 553-566.

Hiort, N. L. (1990). Goodness of fit tests in models for life history data based on cumulative
hazard rates. Ann. Statist. 18 1221-1258.



454 A. J. KONING

IngLot, T. and LEDWINA, T. (1989). Large and moderate deviations of some functionals of
weighted empirical process. Technical report, Inst. Mathematics, Technical Univ.,
Wroclaw.

IngLor, T. and LebpwiNa, T. (1990). On probabilities of excessive deviations for
Kolmogorov—Smirnov, Cramér-von Mises and chi-square statistics. Ann. Statist. 18
1491-1495.

KALLENBERG, W. C. M. (1983). Intermediate efficiency, theory and examples. Ann. Statist. 11
170-182.

Kumarapze, E. V. (1981). Martingale approach in the theory of goodness-of-fit tests. Theory
Probab. Appl. 26 240-2517.

KuMaLADZE, E. V. (1982). Some applications of the theory of martingales to statistics. Uspekhi
Mat. Nauk 87 193-212. [Translation: Russian Math. Surveys 87 215-237.]

KomMLés, J., Major, P. and TusNApy, G. (1975). An approximation of partial sums of independent
R.V.’s and the sample DF. I. Z. Wahrsch. Verw. Gebiete 34 33-58.

KonING, A. J. (1991). Stochastic integrals and goodness-of-fit tests. Ph.D. dissertation, Univ.
Twente. :

PoLLARD, D. (1984). Convergence of Stochastic Processes. Springer, New York.

Rao, C. R. (1963). Criteria of estimation in large samples. Sankhy@ Ser. A 25 189-206.

RueiN, H. and SETHURAMAN, J. (1965). Bayes risk efficiency. Sankhya Ser. A 27 347-356.

SHORACK, G. R. and WELLNER, J. A. (1986). Empirical Processes with Applications to Statistics.
Wiley, New York.

STRASSEN, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch.
Verw. Gebiete 3 211-226.

WieanD, H. S. (1976). A condition under which the Pitman and Bahadur approaches to efficiency
coincide. Ann. Statist. 4 1003-1011.

WooLsoN, R. F. (1981). Rank tests and a one-sample logrank test for comparing observed survival
data to a standard population. Biometrics 37 687-696.

ECONOMETRIC INSTITUTE
Erasmus UNIVERSITY
P.0. Box 1738

3000 DR ROTTERDAM
THE NETHERLANDS



