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AN OPTIMAL VARIABLE CELL HISTOGRAM BASED ON THE
SAMPLE SPACINGS!

By YuicHirRO KaNAZAWA
.

University of Tsukuba

Suppose we wish to construct a variable k-cell histogram based on an
independent identically distributed sample of size n — 1 from an unknown
density f on the interval of finite length. A variable cell histogram requires
cutpoints and heights of all of its cells to be specified. We propose the
following procedure: (i) choose from the order statistics corresponding to
the sample a set of 2 + 1 cutpoints that maximize a criterion, a function of
the sample spacings; (ii) compute heights of the % cells according to a
formula. The resulting histogram estimates a k-cell theoretical histogram
that stays constant within a cell and that minimizes the Hellinger distance
to the density f. The histogram tends to estimate low density regions
accurately and is easy to compute. We find the number of cells of order
n'/3 minimizes the mean Hellinger distance between the density f and a
class of histograms whose cutpoints are chosen from the order statistics.

1. Introduction. Suppose we construct a histogram based on an indepen-
dent and identically distributed sample X, ..., X, of size n from an unknown
density f on the interval I of finite length. A histogram f with an identical
cell width requires choice of (a, |C|), where a is the leftmost cutpoint and |C| is
the common cell width. Heights of the cells are then determined by counting
observations that fall in the cells. The cell width |C| is customarily chosen to
minimize the mean integrated squared error p( f, f) = E[[;,(f(x) — f(x))? dx]
to the density f over the sample. Scott (1979) showed that the cell width

1/3
IC| = [s/nflf'(x)zdx]

asymptotically minimizes p(f, f). The cell width, however, depends on the
unknown [; f'(x)?>dx. For a normal density f, it is 8.49sn~ /3, where s is
the sample stundard deviation. Freedman and Diaconis (1981) suggested that
the cell width of 2 X interquartile range Xn~'/3, Rudemo (1982) proposed the
cell selection rule (a, |C|) that minimizes

1| 2 n+1 [Ll{xiecj}r

ﬁ n—l_n—lz

j n

whose expected value is p(f, f) — [f(x)?dx. (Here C; is the jth cell [a +
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292 Y. KANAZAWA

(j — DICI, a +jIC|].) Stone (1984) extended this cell selection rule to multidi-
mensional dens1ty He showed that the cell selection rule is asymptotically
close to the minimum of p( 7, f) for a density on the interval of finite length.

Procedures for choosing a histogram with variable cell widths have received
relatively little attention, however. Kogure (1987) extends Rudemo’s rule to a
histogram with locally equisized cells. In this paper we propose a variable
k-cell histogram f,o that (i) accurately estimates low density regions where
lack of the observations makes estimation difficult; and (ii) is simple to
compute. We then study the proposed histogram.

To derive a variable cell histogram with these properties, we shall proceed
as follows: (i) compute a k-cell theoretical histogram g,o that minimizes the
Hellinger distance HD(g,,, ) = [{g,(x)"/? — f(x)'/*] dx toa density f over a
class of %-cell histogram-type densities g, that stay constant within a cell; (ii)
derive a histogram f,0 based on the sample that estimates g,0. The theoreti-
cal histogram g,0 depends on f but not on the sample. Examples 1.1 and 1.2
will illustrate how we actually compute the theoretical histogram for a particu-
lar density. Instead of the integrated squared error (ISE) adopted by Scott,
Rudemo, Stone and Kogure, we measure error by the Hellinger distance. The
Hellinger distance allocates larger weight to regions with low density relative
to ones with high density than the ISE. This enables our histogram to
estimate low density regions more accurately than the one based on the ISE.

We shall describe the two steps heuristically but with more details. First we
note the height &,

hj= [f———ljf(x)lﬂdxr f [f’if(x)l/zdxr xel,

J’

7] = 7] ’

of the jth cell I; of a class of k-cell histogram-type density g,
3 3
j=1 j=1

where |I;| is the width of the jth cell, minimizes the Hellinger distance to the
density f,

k 2
HD(g,, f) = Z,lfl[h}/? — f(x)1/2] dx.
J= J

This may be done by the method of Lagrange multipliers. The resulting
Hellinger distance HD(g,,, f) is

[, F 2 as]' |
]

k
HD(g,, f)=2-2 ¥

Jj=1

Let H and H® = 1/f be the inverse of the distribution function F of the
unknown density f and its first derivative, respectively. If we denote the
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endpoints of F(I;) by [p;, p; ], elementary calculation shows that

m & [poHO@ 2 du]” 1 b [f, () ds]

P(H,p) = Z -
( ) 4z jp;;,HHu)(u) du 4 E’l IZ;|

Let K =k + 1 be the number of cutpoints of the histogram-type density 8p- If

a set of K cutpoints p° = (p?,..., p2) max1m1zes P(H, p), then it minimizes
HD(g f ) For this set of cutpomts p°, we obtain a set of k-heights h® =
(RS, ..., h%) by substituting p° in a formula of h; above. Thus a pair (p° h°)

determmes the theoretical histogram g0

Second, to find the histogram f,0 that best estimates g0, we shall proceed
as follows: (i) construct sample-based analogs C(X,), ..., X(,_;,n) and &, ; of
P(H,p) and h;, respectively; (ii) find a set of cutpomts that max1m1zes
C(Xy - -» X(n—1),); (iii) compute &, ; for the set of cutpoints. We expect the
histogram f,0 constructed this way to converge to the theoretical histogram
&po- Now we need a sample-based analog C(X(l), .oy Xn_1ymn) of P(H,p).
Deﬁne the ith spacingas T; = X;, ) — X;), i = 1,...,n — 2, where X, is an
ith order statistic of an independent and identlcally distributed sample
X,,..., X, _, of size n — 1. The inverse of the probability integral transforma-
tion gives X ;) = H(Uj;)), where U,;, is the ith order statistic from an indepen-
dent and identically distributed sample of size n — 1 from the uniform [0, 1].
Let e,,...,e, be independent exponentials with mean 1 and set s, = X7_;e;.
From the well-known relation between the uniform spacings and standardized
exponentials e;/s,, we have

T, = (U(i+1) - U(i))H(l)(i/n) = eiH(l)(i/n)/3n~
Then for a criterion C(X,,, ..., X(,,_1), n) below, we obtain the following:

L [Eaen]
C(X(l),-..,X(n—l)’n) = ; 'Zl 2_—Il+nj+lT_
J= 13

i=n,

2
k [n—12i—=lntnl+lei1/2H(1)(i/n)1/2]
n T e HO(/m)

~
=

~P(H,p).

Jj=1

We can construct a sample-based analog 4, ; of A ; similarly.
We summarize the procedure to construct a variable k-cell histogram f,o:

Step 1. Find a set of K cutpoints (X, . .., X(,9,) that maximizes

1 3 [Z-—l+n1+1T1/2]
Z_l+nl+1T

Jj=1 i=n;

(1) C(Xgy---» Xu_1m) =
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Step 2. Compute the optimal height A% ; from the cutpoints in Step 1 by

2 [z—1n+nm+1T1/2]2

Z Z_l+nm+1T

m=1 i=n,

(2 SR

t=n;

Z t_-—ln+nl+1T 1/2
Boj= |

We note the criterion requires a class of k-cell empirical histograms f, with
the jth cell I,,;

k k
(k) - {f Fi(x) = 3 hoyfx €L} T bl Ly = Lk, 2 0
j-1

Jj=1

from which our histogram f,0 is chosen to have: (i) variable cell widths for the
cutpoints are chosen from X,,,..., X,y (il) a domain [ X;,, X, _;,].

The intuition behind the choice of criterion (1) is that the information on
the density is reflected in the spacings in such a way that regions with narrow
spacings tend to have high density, while ones with wide spacings tend to have
low density. Maximizing C(X,),..., X,_;,,n) is computationally simple
through the dynamic programming algorithm. For a description and an
example of the algorithm applied to C(X,,..., X, _;,n), see Kanazawa
(1988a, b).

The density f has to be smooth to substantiate the heuristic argument that
C(Xy ..., Xn-1pn) and P(H,p) are close. Also the theoretical histogram
gp0 has to be unique to establish the histogram f,0 converges to g,0. In
Kanazawa (1988a, b), we showed f,0 with the known number of cells con-
verges in probability to g,0 under the smoothness conditions A1-A3 on f and
the uniqueness condition Bl on g,

Al. F is twice continuously differentiable except for finite points.
A2. f is bounded away from 0 and .
A3. f’ is bounded away from .

B1. A unique choice of cells I sJ=1..., k, that maximizes
2
koL (%) dx
j=1 Jj

Some densities f that satisfy these conditions and their corresponding
theoretical histograms g,,0 are given below.

ExampLE 1.1. For a finite mixture of uniforms, the number and location of
cells of g,0 coincide with those of f. We obtain the minimal HD(g,, f) =0

ExampLE 1.2. Let f be a quadratic density f= 3x2/7 on I =[1,2]. For
- 8,0 with two cells, let the mid-cutpoint be x, where 1 <x < 2. The resulting
P(H p) o« [(x + 1)2(x — 1) + (2 + )2 — x)] has its maximum at x = 3/2.
Thus the two cells have equal width. In general for g,0 with £ cells, any two
neighboring cells have the same width and so all cells are of the same width.
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For a uniform density f on the interval I of finite length, a theoretical
histogram g,o with £ > 1 cells does not exist because any choice of cells that
covers the interval produce an identical P(H,p). This violates B1.

For a density whose theoretical histogram g,o has a correct and finite
number of cells as in Example 1.1, tonsistency of f,o with the known number
of cells to g,0 in Kanazawa (1988a, b) in principle warrants the validity of the
procedure, though the problem remains regarding how we actually identify the
true number of cells for the density. For smoother densities such as the one in
Example 1.2, however, there is no correct number of cells and we are forced to
determine the number of cells. As a global measure of error between a class
Z, (k) of k-cell histograms f, whose cutpoints are chosen from the order
statistics X;),..., X,_;y and the unknown density f, we use the mean
Hellinger distance between f,, and f

d(f,, f) = E[,’;( fn(x)l/z _f(x)l/z)z dx],

where E denotes the expectation with respect to the sample X,,..., X,,_,. We
note that the mean Hellinger distance to f is defined for f,, and not for £,
the %-cell histogram obtained by maximizing C(X,), ..., X,_1), n). The mean
Hellinger distance can be broken down into two components:

d(f,, ) = HD(g,, f) = 2E[(fo()"/* = 8,(x)"/*) f(x)"* dx,

where the first component on the right is the bias, the second the sampling
variation. Increasing the number of cells decreases the bias while it increases
the sampling variation. Given the sample size n — 1, we wish to know if there
is an optimal number of cells E for f. as a function of the sample size that
strikes the balance between these two components. We study this problem in
Section 2 and present the proof in Section 3. We impose a condition that
prevents a small number of cells from dominating the other cells on f,. We
also add a smoothness condition on f. Under these conditions we find the
number of cells £ = A(f)n'/3, where A(f) is dependent only on £, asymptoti-
cally minimizes the mean Hellinger distance d(f,, f).

2. Optimal number of cells. Given the sample size n — 1, we wish to
know if there is an optimal number of cells £ for f, as a function of the
sample size that strikes the balance between the bias and the sampling
variation. Let N; =n;/n and A; N (n;,y —n;)/n, where[n;, n; ] are the
indices of the cutpomts [X, o, v Xl of the Jjth cell of f We denote
L, =L, L;=X%, z/n—z and (i + 1)/n =i}. In addition to
Al-—A3 we need the following:

A4. f” exists and is bounded away from .
Cl1. For all A;N, where j = 1,..., k, and some constants C, and C°
0 o AN ¢ 1.
< —< — <
==
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An additional smoothness condition on the density is in A4. A constraint that
prevents a small number of cells from dominating the other cells on the
histogram is in C1. We note that the cutpoints of f, in Cl do not involve
maximizing the criterion (1) and are denoted by (X, ), ..., X, )) whlle those
of f,0 obtained by maximizing (1) are denoted by (X nOy - - 9,). We
present the theorem in terms of H'’s.

(ﬂK

THEOREM 1. Let the following conditions and C1 be satisfied:

AY. H(u) is three times continuously differentiable except for finite points.
A2. 0<m; <HMu)<M,<x0<uc<l.

A3. [HP(u)l <M, <o, 0<u<l.

A, HOw) <M;<»,0<u<l.

As n — », the number of cells k that minimize the mean Hellinger distance
between f, and f,d(f,, ), satisfies

k [ ™ ]1/3 1{Hm(u)”

773 " | 24(4 - m) HO(u)

As n — » the minimal d(f,, f) satisfies

1| H®(u) 2/3

: N ECEE
min d( f,, f)n??® - [T] fo[HT(u) du.

For a density in Example 1.2, £ /n'/3 converges to 0.64 and min d(f,, f)n?/3
converges to 0.26. Theorem 1 is derived from two propositions. The first of
these gives the mean Hellinger distance between f, and f.

ProposiTiION 1. Under A1-A4' and C1 we have

HO(N;)
HO(N))

1 k
(3) d(fn’ f)=j4_8’Z(AJN) ] +(——1)_+0(n—1k1/2)

Divide the domain [0, 1) of H(u) into M = 1/6 subintervals each of which
has length 8. Assume that for each m, 0 <m <M — 1, some N; = md. Let
k,, be the number of N, that falls into mth subinterval [m$, (m + 1)8). We
shall minimize (3) in three stages in the second proposition: first with respect
to A;N subject to the constraint that there are k,, cutpoints in the mth
subinterval; then with respect to k,, subject to the constraint that there are
K =k + 1 cutpoints in the interval [0, 1); finally with respect to %.

PrOPOSITION 2. Suppose that d(f,, f) is minimized with respect to
(A;N,k,, k). Under AI-A4" and C1 the number of cutpoints k,, in the mth
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subinterval as n — « satisfies

@) ko [H®(m&) /HD(ms)]
ko LM H®(ms)/HO(ms)]*”

2/3

Asn — o and 8 — 0 the number of cells k that minimize d(f,, f) satisfies

]; - 3 H(Z)(u) 2/3
n1/3 - [24(4_‘")] j;) H(l)(u) du

As n — o the minimal d(f,, f) satisfies

3(4 _ 77_) ]2/3 1[H(2)(u) 2/3
0

min )d( fou, FIN?3 > [ du.

(&N, kb 87 | HO(u)

Since H®/H® = —f'/f?, (4) implies that the mean Hellinger distance is
minimal if we take a small number of cells in a region with small change in f
and a large number of cells in a region with big change in f, provided that the
average values of f in the two regions are the same. The result of Proposition
2 holds without the constraint that the cutpoints include the set {m6: 0 < m <
M — 1}, since the change in d(f,, f) due to adding such cutpoints is O(8k~2).

Thus Propositions 1 and 2 imply Theorem 1.
3. Proofs. This section contains proofs of two propositions.

ProoF OF PropOsITION 1. Applying the height A, ; of jth cell in (2) to
HD(f,, f) =2 - 2L jhln/jz ;é‘n"f)“’ f(x)'/? dx gives the Hellinger distance
J
HD(f,, f)
(5) EiTil/zf;‘zf‘,{;f)“’f(x)l/z dx [ [ZiTil/z]z
J

2oL LT, LT,

1/2

Expand the components in (5) and express them in terms of independent
exponentials e, with mean 1 and s, = £7_,e;. Then we have

1 . n
T = 7 z e}/z[Hﬂ)(zn)l/Z + Rh.] =1z (Zy; + Wy)),
12 n 12 n

1 n
Z T, = . )y ei[H(l)(in) + Rzi] = ;‘(sz + Wy;),

n i

1 n
/X(n/rl)f(x)l/z dx = -S-— Z ei[H(l)(in)l/2 + R3i] = -S__(Zsj + W3j)’

(n)) n

where R,;;, R, and Rj; are, for c; € [U,), U;,y)); c; between U, and
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E(U,;) =i,; cg between i, and u,
R2i

1/2

" [HOG,) + Ry

.
‘ + HO®i )2’

. Ui+ — Uy
Ry = (Uyy — i, )H®(cy) + _%—()'H(z)(cl)’

HD(cg) " ?H®(c,)
R3i = 4

We rewrite HD(f,,, f) in (5) in terms of Z;; and W,; for [ = 1,2,3 as
HD(f,, f)

(6) (21 + W) (Zs; + W) (f_g)l/z[ (2, + le)z}l/2
J

[(Uisny = i8) + Uy — i) + n~.

=2-2Y
j (24 + Ws,) n Zy; + Wy,

From Lemma A.1 in the Appendix the maximal differences between Z, ; and
their expected values E(Z,;) are

max Isz - E(le)l = 0,(n*" V2 /27 1/2),

l<n,<nj,;<n-1
The maximal orders of magnitude for W, ; are easily obtained as

max Wi =0,(n "%k 'logn).

l<n;<n;, <n-1

We write Z;; + W,; in (6) with random variables ¢, = O,(n°k /%) as

(7) Z,;+ W, =E(Z,; + W,;) + &,;(nk) "%,
Abbreviate E;, = E(Z;; + W,;) and use (7), then HD(f,,, f) in (6) is
s, \1/2 1/2
(®) HD(fn,f)=2—2ZN(j)/(;) DL
. J J
where

_ [E1 + §1j(nk)_l/2”E3 + fsj(nk)_l/zl

M) E, + fzj(nk)_l/z

)

_ [El + §lj(nk)—1/2]2
- E, + fzj(nk)_l/z

D(J)
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We rewrite © ;N(j) and ¥ ;D(;j) in (9) in the following form:
Y N(j) =Ex+ ¥ No(J) + X Ny(J) + Oy(n® 3/~ 3/241/2),
J J J

¥ D(j) = Ep + £ Do(j) +'L Dy(J) + Oy(n¥ =32k =%/241/2),
J J J
where Ey = ¥ [E,E;/E,] and Ej, = ¥ [E}/E,] are O(1); Ny(j) and Dy(;)
with means 0 from (8); Ny(j) and D,(j) w1th means to be estimated,
. [ Eg E\Eq E, —1/2
No(J) = _E_zfu - E—zzfzj + E_zfsj (nk) )

[ 2E, E?

Dy(Jj) = 'Ez—glj - E_22§2j (nk)_l/za

[ §1j§3j
| B

. [ £2 2E E? _
Dy(Jj) = El; gfufzﬁE—;gzj](nk) "
2

. E, E, E\E, , S
N1(J) = - ““fl,fzj Ezgfzjfsj + Ffzj (nk) s
2

We calculate HD(f,,, f) in (9) in terms of Ey, E;, N,(j) and D,(j) as

1 1 1
HD(f,, f) =2 - 2EyEp'?|1 + E‘Z No(J) = 55~ L Do(J) = 5man ™'
e -

D j

3 2
7 T NG) - 75, T2 * 553 [Z D()|
: 7|2
(10)

L No(1) Z Do()) - . ~ ¥ M)

2ENED -

nzn—l/Z
+ Z DO(J) + Op(n3e—3/2k—3s/2+3/2) ,
4E,

where 7, is L?_,(e; — 1)/n; e; are independent exponentials with mean 1. We
shall first evaluate means of the components in (10) separately and later put
them together to obtain the mean Hellinger distance. From Lemmas A.2-A.4
in the Appendix, the quantities E, and E; are computed as

712 H‘Z)(Nj)z . o053
(1) By= T |1 g B (M) 1 007 + 06,
sHO(N,)’ 1 -
(12) ED 4[1——2( y )W +0(n )+0(k 3).
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From (11), (12), Lemmas A.2-A.4, we obtain

1 s HO(N,)

(18) EnEp'?=1-—3% (A,N)'——L5 + O0(n™Y) + O(k9).
96 7 Y H(D(Nj)2

From (7) and (8), the expected value of §1j€mjforl+m,l,m=1,2,31is

From conditions A1'-A4’, the means, variances and covariances of the remain-
der terms W,; are easily obtained as

max_|E(W,;)|=0((nk)™"),

l<n,<n;,;<n-1

max V(W) = O(h " '%"2),

l<n,<n,;;<n-1

max Cov(Z,;,W,,;) < O(n"'k~%%),

l<n,<n,,,<n-

max Cov(W,;,W,,;) <O(n""k"2).

l1<n,<n,,;<n-1
From definition of N(j) and (14) the expected value of N,(j) is
Cov(Z,;, Z3;) B E(Z3;)Cov(Z,;, Zy;)

(15)

E[Nl(j)] =

E(Zy;) E*(Z,;)
E(Z,;)Cov(Zy;, Zs;) E(Z,;)E(Z5;)V(Z,;)
- E*(Z,;) E%(Zy;) ’

neglecting terms in W;; in view of (15), and Lemmas A.2 and A.3. Evaluating
each component in E[N,(j)] separately and applying Lemma A.4 obtains
w/ W HON)

1
E[NI(J)] = ;H(A‘IN) H(U(N,)z + O(n_lk_1/2)

(16)
=0(n k172,
From definition of D () and (14) the expected value of D (;) is
E[D,(j)] - V(2,) _ 2E(2,,)Cov(Zy;,Zy;) | EX(Z,))V(Z))
' E(Z,)) E*(Z,;) E%(Zy;)

neglecting terms in W,; again for the same reason as in E[N,(j)]. Evaluating
each component in E[D,(j)] separately and applying Lemma A.4 obtains

LHO(N,)?

+O(n %12
aom,)E| )

1 T T
E[Dy(J)] = ;[(1 - Z) + 56 (4N)
(17)

1 T
_ (1 _ " ~1,-1/2
n(l 4)+O(n k%),
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Expected values of the rest are easily obtained by
2
E[Z Do(j)] - 0(n),
J
(18) Blnn 2 £ ()| = 07,
Jj

5 ssj(rzg‘“
2

J

E = O(n"2k3).

The last expectation in (18) is on the terms of order O,(n® ~3/2k~3¢/2+3/2) in
(10). The terms X ;Dy(j)X ;No(j) and nyn 1/ZZJD (J) can be handled simi-
larly. From (11) and (12), d1v1d1ng (13), (16), (17) and (18) by EgEfS where
a, B = 0,1,2 does not alter their orders of magnitude. Proposition 1 follows by
putting these equations together in (10). O

ProoF oF ProPOSITION 2. Since H® is continuous, d(f,, f) in (3) is

1 M= H®(m$s)*
d(fur ) = 15 Z )» (AjN)sH—(—m_)

(19) m=0 ms<N;<(m+1)é (1)( 8)
+(i - 1)f + O(8k™2) + O(n"'k'/?)
T n ’

The first term in (19) is of O(%~2); the second term is O(n~'k); asymptotically
these two terms are larger than the other terms, provided that & is small. Let
d'(f,, ) be the first two terms in (19). First we minimize d'(f,, f) with
respect to A; N subject to the constraint that there are k,, cutpoints in the
mth sublnterval [mé,(m + 1)8). Since [H‘z)(mﬁ)/H(”(m(S)]2 > 0, we only
minimize ¥ 5. N <(m +15(8;N)? with respect A;N subject to the constraint
that ¥, _x, <(m+1)5AJN & to obtain

mind'(f,, f) = = 1

a;N) 48 2 k% HO(ms)?  \7 n’

1 M-1 53 HO(ms)? k
e (2t

Second, we minimize min, N)d (f,, f) with respect to k,, subject to the
constraint Y ¥-3k =K to obtain

r 3

1 (M1 [HO(ms) |”° 4 k
. , _ 22 _ 112
(Af?vl’rzm)d (fur 1) 48 Z HY(ms) k% + (77. 1) n

~ L H(z)(u) 2/3
T 48 fo HY(u)

’ 4 k
du} k2 + (— - 1)— + O(8k72).
™ n
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The minimum is achieved at
[H®(m8)/HP(ms)]
SMLH®(ms)/HO(ms)]

2/3

m

2/3 /-

Finally we minimize min , v, ,d'(f,, f) with respect to & to obtain

. 1/3 L H(Z)(u) 2/3 )
e WA

With this E, we have

3(4 —m) 1% A[H®(u)]?
in d'(f,f)=|—" — | gun-2/3,
(AJI{II}}en,,,,k) (fn: 1) [ 87 ] o | HY(u) “n

Since we have neglected smaller order terms, the result follows as n — » and
6—0.0O

APPENDIX

Lemma Al. For Z,;,1 =1, 2 and 3,
max |le - E(le)l = Op(ns—I/Zk—e/z—l/z)‘

l<n;<n,, ;<n
Proor. The Markov inequality for an integer M and a real A > 0 is
1 oM
(20) Pr{|zzj—E(zzj)|2A} < A—2M-E|zzj—E(zzj)| .

For independent random variables Y;,...,Y, with mean zero and for an
integer M > 0, the following inequality holds [Whittle (1960)]:
2M 3M M
2 2M + 1\[ »
< ot (T )| 2, (e |

V) .
i=1
Apply (21) to Z,; — E(Z,;) with A2’ and C1, then (20) is

n

LY,

i=1

(21) E

1
K(M)nMp=—M,

Pr{lsz - E(sz)I = A} < A2M

where

, 2 oM +1
K(M)=wl/2r( 5

We obtain 1 + [["Cyn]/k <n, <1+ [1"C°n]/k by applying the constraint
"in C1 repeatedly from j = 1 through /== — 1. Hence for any [, there are at
most [7(C° — Cy)n/k possible choices for n,. Given this n,, there are at most
(C° — Cy)n/k possible choices for n,, . Since I = 2, ..., k, there are at most

)Mer(zM +1)(cH™.
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(C° — Cy)?n?/k possible choices for a pair (n;,n;,,) and

(C° - Cy)’n?
Prf, max |2 B(zy)| 2 4) s =

Hence for ¢ = 1/M,
max |Z2j - E(sz)I = Op(ns—l/2k‘—s/2—1/2).

l<n,<n;, <n

Pr{|Z,, — E(Z,;)| = A}.

L]

Apply the same procedure for i = 1 and 3. O

Lemma A2. For la| < |x|/2, 16l < lyl/2, lc|l <l2|/2, x # 0, y # 0 and
z#0,

b

Y

c

4

a

X

(x+a)(y +0) Xy

xy
(z+c¢) z =7 P

2

+—|+

LEMMA A.3. For |a| < |x|/2, |bl < |yl/2,x + 0 and y + 0,

fi-]

X a

X

x+a X

<
Y

Y

y+b oy

Proor. Algebra. O

LEmMmA A4. For a,B,y,6 € £,
[£. 250G, 2,596, £ 580G,)Y)

[£. B0
+ 3B + 4y — 26
= H(l)(]vj)(a+3[3+4'y—28)/2(nj _ njﬂ)aw”_'s[l + o B 4 v
1 H(Z)(Nj) 1 ' 2H(3)(C,~j)
X[(A"N ) Z)H‘”(N,-) Yo, & G N) ey
H®(N;)?
+0(a,B,7,8)(A;N)*———2% + O((nk) ") + O(k™3) |,
(a,B,7,8)(4; )H(l)(Nj)z ((nk)™7) (k73)
where
a(8a — 7) + 3B(9B — 5) + 16y(3y — 1) + 128(4 + 1
®(a’377,6) = ) 96 ) )
, (38— 28) + 68(2y — ) + 4y(a — 20)
16 :

Proor. Calculus. O
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