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EFFICIENCY AND ROBUSTNESS IN RESAMPLING!

By ReciNa Y. Liu aND KESAR SINGH

Rutgers University

It is known that the standard delete-1 jackknife and the classical
bootstrap are in general equally efficient for estimating the mean-square-
error of a statistic in the i.i.d. setting. However, this equivalence no longer
holds in the linear regression model. It turns out that the bootstrap is more
efficient when error variables are homogeneous and the jackknife is more
robust when they are heterogeneous. In fact, we can divide all the com-
monly used resampling procedures for linear regression models into two
types: the E-type (the efficient ones like the bootstrap) and the R-type (the
robust ones like the jackknife). Thus the theory presented here provides a
unified view of all the known resampling procedures in-linear regression.

1. Introduction. The standard delete-1 jackknife and the classical boot-
strap are two of the most commonly used resampling procedures for estimat-
ing key functionals of sampling distributions such as mean square error, bias
or skewness. Quenouille (1956) introduced the jackknife for bias reduction and
Tukey (1958) used it to estimate the mean square errors. The bootstrap was
introduced in Efron (1979). Some basic properties of the two procedures such
as consistency and normality can be found in Miller (1974) for the jackknife
and in Bickel and Freedman (1981) and Singh (1981) for the bootstrap.

The bootstrap is computationally more demanding than the jackknife. Due
to this, one may think that the bootstrap should be the more efficient
procedure in estimating functionals of sampling distributions. Various studies
on the bootstrap and the jackknife concerning the consistency under het-
eroscedasticity of error variables in the linear regression have appeared [see
Hinkley (1977), Wu (1986) and Shao and Wu (1987)]. However no systematic
comparison has as yet been available. The goal of this paper is to provide a
unified framework for classifying all known resampling procedures according
to certain aspects of efficiency and robustness. The key tools in our approach
are representation theorems, which express estimators as sample means, up to
a negligible remainder term. For smooth statistics from ii.d. samples, it
follows from Efron (1979) and Beran (1984) that the bootstrap and the
jackknife are essentially equivalent, in the sense that the asymptotic relative
efficiency of their m.s.e. (mean square error) estimators is typically 1. This
results from the fact that the leading terms in the asymptotic representations
of the two estimators are the same. As for robustness in terms of providing
consistent results in the case of non ii.d. setting, the two procedures are
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known to be roughly equivalent, although the bootstrap is applicable for a
larger class of statistics [see Liu (1988) and Liu and Singh (1989)]. This story
changes completely in the case of linear models. There the bootstrap and the
jackknife are quite different, with relative advantages and disadvantages: the
bootstrap is more efficient and the jackknife is more robust. In fact, we are
able to classify all the known resampling procedures for linear models into two
types: type E (the efficient ones like the bootstrap) and type R (the robust ones
like the jackknife). For instance, Wu’s external bootstrap [Wu (1986)] and the
bootstrap which randomly draws the pairs of responses and covariates [Efron
(1979)] are type R. This classification provides a unified view of resampling
procedures for linear models. None of the existing procedures seems to have
both the properties and it remains an open problem to find one. We believe an
adaptive type of resampling procedure should be able.to do the job. It should
also be interesting to find out how various confidence intervals constructed
from different methods reflect their type E or type R characteristics.

We now describe briefly the contents of the paper. Section 2 is devoted to
the simple linear model Y; = x,8 + e;, where Y, is the observation, e; the
random error and x; the only covariate. Here the intercept is assumed to be 0.
Under this simple model, we divide all resampling procedures into two groups
—type E and type R. In Section 3 we extend the results to the case of general
. linear models. Explicit formulas are provided for relative efficiency of type E
versus type R in both cases.

The theory developed in this paper can be further extended to the following
model:

Y, = BX, + e, i=1,...,n,

where (X,,Y)),...,(X,,Y,) are i.i.d. random vectors with E(e;|X;) = 0 and
Var(e,|X,) = o2 As a matter of fact, one may think that type R procedures are
motivated by this more general model, while type E procedures are motivated
by the submodel that X,’s are i.i.d and given X’s, e;’s are i.i.d. This viewpoint
offers additional insight toward understanding the behaviors of the resampling

methods discussed in the paper.

2. Type E and type R resampling in simple linear regression. We
first motivate the representation theorems upon which our classification of the
resampling procedures is based. Consider a random sample Z,,...,Z, from a
population F and a statistic T, = T(Z,, ..., Z,) which is an estimator of the
parameter Ty. Suppose we are interested in estimating M,,, the m.s.e. of T,,.
The bootstrap estimator of M, is

=Eg(T, s - T )2
Here T, p is T, computed from a bootstrap sample of size n drawn from the

emplrlcal dlstrlbutlon of Zs and Ejg is taken w.r.t. the bootstrap resampling.
The jackknife estimator of M, is

M, = n(n_l)Z(J T,)".
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Here J; is the ith pseudovalue, that is,
J;=nT, - (n-1)T,;

Here T,; is computed as T, with the ith observation Z; deleted. It follows
from Efron (1979) and Beran (1984) that for a smooth functional T,, we
generally have

n

1
n(MB _Mn) = ; Z fF(Zz) + Op(n_l/z)
i-1
and
1 n
n(M;—-M,) = — Y ép(Z;) +o0,(n"1?)
i=1 .

for some ¢5(¢) with E£n(Z;) = 0. Consequently,

n3/2(MB - Mn) 2z N(O’ E(fﬁz‘(zz)))
and

ns/z(MJ -M,) -, N(O, E(fiz‘(zi)))'

Here —_, stands for convergence in law and N(a, b) for a normal distribution
with mean a and variance b. This implies that My and M; are equally
efficient as estimators in estimating M, when the observations are i.i.d.

The main objective of this paper is to study similar representations in linear
models for the bootstrap, the jackknife and several other resampling proce-
dures. As it turns out, there are only two types of such representations. This
phenomenon leads to the following division of the resampling methods in use:
type E—those which have additional efficiency in the case of homogeneous
error variables and type R—those which are robust against heteroscedasticity
(i.e., stay Vn -consistent even when the error variables are heterogeneous). In
fact, in the homogeneous case the classical bootstrap is not only more efficient
as compared to type R but also, as suggested by Beran (1982) and Singh and
Babu (1990), optimal in the nonparametric sense. This fact in part justifies the
naming of the classical bootstrap as type E. This perhaps can also be viewed as
another instance of the following familiar phenomenon pointed out in Stein
(1956): An inference procedure which is consistent in a supermodel is usually
not asymptotically efficient in a submodel. We now briefly describe all the
resampling procedures considered for the simple linear model Y; = Bx; + e;,
i =1,...,n, where the e,’s are independent random errors each w1th mean 0
and ﬁnlte variance o2, x;’s are covariates and Y;’s are the responses. The
parameter of interest is B, the slope of the regression line. Its least square
estimator is § = ¥7_,x,Y,/L, and the variance of j is v, = L7 ,x%0?/L2,
where L, = Z:‘_lx ThlS simple model serves as a learnlng dewce and it
allows us "to extend the results to the general model later.

2.1. The classical bootstrap (B) [Efron (1979), Freedman (1981)]. Let r; =
Y, - Bx,, i=1,...,n be the residuals. One draws an i.i.d. sample of size n
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from the centered residuals (r,— T ), i=1,...,n, which is denoted as
ef,...,er Let Y* = Bx +ef, i=1,...,n be the bootstrap sample. The
bootstrap least square estimator of B is BB Y* /L The bootstrap

estimator of v, is defined as V = EB( Bs — B3, where EB is with respect to
the bootstrap probabilities.

2.2. The standard delete-1 jackknife (J) [Miller (1974), Hinkley (1977)].
As in the case of i.i.d. models, we define

J; = né —(n— l)ﬁ(i):

where B(,) is the least square estimator based on (x;,Y)), j € {1,...,n} — {i}.
The jackknife estimator of v, is V; = (1/n(n — 1)L7_ 1(J B)2

2.3. The paired bootstrap (PB) [Efron (1979)]. One draws an i.i.d. sample
of size n from the pairs (x;,Y;),i=1,...,n. Let (%,,Y), i = 1,...,n, be the
resultlng sample. Then the correspondlng least square estlmator of B is
Bpg = L"_,%,Y,/L7_ %% and the estimator of v, is Vpg = Epp(Bpg — B)%
Here Epy is taken w1th respect to the paired resampling procedure.

2.4. External bootstrap (ExB) [Wu (1986)]. Let H(-) be a distribution with
mean value 0 and variance 1 and let H(-) be independent of the given
regression model. Let ¢,,..., n be a random sample from H(-). Set the
bootstrap sample to be Y* = Bx; + rit;, i=1,...,n, where r, =Y, — Bx;.
Then the external bootstrap least square estlmator of B is BExB
rr x,Y*/L, and the estimator of v, is Vig = Ey(Bgs — B

Note that this procedure is referred to as wild bootstrap in Hardle and
Mammen (1988) and Mammen (1989).

2.5. Weighted bootstrap (WB) [Liu (1988)]. The only difference between
this procedure and the classical bootstrap is that for WB, one would draw i.i.d.
sample of size n from the self-centered weighted residuals {w;r;, i = 1,...,n}
with ; = x;/n/L, instead of from the centered residuals {r; — 7,,...,7, —
.} Let ef,...,e, denote the resulting sample The bootstrap sample is
formed in the usual way, that is, Y,* = Bx; + e*, i = 1,...,n, and Bwg and
Vg are defined accordingly.

2.6. Weighted jackknife (WJ). The pseudovalues oJ;, i = 1,...,n are de-
fined as in the case of the standard jackknife. However, the estimator of v, is
defined to be

L,  (J; - B)
nz(n—l)z .

i=1

Besides these resampling procedures we later also comment on the weighted
jackknife procedures introduced in Hinkley (1977) and Wu (1986), respectively.
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Let ¢, ¢, and ¢, stand for positive generic constants. We assume through-
out that o2 < ¢, for all i, and we define

2
g;

n
‘6"': Z

i=1 nLn

In Theorems 1 and 2 below, (a) and (b) refer to the following expressions:

n 2_0.,2
(a) n(Vn E 571) = Z . : + Op(n_l)
' i=1 Ln
and
n 1l » .

(b) n(Vogr —v,) = 7—— 2 x2(e? — o) + O,(n71),

, L,L,= P
respectively.

TreoreM 1 (Type E). () Ifc, < L,/n < c,, then (a) holds with V.= Vs
Gi) IfL,/n > ¢, L} 1x}/n < c, and max x2 = o(n), then (a) holds with
Ve = Vi

THEOREM 2 (Type R). () If L7_1xf/n < c¢;, max x2 = o(n) and L, /n > c,,
then (b) holds with V, = Vj.

() If e, < Ix;l < ¢, forall i, then (b) holds with V. r = Vpg.

(iii) Ifc; < L,/n < c,, then (b) holds with V..r = Vi

(iv) Ifc; < L,/n < c,, then (b) holds with V. r = Vyg.

Before we provide the proofs of the theorems, we pause to comment on their
implications. In the homogeneous case, that is, when the e;’s have the same
distribution and thus ¢ = o2 for all i,

P

-0,

Lﬁi(ef—oz)sx)—cb(ai)

n =1 n

sup
X

where a?, = (Ee} — 0*)/(L,/n)? provided that Ee? < © and ¢, < L,/n <c,.
Thus a2 is the asymptotic variance (a.v.) for the E-type variance estimators.
The corresponding result for the R-type variance estimates is

-0,

p(%méle(ef - o) sx) - q)(bi)

n

sup
x

where b2 = (L, /n) *L7_,x!/nlEe! — ¢*]. For this central limit theorem
(CLT), one needs the conditions that Ee**® < oo, lx;| <¢;, for all i, and
L,/n > c, (cf. Lindeberg and Feller CLT for non-i.i.d. cases). Note that even if
the e’s are identically distributed, the x2e?’s are not. Now we obtain the
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following asymptotic relative efficiency (A.R.E.) in the homogeneous case:

01 ARE. < 2V of R-Type b, L7 xi/n
(2.1) e a.v. of E-Type a2 (L,/n)?’

which is greater than or equal to 1 by the Cauchy-Schwarz inequality. Thus

n 2 _ 2
(2.2) ARE-1-17% (’C—L”/—:—)—
niz1 (Ly/n)

which is nothing but the squared coefficient of variation of the x*’s. We call
this quantity the deficiency factor (of R-type compared to E-type). This
deficiency factor tends to 0 (assuming L, /n > ¢,) if and _only if the variance of
the x2’s tends to 0 as n — . In the heterogeneous case, v, (the true variance)
is typlcally different from &, (the limit of the E-type variance estimators), thus
E-type estimators are inconsistent and R-type estimators are actually x/; -con-
sistent and have the asymptotic normal distribution with variance
(L,/n) "L x}(Ee! — 0*)/n]. In fact, the consistency of the standard
delete-1 (or more generally delete-d) jackknife estimate under heteroscedastic-
ity is known; see, for example, Hinkley (1977) and Shao and Wu (1987).

PROOF OF THEOREM 1. @ Clearly Vy = L;'1/n)L? (r; — 7,)? =

LY /n)xr r? — r2] Note that r;=e¢, — (8§ — B)x Under the assumed
conditions, we have g — 8 = o, (n'l/ %) and 7, = O,(n"'/?). Thus the result
follows.

(ii) Following the definition of the pseudovalue J;, we have

J; =nB —(n - l)é(i)
Y. .xe;

n_.x:e; i
=3+n—’L1“ - (n-1) Zﬁé .;?’
n J#FLTJ
2.3 Yh_xe n x;e; n
(23) =B+ —1171# + L—xiei -7 + F(l + o(1))xi‘°’ei

_ I%(l +0(1)) (Jélxjej)xiz,

provided that max x? = o(L,). Thus

Ji;B z_e_z—i+—(l+o(l))x e; ——(1+O(1))(}¥xe)x

1 n

The representation therefore follows. O

Proor oF THEOREM 2. (i) The result can be obtained immediately from
(2.3).
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(ii) Since Bpg = L7_,%Y,/L?_ %2, it can be shown that

A A= i %e Yi_|xe
PB — - n ~2 - n 2
Zz Yiox;

where é;, = Y; — Bx;. Moreover,

A . nfl1rzx 12 noo 1 1
-B=—|—) %6 — — ;
BPB B Ln n igl ivi n iglxzez iglxlellzz}—lx"iz Ln]
=C, +D,, say.
Since %;é;,, i = 1,...,n can be regarded as a random sample from the empiri-
cal population of x,e;, i = 1,...,n. It follows that "
211 12 2

where Epp is the expectation taken with respect to the paired bootstrap
resampling procedure. Thus

n|EpgCE —v,]| = ————Z xZ(e? — o) +0,(n").
nt 1

It remains to show that EpgD? = O0,(n"2) and EpgC, D, = O,(n"?). We write

(2.4) D, =

c
EppD} < 2 {EPB(
n

since Epp(%,6;) = (1/n)L7 1x;e; = 0,(n~'/?). As for Epp(C, D,), we first write
(2.4) as

1 1 n n n . ~
- || B || L xt - D e -6en,
Zz 2 Zz 1x ][ =1 i=1 i

say. Direct computations show that E(Cnén) = 0,(n ~2). Finally using Hélder’s
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inequality, we obtain

n i=1 i— i=1 i=1 i=1
. N N 47172 N 47174
~2 2 ~ ~
STE(in_sz) sziei)
n i=1 i=1 i=1
N N 411/4
X|E Z xzéz - Z xiel)
i=1 i=1
_ -2
- Op(n ):

which implies the desired result.

(iii) The result follows from noting that Vg = L7_,x2r?/L% (in analogy
with the formula v, = X?_,x%0;2/L? in the heterogeneous case).

(iv) Note that Vg = S2/L,, where S2 is the variance of the empirical
population {x;r;/(L,/n)*/?, i =1,...,n. Thus

nl™ 1~ 2
Vi = — — = 7
we L niz=:1 (x,r, ni§1x‘rl)

and a calculation similar to the proof of (i) of Theorem 1 concludes the proof.
O

Two modified jackknife procedures proposed in Hinkley (1977) and Wu
(1986) (the so-called weighted jackknife), respectively, are also R-type resam-
pling. As a matter of fact, the effects of the modifications occur only at the
second order level, namely O,(n~").

3. Extension to general linear regression. We consider here the ex-
tension of representations given in the previous section to the following
general linear regression model:

(3.1) Y -Xg +e,

where the response Y and the error e are n X 1 vectors, the parameter B is a
k % 1 vector and the design X is a n X £ matrix. On the ith element e; of e,
we assume that E(e;) = 0 and o? = Var(e;) < ¢ for some positive constant c
and e;’s are independent.

We first present in detail the case of the classical bootstrap in the E-type
and Wu’s external bootstrap in the R-type. Outlines of other resampling
procedures are also given. First we need some definitions.

DEFINITION. A k X k matrix sequence A, is said to be of order O,(b,),
denoted by A, = 0,(b,), if each component of A, is of order O,(b,).
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Note that the above definition is equivalent to the one that I'A, m is 0,(b,)
for any fixed vectors 1 and m. It is this latter definition that we use repeatedly
in the proofs. For general linear models, all resampling procedures extend
naturally, so we omit their description. Let L, = X'X. The least square
estlmator of B is B= L;'X'Y. ‘The d1spers1on matrix of B is v,

L, 'X'[diag(a)IXL}?, where [diag(c;)] is the n X n diagonal matrix Whose
ith diagonal element is c,. The counterpart of &, isnow v, = (n"1L?_,0>)L; .
We assume throughout this section that

(3.2) all eigenvalues of L, /n are inside [m, M ], where 0 <m <M < o,

In particular, condition (3.2) is satisfied if the matrix sequence L,/n con-
verges to a fixed positive definite matrix. This is in fact a reasonable and
commonly used condition, since L, /n is always nonnegative definite.

THEOREM 3 (Classical bootstrap as the E-type). Let Vg be the estimator of
v, based on the classical bootstrap. Then

n(Vg—¥,)= % (e - 01'2)1‘;1 +0,(n7h).
i=1

TuEOREM 4 (External bootstrap as the R-type). Let L7_,lIx;lI° = O(n),
where ||x,|| is the Euclidian norm of the ith row x| of X. Then

n(Vigs — V) = nL;'X[diag(e? — 02)|]XL;* + O,(n71).

Before giving the proofs of Theorems 3 and 4, we would like to discuss some
of their applications. First note that ¥, and v, are identical only when the
error variables are homogeneous. Th1s 1mmed1ately implies that the R-type
procedures produce consistent estimators of the dispersion matrix of 3 in the
heterogeneous case, which is not achieved by the E-type procedures.

In practice, the parameter of interest 0 is often a linear combination of the
elements of the vector B8, say 6 = L%_,a,8,, where B, is the ith element of 8.
Important spema.l cases are the contrasts in Bl s. A natural estimator is
6= ka; B,, where B is the ith element of . Thus the classical bootstrap
estlmate of Var(f) is a’ Vga while the external bootstrap estimate of Var(f) is
a'Vi,pa, where & = (a,,...,a,). As a direct consequence of Theorems 3 and
4, we obtain

+0,(n" ")

1 L,\"*'
n(a'Vga — av,a) = - 2 (ef —d?) a’(—’—l—) a
i=1
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n(a'Vgpa — av,a) = na’L‘1X’[diag(e.2 - 0?)|XL,'a

= z b}(e} —a?) + 0,(n7"),
i=1
where b, = na’L;'x;. Note that ©7_,b2 = n?a’L;'a, since L7_;x;X;=1L,.
Consequently, the asymptotlc relatlve efficiency of type E compared to type R
is

i=1

n n 2
ARE.=nY b;*/(z b,?) .
i=1

Thus A.R.E.— 1 = squared coefficient of variation of the b?’s. This is indeed
the counterpart of the deficiency factor (2.2) given in the simple linear
regression case.

The above discussion on relative efficiency of E-type versus R-type resam-
pling is not limited to linear combinations of B;’s only. In fact the same
reasoning applies to any smooth function g(B) whose estimator is g(3). One
can estimate the variance of g(B) by the classical bootstrap through two
expressions: (i) Eglg(B8p) — g(é)] or (ii) V4VzVs, where V; is the vector of
partial derivatives of g(-) at 8. For both methods the asymptotic variance
(a.v.) of the variance estimator is V;L,, 'V,(Z 7 19; 2 /n). Similar estimators can
be given by the external bootstrap and its a.v. is V;L'X'[diag(o;)IXL;, V.
Thus the comparison of efficiencies in the prev10us discussion holds for
g(B) as well.

Is there a multivariate version of this efficiency comparison between E-type
and R-type procedures? Suppose the parameter of interest is g(B) =
[gl(B) g,(B)] whose estimate is g(B). Let D, denote the 3 X 1 vector consist-
ing of the components of the dispersion matrlx of g(B). Let DB and DExB be
the estimates of D, based on the classical bootstrap and the external boot-
strap, respectively. One can use Theorems 3 and 4 to conclude that in the
homogeneous case ad(Dg,5) — ad(Dy) is nonnegative definite. Here ad(+) de-
notes the asymptotic dispersion of Vn (- — D,). In the final analysis, this
amounts to comparing two weighted means—one with equal weights and the
other unequal. Notably this multivariate comparison holds when g(B) =
(By,...,B;) in which case D, is a k(k + 1)/2 X 1 vector and ad(D,) is a
[(R(E + 1)/2)] X [(k(E + 1)/2)] matrix.

The comparison of the performances of R-type and E-type variance estima-
tors in the homogeneous case is best summarized by the following result on
the difference of their asymptotic dispersion matrices.

THEOREM 5. If we regard v,,, Vi and Vy, as vectors of length [k(k + 1)/2],
where Vi and Vg, respectively, stand for the E-type and R-type estimators of
v,, then

ad(Vy) — ad(Vg) s nonnegative definite.
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Here ad(-) stands for the [k(k + 1)/2] X [k(k + 1)/2] asymptotic dispersion
matrix of +. The asymptotic dispersion matrix means the dispersion matrix of
the limiting normal distribution for Vn (- — v,).

Proor oF THEOREM 3. Let Y, = x,8 + e;, denote the ith row of the model
Y=XB +e,i=1,...,n. Notethat V5 = L {Z(r; — 7,)?/n]. Essentially one
needs to prove that

L (= 7)*/n— Lel/n=0,(n7").
Since r; =y; — X;B=e - x(B - B),
Y r2/n— ¥ ef/n= (B~ BYL.(B - B)/n+2(B-B)L xiei/n.
Use (i) + (ii) to denote the above sum. Then (i) is of Op(n‘l) using condition
(3.2) and Lemma 1 given below. For (ii), we look at the dispersion matrix of
Y x,e;/n, which is X'diag(s>)]X/n® It remains to be seen that
X'[diag(0;)]1X/n has its eigenvalues bounded. For any & X 1 vector 1, we have
VX' / Vn[diag(c)IX/ Vn )l < cZt m?, where m'(= (my,...,m,)) =X
Since condition (3.2) implies that m'm < ¢;1'l, the claim is established.
We still have to show that 7, = 0,(n'/?). Let us write

Fp =€, — Z xlz(é _B)/n
i=1

Since L|Ix;lI?> = O(n), the result follows by using Lemma 1. O
LemMa 1. Under condition (3.2), (8 — B)ll = O,(n~1/2).

Since the dispersion matrix of B is L;'X'[diag(c;>)]XL;", the variance of
I8 can be written as m'X/[diag(s;>)]Xm, where m' =1'L;' Note that
X'[diag(0;2)]X/n has bounded eigenvalues and n*m'm = ¥(nL,XnL; Dl <
c!'l by condition (3.2). Therefore the variance of I'8 is of order o(n™Y).

Proor oF THEOREM 4. Clearly,
Vi.s = L, X [diag(r?)] XL, .
Therefore our task is to establish the following:
nl'L;'X'[diag(r? — e?)] XL, 'm = O,(n7 1),

where 1 and m are two fixed but arbitrary & X 1 vectors. Since r? =e? +
[x(B — B — 2¢;x'(B — PB), it suffices to prove

(3.3) (i) = nl’L;IX'[diag((x',-(ﬁ - B))z)] XL;'m = Op(n‘l)
“and

(3.4) (i) = nVL;'X'[diag((2¢;x/(8 — B)))] XLz 'm = O,(n"").
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Note that
. 1 oA 2
(3.5) (i) = " )» aibi[xi(B - B)] )

where a = (ay,...,a,) = nl'L;'X’ and b = (b,,...,b,) = nm'L;'X". The
Cauchy-Schwarz inequality is then applied to show that

(3.6) a? < ¢l 12
and
(3.7) b2 < c,llml”lIx; %,

where ¢, and c, are two constants determined by the smallest eigenvalue of
L,. Using (3.6) and applying Cauchy-Schwarz inequality to (3.5), we thus
obtain (3.3). As for (ii), we rewrite it as

(if) = nV'L;'X'|diag((e;xi(8 - 8)))| XL;'m
=(1/n) Y aibieix'i(é -B)
= (3 - B)'(Z aibieixi/n)'

According to the result of Lemma 1, we only need to prove that L a;b,e;x;/n
is 0,(n~'/?). This is shown if we prove that for any kX1 vector t,
t'(Za,;be;x;/n) = 0,(n~'/2). To achieve this, we compute the variance of the
term on the left and establish that it is of the order O(n~"). This result holds
under the assumed condition L |x,||® = O(n) and (3.2), since

n Y a;b(t'x;)%2 < clllflml?t*z 2 L Ix,|° = O(n""). O

For the standard delete-1 jackknife, we state the representation and sketch
the idea behind its proof.

THEOREM 6 (Standard delete-1 jackknife as the R-type). Assume that
Tlx;® < en foralli = 1,...,n and max||x,|| = o(n). Then

n(V; —v,) = nL;'X'[diag(e? — 02)] XL;* + 0,(n7?).

Proor. To visualize how one gets the leading term in the representation
above, we first consider the pseudovalue J;’s. Let the regression model after
deleting the ith row be Y, = X8 + e, with L,;, = X(;X;, and B, =
L4 X{,Y;)- We would like to remark here that under the assumed conditions,
L,, (for each i) has all the properties of L, after certain n onward. In
practice, one could use a g-inverse (which coincides with the regular inverse if

the latter exists) to ensure the existence of the inverses needed for delete-1
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(even delete-d) jackknife procedure. Note that
Ji_é=nl§_(n_ 1)&(;‘)_[3
=nL;'Xe — (n - DL X e — (B-8)
= n[L;'Xe — L;'X;e(;|
=nL;'x;e;.
Thus

V; = n(n-1) ¥ (J; - B)(J; — B) = L, 'X'[diag(ef)| XL, ",
which glves rise to the leading term in the representation.

The rigorous proof of the remainder term to be O (n‘l) hinges on the
following simple identity:

(3.8) L;! - L;} = —-L;'x,x/L},.

This can be shown replacing x;x; by (L, — L,;)). The detailed argument is
omitted since it is fairly straightforward. O

ReMARK 1. The identity (3.8) extends naturally to the case of delete-d
jackknife with x;x/, replaced by the sum of x;x/ over all deleted rows. This
helps verify that the delete-d jackknife is also type R.

Now we turn to the paired bootstrap. Let (x,, Y,) i= ., n, be a random
sample drawn from (x;, Y) i=1,...,n. Let X be the des1gn matrix from the
bootstrap sample, that is, X = (xl, .., %,). We also define L, to be X'X. Since
L, could be singular, one may have dlfﬁculty in deﬁmng BPB It may be
interesting to find out if the paired bootstrap has an R-type representatlon for
any choice of g-inverse of X'X, and if there is an optimal choice of g-inverse
for this purpose. To deal with this singularity, we propose a simple truncation
technique which preserves the spirit of the paired bootstrap and retains its
R-type characteristic. Define

5 L.XY, if(detl,)> (detL,)/2,
PB =~ | A

B, otherwise,
where det(*) stands for the determinant of *. The constant 1/2 used in the
above definition can be any positive number between 0 and 1. Thus Vpg =
Epp(Bpg — BXBpg — B). The expectation is taken with respect to paired boot-
strap resampling.

THEOREM 7. Assume that X,X; < c, for some constant c, and for all i.
Then

n(Vpg — v,,) = nL;1X'[diag(e? — ;?)] XL;* + O,(n 7).
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The key element in the proof of this assertion is a probability bound stated
in Lemma 2.

LEMMA 2. There exist constants ¢, and cy such that
PPB(det L, < (deth)/Z) < c exp(—cyn),

where Ppy is the paired bootstrap probability and ¢, and c, depend upon c,,
only.

In order to establish this exponential bound, we rewrite the event (det L,
(detL,)/2) as (k(Z,) — h(EpgZ,) < —d,,), where d, is a sequence of pos1t1ve
numbers bounded away from zero, Z, a multivariate sample mean and A(-) is
a smooth real-valued function with all derivatives. Now, using the multivariate
mean value theorem, one turns Ppg(h(Z,) — h(EpgZ,) < —d,) into a finite
sum of large deviation probabilities. Finally, the inequality is established with
the help of an exponential bound similar to Lemma 3.1 of Singh (1981).

The rest of the proof of Theorem 7 is in the same spirit as its counterpart in
(ii) of Theorem 2.

Finally, we comment briefly on the possible extension of the weighted
jackknife and the weighted bootstrap studied in Section 2. The weighted
jackknife and bootstrap studied in Section 2 permit only limited extension.
Suppose one is interested in a particular linear combination of B,’s such as
I'8 = =*_,1,B, [or more generally a smooth function g(B)]. The corresponding
estimator I8 can be expressed in the form of L?_,a;Y;. Thus instead of
resampling from the centered residuals (r, — 7,,...,r, — 7,), the weighted
bootstrap resamples from the centered weighted residuals (wyr))¥,
(w,r,)*), where (w;r;))* = —~ Lw;r;/n. Here w, ,/[Z‘,az/n]l/z. The
Jackkmfe pseudovalue J; for l’B has leadmg terms l'L 'x,e; = b,e; (say).
Then, the weighted Jackknlfe estimator for Var(I'g) is

Trb2 1 n (g, - 1)’

n n(n-1) E‘l b?

REMARK 2. One may wonder if the dichotomy of Sections 2 and 3 is
prevalent in other regression models (e.g., nonlinear regression models) and in
other estimation procedures (e.g., L, regression and various robust regression
methods such as M-estimators). Of course, as far as jackknife is concerned,
one would need delete-d, jackknife with d, — « to produce a consistent
estimator in the case of L, regression. Does the delete-d, jackknife with
d, — o retain its R-type characteristic throughout the spectrum 1 < d, < n/2
or does it switch to the other type at some point? Does the performance of
delete-d jackknife improve in any sense (say, second order properties) in some
range of d as d increases?
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