The Annals of Statistics
1992, Vol. 20, No. 1, 305-330

REGRESSION RANK SCORES AND
REGRESSION QUANTILES
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We show that regression quantiles, which could be computed as solu-
tions of a linear programming problem, and the solutions of the corre-
sponding dual problem, which we call the regression rank-scores, generalize
the duality of order statistics and of ranks from the location to the linear
model. Noting this fact, we study the regression quantile and regression
rank-score processes in the heteroscedastic linear regression model, obtain-
ing some new estimators and interesting comparisons with existing estima-
tors.

1. Introduction. Generalizations of L-statistics from the one-sample to
the linear models, based on regression quantiles (RQ) introduced by Koenker
and Bassett (1978), were studied by several authors. With the exception of
Koenker and Portnoy (1987), who consider general weight functions, we
usually meet the linear combinations of a fixed number of RQ’s (systematic
statistics) or the generalizations of the trimmed and Winsorized means, respec-
tively.

Koenker and Bassett (1978) characterize the RQ’s as solutions of a
parametrized family of linear programs. The corresponding family of dual
programs was so far considered only as a technical device for the computation
of RQ’s. We shall show that the dual solutions, which we call the regression
rank-scores (RR) have a statistical meaning and applicability, generalizing the
duality of order statistics and ranks to the linear model.

We shall first derive an asymptotic representation for the regression rank-
score process, generalizing the Hajek—Sidak (1967) result in the one sample
model. This representation implies that linear functions of regression rank
process are asymptotically equivalent to a class of aligned rank statistics used
by Adichie (1978), Sen (1969) and Chiang and Puri (1984) (among others) for
nonparametric hypothesis testing in the linear model. However, the finite
sample behavior of the two types of statistics can be rather different, as may be
illustrated by examples. The result enables to obtain the uniform asymptotic
representation of the RQ process [up to the order op(n‘ 1/2)] under weaker and
more natural conditions than in Koenker and Portnoy (1987).

We also use the regression rank-score process to generalize the Koenker and
Bassett trimmed LSE to general weight functions, obtaining so a new class of
linear model L-statistics; we then compare this class with that studied by
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306 C. GUTENBRUNNER AND J. JURECKOVA

Koenker and Portnoy (1987). While both types of L-statistics are asymptoti-
cally equivalent in the homoscedastic linear model, they generally differ
asymptotically under nonlocal heteroscedasticity.

2. Statistical model. Let us consider the heteroscedastic linear model
Y,=X,8+T,U,,

21
@1 T, = diog(X,,),
where Y, = (Y,,,...,Y,,)T € R is the vector of observations, X, is an (n X p)
design matrix, B and y, € R? are unknown parameters, U, = (U,,...,U,)" is

the vector of errors, independent and identically distributed with an unknown
distribution function F.
We shall impose the following conditions onX,,, I, and F:

F has a continuous Lebesgue density f, which is positive
and finite on {¢: 0 < F(¢) < 1}.

The first column of X, consists of ones and the other
columns are orthogonal to the first one.

(A.1)

(B.1)
For the asymptotic study (p fixed, n — ) we moreover impose the follow-

ing conditions:

(B-2) I1X, [l = o(n'/%),

(B.3) Q,=n"'X’X, - Q, where Q is a positive definite p X p matrix.

For some results in Section 6, this condition will be sometimes replaced by the
following stronger condition:

(B-4) IX,l3=0(n).

(C.1) The diagonal elements of I, are bounded away from zero
and infinity.

(C2) D,=n"XTT;'X, > D asn — », whereDisa(p X p) matrix.
IX,ll. and |IX,|l4 above denote the usual [, and [, norms in R™”.

The most important special case of (2.1) is the homoscedastic linear model
which, due to the condition (B.1), corresponds to

(2.2) v, =€, =(1,0,...,0)" € R”.

Moreover, Koenker and Bassett (1982) considered the local heteroscedasticity
with

(2.3) v, = e, +0(n"?)

which implies (T, — I,llc = 0 as n — .
Two types of L-statistics, considered in this paper, are asymptotically
equivalent under the homoscedastic as well as under local heteroscedastic
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models; but this is generally not the case under the general heterosce-
dastic model (2.1). A class of robust tests of homoscedasticity is studied by
Gutenbrunner (1986). For the sake of simplicity, we shall omit the subscript n
in v, ; the dependence on n will be apparent from the context.

3. Regression quantiles and regression rank scores. Nonparametric
statistical procedures in the one-sample and several samples location models
are usually based either on the order statistics Y,.;,...,Y,., (or sample
quantiles) or on the vector R,,,..., R,, of ranks of the observation. The
complementarity and other interrelations of these two statistics are well-
known. While the regression quantiles form the natural counterparts of the
sample quantiles in the linear regression model, an analogous counterpart of
the ranks has not yet been known. Such statistics, which we shall call the
regression rank-scores, will be characterized in the present paper.

Koenker and Bassett (1978) observe that the a-sample quantile (0 < a < 1)
in the location model may be characterized as a solution of the minimization

n
(3.1) Y p.(Y; — t) = min with respect to ¢ € R,
i=1

where
(3.2) p(x) = lxl{(1 —a)I[x < 0] +al[x>0]}, xeR.

The same authors carried over thjs characterization to the linear model and
defined the a-regression quantile B,(a) as a solution of

n
(3.3) Y. p.(Y; — xTt) = min with respect to t € R?,
i=1

where x7 is the ith row of X,,. The population counterpart of the a-regression
quantile is, due to the linear heteroscedasticity in the model (2.1), the a-popu-
lation regression quantile

(3.4) B(a) =B +F (a)y, O0<a<l.

Since the publication of the Koenker and Bassett fundamental paper (1978),
more papers have developed, mainly the asymptotic theory of regression
quantiles in analogy to that of sample quantiles. Let us mention Ruppert and
Carroll (1980), Koenker and Bassett (1982), Bassett and Koenker (1982),
Portnoy (1984), Jureckova (1983a, b; 1984), Jureckova and Sen (1989), Antoch
and Juredkova (1985), Gutenbrunner (1986), Koenker and Portnoy (1987),
Welsh (1987), de Jongh, de Wet and Welsh (1988), among others.
The regression quantile process

(3.5) Z, = {Z,(a) = n/*(B,(a) — B(a)),0 <a < 1}

was investigated by Portnoy (1984) in the homoscedastic model; they derived a
uniform asymptotic representation of Z, up to the remainder term of order
op(n'l/ “4log n). The asymptotic results on the rank-score process, derived in
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the present paper, enable to derive the asymptotic representation of Z, up to
0,(1) but under weaker and more natural conditions on F and X,.

Koenker and Bassett (1978) characterized the regression quantlle B,(a) as
the component B of the optlmal solution (B, r*,r~) of the linear program

allr*+(1 - a)1%r = min,
(3.6) XB+r—-r=Y, (P)
(f},r*,r‘) € RP X R2"

where 1, = (1,..., DT € R™.
The corresponding dual program,

(3.7) YA =max, XTA=0, Aec[a-1,a]", (D)
and its equivalent version
(3.8) Y7a=max, XTa=(1-e)X'1,, aeclo0,1], (D)

were also mentioned in the Appendix of Koenker and Bassett (1978), but only
as a tool for an efficient computation of the whole function a — B (a).

It is the purpose of the present paper to investigate the statistical properties
of the dual optimal solution & (o) = (&,,a),...,4,,(a)T € R" of (D) and to
demonstrate that these solutions, which we call the regression rank-scores
(RR), may be used to define the rank-scores in the linear model in a very
natural manner, allowing for many applications. We shall see that many
aspects of the duality of order statistics and ranks carry over from the location
to the general linear model. On the other hand, other properties, such as the
independence of order statistics and ranks, generalize to the linear model only
asymptotically as n — .

The efficient computational algorithms for the whole path B,(-) are de-
scribed in Koenker and Portnoy (1987) and Bassett and Koenker (1982). The
computation of &(-) is essentially the same activity. If {Y,;: i € M, o) are the
observations exactly fitted by f,(a), then, by the linear programming theory,
the dual variables 4 ,(a) may be characterized by the inequalities

1’ lf Yni > xgiﬁn(a)’

3.9 dni a) = A
( ) ( ) 0’ lf Yni < XZiBn(a)’
i =1,...,n, and by the linear equations
' n n
(310) ¥ dp(a)x, = (1-a) ¥ X, — L I[¥,; > xLB,(a)]x,;.
ieM,, i=1 i=1

Under continuity of F, with probability 1, the p linear equations (3.10)
have a unique solution for all @ € (0, 1), which is in correspondence with the
" uniqueness of ranks in the location model.

Computational aspects of regression rank scores are considered in Koenker
and d’Orey (1989).
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It is easy to see that the rank-scores in the location model reduce to the
well-known family of rank-scores introduced in H4jek and Sidak (1967) (Sec-
tion V.3.5). Namely, let R,; be the rank of Y,, in the sample Y, =
Y,,...,Y,,)and é,,(a) =a,(R,;,a),i =1,...,n, where

0, if —<a,
Ri - 1 Ri
(3.11) a,(R;,,a) ={R, — na, if <a<—,
n n
Ri - 1
1, if @ <
n
If{d,;, i =1,2,...,n} is a suitably normalized triangular array of constants,

then, by Theorem V.3.5 in Hajek and Sidak (1967), the process
n
{n‘l/2 Y d,(6,(e) —(1-@)):0<ax< 1}
i=1

converges weakly to the Brownian bridge in the uniform topology on CI[0, 1].
We obtain a similar result for the linear model, introducing the regression
rank-score process

(3.12) WI= {W,f’(a) = n—ll/g Xn) d,(d,(e) —(1-a)):0<a< 1},
i=1

where 4,,(a) are the regression rank-scores of (3.8), i = 1,...,n and {d,;,
i=1,...,n) is a triangular array of g-dimensional vectors, ¢ being a fixed
positive integer. Denoting C,, the n X ¢ matrix with the rows dZ;, i =
1,...,n, we impose the following conditions on {d,;,, i = 1,...,n}

(D.1) ICralle = o(n'/?),

(D.2) IC,allz = O(n) asn — .

For some results we shall moreover assume the condition
(D3) n—IC:rIz‘and - Q[d]1
where Q4 is a positive definite ¢ X ¢ matrix.

4. Statistics derived from regression quantiles and regression rank
scores. Integrating the processes (3.5) and (3.12) with respect to an appro-
priate signed measure on (0,1), we obtain three broad classes of statistics
which have various applications. We shall impose the following conditions on
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the corresponding signed measures:

v is a finite signed measure on the open unit interval (0, 1)

(W.1) that has a compact support.

b is a function of bou;lded variation which is constant

(W.2) outside a compact subinterval of (0, 1).

J is a function of bounded variation, vanishing outside a
(W.3) compact subinterval of (0, 1) (a trimming weight function of
bounded variation).

We shall distinguish three classes of statistics based on the observations Y,,:
(a) The linear rank statistics for the linear model of the form

. 1z
(41) an’d = Z dnii’ni’
ni
where 5,”- are the scores defined in either of the following two ways:
(4.2) bui= = [b() dd (), i=1,...,n,
0
or
(4.3) b= = [(0u(t) da,(2), i=1,...n,
0
where
44)  by(t)=b Pl ik o
. = < -, =1,...,n.
(4:4) w(t) (n +1 )’ n n "

Let us look in the scores (4.2) and (4.3) in more detail, to illustrate the link
to the scores in the location model. The natural conditions on b would be
square integrability instead of (W.2), which is a technical restriction. In
Gutenbrunner, Jureckova, Koenker and Portnoy (1990), we treat b, which
satisfies the Chernoff-Savage condition |b'(a)| < K(a(1l — a))™3/2%2. (4.2)
could be also written as

(4.5) b= - [b(D)d,(t)dt, i=1,....n.

In the location model, (4.5) reduces to

(4.6) Bu=n["" b(t)dt, i=1,...n.
(R;—1)/n

On the other hand, (4.3) could be written as

(4.7) b=~ anlb( : ) dni(%) _d""(k r_z 1)]

n+1
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and this in the location model reduces to the simple form

4.8 b.=b B, =1
() ni (n_l_l)’ t=1,...,n

[the approximate scores of Hajek ‘and Siddk (1967)]. The Wilcoxon scores
generated by b(¢) =t — 1/2, 0 < ¢ < 1, take the form either

A 1 1y
(4.9) b= = [t~ 5] dauito
or
1 2 k
1 b, = 6, = i =1,...,n.
(4.10) = lkgla'”(n)’ i=1,...,n
The median scores, generated b(¢) = sign(¢ — 1/2), 0 < ¢ < 1, are either
A 1
(4.11) b, = 2&,”.(5) -1
or
1
2&,”-(—) -1, n even,
2
(4.12) b, =

. (nt1l . (n—1 1 dd

. + . — .
Gni| =, L , no

Similarly, b(¢) = ®1(¢), 0 < ¢t < 1 (® being the standard normal distribu-
tion function), generates the van der Waerden scores, and so on.

The main application of statistics (4.1) is in testing various hypotheses on
the components of B; the coefficients d,,; are then derived from the matrix X,.
Such tests, simple to perform and asymptotically distribution-free with good
asymptotic properties, are a subject of a special study [Gutenbrunner,

Jureckova, Koenker and Portnoy (1990)].
For b with (W.2), b,,; in (4.2) could be rewritten as

(4.13) bui =b(0) + [‘d,i(a)db(a), i=1,..,n
0
and V>4 could be rewritten as

A

V2 = n 2 ['Wi(e) db(a) +5d,,
0

(4.14) . _ n
B=jb(a) de, d,=n"'Yd,,.
0 i=1

(b) L-statistics for the linear model, the first type:

(4.15) T, = [Bu(a) dv(a),
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corresponding to the well-known integral representation of L-statistic with the
weights v,; = v[(i — 1)/n,i/n) in the location case, that is,

n
(4'16) Tr:j= Z VniYn:i (}’n:lS SYvn:n)’

i=1 4
where B,(a) reduces to the ordinary quantile process, Ba)=Y,  if
G-D/n<a<i/n,i=1,...,n.

For finite discrete v, these statistics were already investigated in the
pioneering paper of Koenker and Bassett (1978). Koenker and Portnoy (1987)
considered v with compact support and a bounded density, using methods
quite different from ours. In the present paper, we allow v to be any finite
signed measure having compact support.

(c) L-statistics for the linear model, the second type: In the location model,
the statistics (4.16) could be rewritten in the dual form of the weighted mean

n

(4.17) Y Var, Yais
i=1
with the random weights v, ~(we may consider the trimmed mean as a
prominent example). However, extending the two versions (4.16) and (4.17) to
the linear model leads to two generally different classes of statistics.
Actually, let J be a function satisfying (W.3) and
J20, J=[J(a)da>0
0

and define the random weights as either

(4.18) i = = [I(2) dd,i(t)
0

or
(4.19) i = = [Tu(t) d,i(t), i=1,...,n,

0
where
420) J, J Pk o
@20) g0 -dmg) <<, k=tin

[compare with (4.2) and (4.3)]. The extension of (4.17) to the linear model with
the above weights is the weighted least-squared estimator (LSE)

(4.21) L, - J(XZ4,X,) XZ4.Y,,
with

| (4.22)

a

P I, if X diag(/,;)X, is singular,
& diag(J,;), otherwise,
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and
v(A) = [AJ(a) da, A€ By,

Note that the probability of X7 diag(J,,)X,, in (4.22) being singular tends to
zero as n — . We set J, = I, in this exceptional case in order to have a
proper unique inverse (XZd,X,)”! which guarantees the desirable finite
sample equivariance and invariance properties.

In the location case, L’, coincides with (4.17) and hence also with T, in
(4.16). If J(¢) = Ila; <t < a,], ¢ € (0, 1), then L, is a version of the trimmed
LSE proposed in Koenker and Bassett (1978) and studied in Ruppert and
Carroll (1980), Jureckova (1983b, 1984) and Koenker and Portnoy (1987).

For a general J taking on positive and negative values, write J = J*— J~
and set :

(4.23) L’ =L — L

Besides the statistics mentioned above other L-statistics in the linear model
were also studied by more authors. Bickel (1973) defined a class of iteratively
computed statistics; however, they are not invariant to a reparametrization.
Ruppert and Carroll (1980) compared the Koenker and Bassett trimmed LSE
with another estimator which was, like Bickel’s one, based on a preliminary
estimator of B. The influence function of two latter statistics turned out to
depend heavily on the preliminary estimator. Recently Welsh (1987) showed
that a special type of Winsorizing rather than the trimming leads to the
desired influence function. Bounded influence versions of the trimmed LSE
were proposed in Antoch and Jureckova (1985) and in de Jongh, de Wet and
Welsh (1988).

The definitions in (a)—(c) above still need some justification concerning the
existence, computational aspects and applicability. Let us first mention that
the regression quantile ,(a), being implicitly defined, is generally not uniquely
determined. Nevertheless, it is possible to select solutions such that B,(-) is a
stochastic process with the paths in the Skorokhod (D(0, 1))? space (notice the
open unit interval). It could be shown [e.g., Gutenbrunner (1986)], that
the unique lexicographic maximal solution has the desirable properties. On the
other hand, under continuity of F, with probability 1, the regression rank-
scores & (a) are unique for all a. &4,(+) is a process with paths in (C(0, 1))", the
paths not only being continuous but also piecewise linear with finitely many
vertices.

The right-hand derivative & ,(-) of &,(-), which is a step-function, may be
characterized in the form [compare with (3.10)]

(424) Z d’ni(a)xni =~ Z X, = _nel)
ieM,, i=1

and

(4.25) & (a)=0 ifi¢M,,.
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Also, integrating by parts, we may write

A

(4.26) Ji = [a,(a)dd(a) = — [Er(@)dv(e), i=1,...,n

with J being the density of ». «
Both types of L-statistics are regression equivariant, that is,

(4.27) S!'(cY, +X,B) =0S.(Y,) +v(0,1)B
for o > 0 and B € R? in the sense that (4.27) holds for S! = L, and there

exists a version of T, such that (4.27) holds for S} = T,. Moreover, if v is
symmetric around 1/2, then I, is symmetric in the sense

(428) Ll;z( _Yn) = —L,;z(Yn),
and this implies that L’ is a median unbiased estimator of (¥(0,1) - B)
provided F is symmetric around zero. To obtain the same property for T}, one

must use a very special version of regression quantiles, following the lines of
Farebrother (1985).

5. Asymptotic representations. When approximating the processes of
Section 3, we shall use the topology of uniform convergence on compact
subsets of (0, 1). For two processes A ,, B, with realizations in (D(0, 1))?, we
shall write

A, =B, +05(1) [or 0;(1),0%(1),0*(1), respectively] ,
if
”An - Bn ”(e) = sup ”An(a) - Bn(a) "

(5.1) s<a<l-¢
=0,(1) [or 0,(1),0(1),0(1), respectively]

for all ¢ € (0,1/2). If B, >4, Band A, = B, + 0;(1), then A, >, B.

To obtain the weak convergence results on D[0, 1] from those on D(0, 1),
one needs to study the tail behavior of the quantile process; however, no such
results are at disposal for the regression quantile process.

Let W¢ = {(W¢(a): 0 < a < 1} denote the process

1 n
(5.2) Wi(a) = PV g.ldni(a‘i(a) -1+a),
where
(5.3) af(a) =I[U;>F Ya)], i=1,...,n.

The following theorem provides the asymptotic representations for regression
quantile and regression rank-score processes.

TuEOREM 1. (i) Under the conditions (A.1), (B.1-3), (C.1-2), the regression
quantile process Z,, of (3.5) admits the representation

(5.4) Z,(a)= (f(F‘l(a)))_lD,jlW,f(a) +05(1).
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Moreover,
(5.5) Z,—o(feF ') D'WE asn -,

where W, is a vector of p independent Brownian bridges on (0,1), and
foF~Ya) = f(F~ Ya)).

(i) Under the additional conditions (D.1-2), the regression rank-score pro-
cess W< of (8.12) admits the representation
(5.6) W2 = Wd—9" + 0%(1),
with

d’:i=DndD;1Xm~, i=1,...,n,

(5.7) CLAT e
Dnd =n 1(:ndl-‘n lxn’

and with W2 of (5.2).
(iii) If, moreover,

Qua—ar; =1 (Cpa = Crax) " (Crg — Cha)

5.8
(58) — Q_q+ positive definite of order ¢ X g asn — ,
then
(5.9) Wi -, Q2 WG asn - .

CoROLLARY 1. Under the local heteroscedasticity (1.3) and under (A.1),
(B.1-3) and (D.1-2), the regression quantile and regression rank-score pro-
cesses are asymptotically independent.

Proor or THEOREM 1. Put

(5.10)  B,(a) =B.(a) - B, B(a) =B(a) -B=F(a)r.
Then Z, = n'/%(3, — 3). We shall further use the empirical processes

1 n
(511) G';dz(t') = ; Z dnzI[l]z =< xzz‘it/o-ni]’
i=1
N 1n
(5.12) Gl(t) = EG(t) = w )y dniF(erz‘it/a'ni)’ t € R?,
i=1
and
(5.13) Y =nV3GI - GY),
where we denoted
(5.14) o, =xby, i=1,...,n.

Regarding (3.9) and (3.10), we see that the difference W? — W¢ is essentially
—n~Y%Gd08, — G2 03,). Linearizing the latter expression, we may replace
it by

(feF ')D,,Z,,
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arriving at the important basic relation

(5.15) erzi = Wtil - (foF_l)Dndzn - Rtlln + thln’
where
(516)  R{, =n*(Gied, - Gles,) ~ (f-F)D,.Z,
and

1 » A .
(517) R = o172 L il [V = x0B,()] 4, ().

By (D.1) and regarding that |[M, | < p and |d,,(a)| < 1, we obtain that

(5.18) [RSu(a) | < pn™*/* max |ld,;| >0 asn -
<i<n

uniformly in @. Concerning R¢,, we shall split it in R{, = R4, + RY,, where

(5.19) R¢, =Y%3, -~ Y05
and
(5.20) R{, = n'/2(G¢=3, - GEod) — (fo F 1D, ,Z,.

We shall treat R%, using a uniform continuity argument [see, e.g., Koul
(1969)] while R%, will be treated using a uniform differentiability property of
the mapping fo. This will be the contents of the following lemmas which will
be proved in the Appendix.

LEmMA 1. (1) Under the conditions (A.1), (B.1-3), (C.1-2) and (D.2),

(5.21) sup||n'/2[GE(3(a) + n~1/2t) — GI(3(a))] — F(F~'(a))D,4t|
' =0(1) foranyK>0and e >0,

where the supremum is taken over all (t,a) with |t|<K,e<a <1 —&.
(i1) If, moreover, (D.1) is satisfied, then also

(5.22) sup Y (3(a) + n=%t) — YI(8(e)) | = 0,(1),

with the supremum taken over the same set (t, a) as in ().

The next lemma is a corollary of Theorem 2.2 of Shorack (1979).

LeEmMA 2 (Shorack). (i) Under (D.1-2), the sequence {W?} is uniformly
tight on (DI[0, 1])9.
(i) Under (D.1-3),

(5.23) W~ QW on (D[0,1])°

with W, being the vector of q independent Brownian bridges.



REGRESSION RANK SCORES 317

LemMa 3. Under (A.1), (B.1-3) and (C.1-3),
(5.24) Z, = 0r(1).

COMPLETION OF THE PROOF OF THEOREM 1. Notice that W* = 0 by (3.8).
Then, underd ,; = x,,;,, i = 1,...,n, (5.15) and Lemmas 1 and 2 imply
(5.25) (fe F‘l)DnZn =W7+ o’;(l) —g Ql/z\V(’;)
and this further implies the proposition (i). Inserting (5.4) in (5.15) yields
(5.26) Wi =W? - D,,;D; W + 0%(1) = Wi~ + 0%(1)

and hence (ii). .
The sequence {W?~%"} is uniformly tight by Lemma 2; actually, {d,; — d%,}
satisfies (D.1) and (D.2) due to the inequalities

”dnz - dfzz” S“dnz” +||Dnd|| ”D;l” ”xnz”’ i = 1"””7”
and
c n
IDaall < — X lduill %01l = O(1).
i=1

This together with (i), (ii) and Lemma 2(ii) implies (iii). O

Note that Theorem 1 was proved under mild conditions, which are neces-
sary even for the consistency and asymptotic normality of the ordinary LSE
[only (A.1) should be then replaced by o %(F) < «]. Moreover, f does not need
to be differentiable and symmetric. The proofs use the elementary techniques
(this applied also to the proofs of Lemmas 1-3).

Proor OF COROLLARY 1. Notice that, under the local heteroscedasticity
(1.3), X, and C,; — C,4« = C, ;_4+ are asymptotically orthogonal in the
sense that

5.27 nXTC ., «—>0 asn — w.
nYn,d—d

It follows from the proof of Theorem 1(ii) that the sequence {Q,;;_q+} is
relatively compact, hence (5.8) holds for some subsequence {n,} of positive
integers. Denoting '

d,; = (xI, (- d5)") € R,

then, by (5.27), n;,'C% ;- C, ; converges to the matrix
, lq o
Qq = ( 0 Qi_g44
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as m — o, Then, by Theorem 1,

o 1 1/2 *
(f ) X lD"mz”m = W':im + O;(l) 2 Q[d] (p+q) = Q ‘V(Pa{
an d d*’“’(q)

Hence, the Prokhorov distance between the simultaneous distribution of
(f-F YD, Z, T, [Wd 1")" and the product of its marginal distribution
tends to zero; the same holds also for (ZT (Wd )T)T. Since every sequence of
positive integers contains a subsequence w1th this property, the assertion
follows. O

The next theorem provides the asymptotic representations of L-statistics of
the first type and of the linear rank statistics.

THEOREM 2. (i) Under the conditions (A.1), (B.1-3), (C.1-3) and (W.1) as

n—)oo,

(5.28)  nVA(T: - B(v, F)) = n 2 ¥ 4y, p(Ui)D7 % + 0,(1).

i=1
Hence, n'/* (T — B(v, F)) is asymptotically normally distributed
(5.29) N,(0,D7'QD"s2(v, F)),

where

(5.30) B(v,F) = v(0,1)B + u(v, F)y with u(v,F) = folF-l(a) dv(a),

(331) 4, 5(t) = [(« = I[F(2) <a)[ f(F{(@)] "dv(a), teR,

and

o*(v, F) = [w2 p(t) dF(2)

- folfol(u Av = w)(f(F~Y(w)) F(F () dv(u) dv(v).
If y=v,=e,+0(n"'?), then D, and D in (5.28) and (5.29) could be
replaced by Q, and Q, respectively.
(ii) Under (A.1), (B.1-2), (C.1-3), (W.2), (D.1-2),
- 1 2
(532) n'2(V2¢-3d,) = —5 ¥ (d,; — d%)(b° F(U)) + 0,(1).
i-1

Furthermore, if (5.8) holds, then n*/2(V>? — bd ) is asymptotically normally
distributed

(5.33) Nq(o,Q[d_d*]fol(b(u) ~3)"du|.
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Proor. Theorem 2 follows immediately from Theorem 1 through integrat-
ing with respect to v and b, respectively, and using relations of the type
J(A, + op()dv = [A,dv + 0,(1) together with the central limit theorem
and the Cramer—Wold theorem The possible replacement of D! by Q;!
under local heteroscedasticity follows from the fact that then D;! — Q! —> 0
and that the right-hand side of (5.28) is bounded in probability. |

ReEmARks. (1) In the special case with y = e,, v possessing a bounded
Lebesgue density and with X, and F satisfying some additional restrictions
[namely, (X.1-4) and F of Koenker and Portnoy (1987)], the proposition (i) is
covered by Theorem 3.1 of Koenker and Portnoy (1987).

(ii) Using the known representation of M- and R-estimators (in the ho-
moscedastic model with D, = Q,,), we obtain asymptotic relations of L-, M-
and R-statistics which are analogous to those in the location model.

(iii) The asymptotic representation (5.32) of Vb 4 in the homoscedastic case
coincides with that of the aligned rank statistics S’ bd used for testing by
Adichie (1978), Sen (1969), Chiang and Puri (1984), among others. However,
the finite-sample behavior of the two types of statistics may be rather differ-
ent, as illustrated by the following example.

ExaMPLE. Assuming a two-factor model with interaction and a balanced
design, n = 4m, we may have the following design matrix:

Xni1 Xni2 d,in d,iz

l<i<m 1 -1 -1 1
m<i<2m 1 -1 1 -1
2m <1 <3m 1 1 -1 -1
3Im<i<4m 1 1 1 1

Under the homoscedastic model,
Yni = xxianl + xni2ﬁn2 + dnilBt‘fl + anBZZ + U

thus B,, corresponds to the main effect of the first factor, 8¢, to the main
effect of the second factor and B¢, to the interaction, respectively. We may test
the hypothesis

H,: B4, = B2, = 0 (no effect of the second factor)

by means of Vn’”d as well of S,’;’d, respectively. Since, for this special design,
the regression quantiles reduce to simple functions of the order statistics in
the separate subsamples

={Y,;,l<i<2m} and Y,={Y,;,2m <i <4m},

the statistic V,f”d turns out to be a simple linear function of a pair of two
ordinary two-sample (location) rank statistics based on the ranks of Y,; in Y,
or Y,, 1<i<2m or 2m <i < 4m, respectively. On the other hand the
aligned rank statistic Sb 4 js based on the ranks of aligned observations with
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respect to the whole sample of size 4m. Hence, in this example, V>¢ corre-
sponds to blockwise ranking rather than to ranking after an alignment.

The asymptotic behavior of the aligned rank statistics under nonlocal
heteroscedasticity is not yet known; their representations may differ from
(5.32). O )

The asymptotic representation (5.28) of T? could be further rewritten in the
following form

(5.34) T, =K, Y (v,F) + op(n_l/z),
and under the local heteroscedasticity (1.3) in the form
(5.35) T, =K, Y (v,F) + op(n_l_/z),
where

(5.36) K, = (XIT;'X,) XIT; ",
(5.37) K, - (X7X,) X

and

(538) Ynﬂ;(v’ F) = xzz‘iﬁ + xz:i‘Y(‘/’u,F(l]i) + #’(V’ F))’ 1= 1’“-’""

Hence, (5.34) and (5.35) represent T, as the weighted or ordinary LSE,
respectively, corresponding to the pseudo-observations (5.38), up to o0,(n~"'/?).
This, being combined with the next Theorem 3, shows that while both types of
L-statistics (T? and L*) are asymptotically equivalent under the local het-
eroscedasticity (1.3), their difference is nondegenerate under the general het-
eroscedasticity.

Concerning the representation (5.32) of the linear rank statistic, notice that
it reduces to the well-known representation in the location model [see (15) in
Section V.1.5 of Hajek and Sidak (1967)]. Actually,

ay
Cnd* = = XnKn,ndd
d,
and hence C,;« is a projection of C,, onto the column space of X, (in the
heteroscedastic case nonorthogonal).

6. Asymptotic relations of two kinds of L-statistics. We shall now
consider the asymptotic relations of T and L’,, two kinds of L-statistics
introduced in Section 4. While they are asymptotically equivalent under the
Jhomoscedastic or under the local heteroscedastic models, generally this is the
case only for the intercept components; the difference of the slope component
vectors has a nondegenerate asymptotic (p — 1)-dimensional normal distribu-
tion.
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TueoreM 3. (i) Under (A.1), (B.1-4), (C.1-2) and (W.3),

(6.1) L, =K, Y*(v,F) +K, Y, (v, F) + 0,(n"'?),
where .
(6.2) Yi*(v, F) = x08 + xDyy%(U),

(6.3) Y.(v,F) =Y*(v, F) = X*(v,F)  [Y of (5.38)]

J(F()) - [t — u(v, F)(»(0,1)) Y|, if v is positive,

6.4) Yr%(t) =
(6.4) 7 (1) 5 0(2) — 0 p(2), otherwise.

(i) Under the additional assumption (1.3) of local heteroscedasticity,
(6.5) L, = K, Y (v, F) + O, (n"") = T + 0,(n""/2).

Proor. We may assume that v is a probability measure, v(0,1) =
JJ(u)du = 1, without loss of generality. We shall first show that

(6.6) L, =K, Y (»,F) + Q;'V>¢+0,(n7"),
where V¢ has score function b = b; ; — b, 5 with
(6.7) by pa) = f«, [F71w) = u(, F)] dJ(u)

and the regression constants
(6.8) gni =X£i‘yxm~ = U'nixni, l = 1,...,n.
(6.6) could be rewritten as

n'/3 (L, — B(v, F)) = Q;l{n—l/z i U, p(U)gni + fW,f’ de,F}
i=1

(6.9)

+ 0,(n"1?).
Denoting
(6.10) Q,-n"X74 X,

then, regarding (4.9), L, = n~'Q; IXTJ Y and thls, regardlng the form
(5.30) of B(v, F) and the identity n-lQ le .X, =1,, could be further
rewritten as

(611) 'YLy, - B(v, F)) = n'Q; ' X2J,(Y, — X, — u(v, F)X,).

By Lemma 6 [see (L6.2)] of the Appendix, Q,' = Q' + 0,(n~'/?) and, by
(L6.1),

ejn = diang. + op(O),
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where we say that A, = B, + 0,(0) if P(A, # B,) - 0 as n — ». Hence,

n'?Q,(L, - B(v, F))
1 2 w
= n1/2 Z xniJni(Yni - x?z‘iB - /"'(Vv F)xlpl:;'Y) + OP(O)

i-1
(6.12) n .
= 2 §1x£i7xniJni(m - u(v, F)) +0,(0)

1 n
= m glgnzjnz(l]z - /J‘(V, F)) + OP(O)'

Introduce the interpolating quantities
Uni@) = 8,(a)U; + (1 = 4,(a)) F (@),

(6.13) .
i=1,...,n; 0<a<l.

Regarding the identity
(6.14) U,V F!(a) = af(a)U; + (1 - af(a))F'(a)
with a¥(a) asin(6.3),i=1,...,n; 0 <a <1, we get
(6.15) U, (a) = (U; vV F (@) = (dn(a) — ai(a))(U; - F (),
i=1,...,n;0 <a <1, and Lemma 5 of the Appendix yields
(6.16) ¥ &.f[Uni(a) = (U Vv FX(@))] dJ(a) = O,(1).
i=1
Moreover, we have the identity
[6,:(a)(U; — w(v, F))] = [U; V F7X(a) = a(F}(a) = u(v, F))]
(6.17) = [U,(a) - U, v F Y (a)]
+[(dni(a) -1+ a)(F_l(a) - /"‘(V’F))] - /"'(V’F)’
By (W.3), it holds that
(6.18) JdI=d(@-)-JO+)=0
and integrating by parts in (5.31) we obtain
(6.19) w, 5(t) = [[(t VF (@) — a(F~X(a) — u(», F))] dJ(a).
Combining (6.16)-(6.19) we obtain

]_ n
Wiz glgni[jni(l]i - r(v,F)) - %,F(Ui)]

1 » R N
(620) = 75 L & [(Oi(@) = (U, v F(a))) dd () + [WE dby,p

JWEdby 5+ Oy(n71%)
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and this, being combined with (6.12), yields
n~V2X7§ (Y, - X,B — X,yu(v, F))
6.21 n
(621 w72 L g, p(U) + [WEdbs g+ Op(n).

Due to Lemma 6 and due to the fact that the right-hand side (r.h.s.) of (6.21) is
stochastlcally bounded, we may multiply the Lh.s. and r.h.s. of (6.21) by Q 1
and Q; !, respectively, without changing the order O,(n~*/?). This proves (6.9)
and hence (6.6).

The behavior of the term [W& db = n'/2V># is different in homo- and
heteroscedastic cases: In the former case it follows from (6.8) that g,,;, = x,,;,
i=1,...,n and hence W,f = W,f = 0. Under the local heteroscedasticity, vy, =
e + n'%y,,, llv,,Il = O(1) setting )

— T — ,—1/2 ;o—
dni =XyiYonXp; =0 4 (gnz - xni)’ i=1,...,n,

we obtain from Lemma 5 in the Appendix,

JWedb = [We=db = n=/2 (Wi db
1 1/2
= 1/2 p( Z ”dm“ )

1 1/2
= 1/2 p( E ”xnz” ) = Op(n_l/z)

and, on the other hand,

n

1 1
iz Z (8ni = X,)¥,, p(U;) = oy Y 4,4, 7(U) = 0,(n™?),

i=1
and this completes the proof of part (ii).
In the general case, applying Theorem 2 to Vb & regarding

by p(F(t)) = % (t) — ¥, p(2) + const. = —y, p(t) + const.,
and ©7_(g,;, — g%)=0for g}, =Q,D;'x,;,i =1,...,n, we get

Q;lfwf db; p=n""? > J’v,F(l]i)(Dr:lxni -Q;'g,:) +0,(1)
i=1

This, together with (6.9), yields
n—l/z(Lyn - Bn(v’ F))

(6.22) =n"1/? Z:l‘,l [Q;lgni('/fu,F(Ui) ~ b, 7 (U)))

+D; %, #(U)] + 0,(1)
and this is equivalent to (6.1). O
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Theorem 3 shows that the first components of T}, and L’, are asymptotically
equivalent even under the general heteroscedastic model. This is in correspon-
dence with fact that the first component estimates the location. However, the
slope components of both estimators generally have different asymptotic distri-
butions, as we shall illustrate in ‘the following example.

ExampLE. Fix « €(0,1/2) and consider J(u)=(1 —2a) H[a <u <
1 — a]. Then L, is a version of the trimmed LSE introduced by Koenker and
Bassett (1978). It was shown in Gutenbrunner (1986) that, under the local
heteroscedasticity model, all versions of the trimmed LSE are equivalent up to
the order O,(n~YIX,,|l.).

If we could assume

S,=n"XII2X,->S, (pxp),

then the asymptotic covariance matrix of L”, under general model and for
symmetric f takes on the form

3, =h,DQD! + 1,Q7'SQ},

where h; = 2ac2, hy = [ <. t>dF(@), c, = F (1 — a). Indeed, in this case,
¥, p coincides with Huber function ¢, (¢) = —c, V ¢ A ¢, ¢**() = t[lt] < c,]
and ¢, p = c,(I[t > ¢, ] - It < —¢,D, t € RY; in this case ¢ - ¢** =0 and
Ey**(U) = 0.

On the other hand, the asymptotic covariance matrix X, of T, has the form
2p=(h, + hy)D7 QD! and hence

(6.23) 3, -3, =hy(Q1SQ! - D-!QDY).

More specifically, let p = 2, n = 3m, m € N, hence X, is of order n X 2
with the first column of units. Let the second column of X, be as follows:

—, ifl<i<m,

b

in2 — 0, ifm<l<2m,
d
= if2m <i < 3m,

b

3
3
with d = 8y/3/2 ; the heteroscedasticity is fixed to y = (1,1/d)”. Then Q = I,
thus £; — 3, = hy(S — D~2), where

/3

29 4d 29 124/ —

1 2042 1 2
30

S=3744 T 27 3
9 12/ 5
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and
9 5_3 29 53 /2
1 d 1 3V3

" 27| 58 13\ | " 27|53 /2 730
— 2|1+ |— Py -
d d 1 8V3s 27
If we consider the second components of the trimmed LSE L’, and of the
trimmed average T, of regression quantiles [proposed by Koenker and Portnoy
(1987)] as the respective estimators of the slope parameter B, then their
relative asymptotic efficiency is
OL99 hy N hy 10 729
Opos hi+hy hy+hy, 9 730
he 2 11+011(1-2 ]
— e (1,1 +0. - ,
o+ h, 657 - ¢ (1~ 2a)

since 0 < h; < ®, 0 < hy < (1 — 2a)/2a)h,. Thus, T}, is more efficient esti-
mator of B, than L”, but, on the other hand, det(X, — 2;) < 0 and hence
X, — X is not positive semidefinite. O

©

D—2

1+

APPENDIX

Let us first note that the proofs of Theorem 1 and 2 use only Lemma 1-3;
the proof of Theorem 3 uses Lemma 4-6 and Theorem 1. More detailed proofs
of Lemmas 1 and 3 may be found in Gutenbrunner (1986).

Proor oF LEMMA 1. We shall first prove (5.21). The derivative of G¢ at
t € R? equals

1 n
(L1.1) VG (t) = Py Y otd,x f(x7:t/0,;)
i=1
and specifically for t = 8(a) = F~'(a)y,
(L1.2) VG (8(a)) = F(F~X(@))D,as
hence

|Ga(3(a) +n7'%t) = G(8(a)) — n”V2f(F~*(a))D,t|

1 1 (xT;t
- Z d,; 1/2 (—)
n n g,

i=1 ni

1
X/
0

=o(n~1/?)

(L1.3) .

1 .t
f(F_l(a) + W(%)S) —f(F_l(a))} ds

nt
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uniformly in t and «, [lt|| < K and ¢ < a < 1 — ¢, as follows from (B.2), (C.1)
and the uniform continuity of f on compact sets. This proves (5.21).

(5.22) is proved using a slight modification of Lemmas A.5 and A.6 of Koul
(1969) [see Gutenbrunner (1986) for details]. O

Proor orF LEMMA 2. The lemma is a consequence of Theorem 2.1 of
Shorack (1979). O

Proor oF LEMMA 3. The proof follows the lines of the proof of Lemma 5.2
in Juretkova (1977); we use Lemma 1.2 and the monotonicity of the function
eTGx(z + te) in ¢t € R! with fixed e,z € R?. Moreover, we utilize the inequal-

ity

with 5,(a) = 8,(a) + n"V2||Z (a)(Z,(a)/IIZ (a)) and the fact that
f(F~Y(a))eTD,e is bounded away from O for |lell=1, a €[¢,1 — ¢] and
n>ngy 0O

A 12 ‘ A
|G (8,(a)) = Gi(3(a)) | =“; L il [V,i = xifo(a)]

<pn X, |, = o(n"1/?)

LeEMMA 4. Denote
(L41)  I(K,e) =I[|Z,,,<K], K>0, 0<e<L.
Then, under the conditions (A.1), (B.1) and (C.1),

. 12
(L4.2) sup  E{I(K,¢)|Wi(a) - Wi(a)|} = 0(; ;1 1% "dni")

e<a<l-e¢

and

sup E{I,,(K, €)

e<a<l-e¢

~0[2 £ (xuff1a.1)

édnilﬁni(a) — (U, v F(a))] ”}

(L4.3)

for any fixed K > 0 and ¢ > 0.

ProoF. @, ,(a) of (3.9) could be rewritten for e <a <1 — ¢ as

. 1, ifU;>F Y(a)+n"?x7,Z,(a)/0,;,
Gnil@) =10 g U, < FY(a) + n"V2x1,Z () /0,,;.
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Then, using (6.15), we get
E(I(K,¢)|0,:(a) = (U, V F(a))])
< B(I(K,¢)[8,(a) — a¥(a)||U; - F}(a)])

< B(I(K,)I[|U; - F ()| < n7 2| x,,|(K/e)]|U; = F(e)])
<K*n Yx
hence, for a € [¢,1 — €],

E(In(K,s) fld,,i(t‘],,,.(a) - (U, v FY(a)))

The proof of (L4.2) is analogous. O

(L4.4)

M”’

n
_ 2
) <K*n Y [xnPldnll.
i=1

LeEMMA 5. Under (A.1), (B.1-3), (C.1-2) and (W.2-3),

1 n 1/2
(L5.1) JWi db = Op((; Eﬁl IIdniIIZ) )
and ‘

Zdn,f[ (@) = (U, V F7Y(a))] dJ(a)

n 1/2
=0p((;Z "xnillzlldni”) )
i=1

REMARK. Notice that (15.1) is not a consequence of Theorem 1 because it
does not impose condition (D.1) on {d,;,i = 1,...,n}.

(L5.2)

Proor. First, notice that
1 n _ 1 n 1/2
(L5.3) [Wrdb=—; T du[6(F(V)) ~B] =0, (; % ld,l ) .
i=1 -
Moreover, (L4.1) together with condition (B.1) implies
E{In(K,e) J (Wi - W) de}
< B{1,(K ) [ W - We 1ol

<lbley sup E(I(K,e)| We - We)

e<a<l-e¢

1 n 1 n 1/2
=0|= , 1l =oll—= d. .| ,
O(nEl"x'”" IIdMII) ((nEIII mll) )

(L5.4)



328 C. GUTENBRUNNER AND J. JURECKOVA

where [ - |db| denotes the integration with respect to the total variation of b
and ||bll7y denotes the total variation norm of b.

By Lemma 3, given ¢,7 > 0, there exists K > 0 so that P(I(K,¢) = 1) >
1 —n for all n; hence if for all K, E(I(K,¢)A,) = O(1), then A, = O,(1).
Regarding that, (1.5.3) and (L5.4) lead to (L5.1). Analogously, (L4. 3) leads to
(L5.2). O

LemMmA 6. Let v(A) = [,J(u)du be a positive measure. Then, under the
conditions of Theorem 3,

(L6.1) P{X?;diag(efni)xn singular) >0 asn-ow»
and, for Q, = (nd) " 'XZd X _ of (6.10),
(L6.2) Q,'= Q'+ 0,(n"1%).
Proor. We may take v as a probability measure, v(0,1) =J = 1. Put
(L63) Qn = _th‘ diag(an)X = Z Jnlxnzxnz

Then Q = Q,, if and only if Q is nonsmgular Q = Q,, otherwise. Consider-
ing x,,,x7;, = d,,; as a vector in R”*, we see that Q is of the type V%, Then,
using (L5.1) with

_ - 1 , 1o )
J=V(O’1) =1’dn=Qn’—E ”dnl" =—Z nz” ’
ni-1 ni-1

and regarding (B.4), we get
n 1/2
Qn_Qn=n—l/2( ( Z ) ) =Op(n_l/2).

Since Q = lim Q,, is nonsingular, we get (L6.1) and, moreover,

Q. =Q, +0,(0) =Q, + O, (n™?).

§|n—t

Denote

A -1
B, -(Q,- < 3lQ:7;

then |B,|l = 0,(n"'/?) and Q, = Q, + B, + 0,(0). Regarding (L6.4), (L6.2)
follows from the Taylor expansion

_ 118

lQ.+B.,)" - Q' + Q;'B,Q; | < 2IB, I’|Q; |

which implies Q;! - Q;! = Q;'Q, - Q,)Q;! + 0,(n™1). O
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