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OPTIMAL DESIGNS FOR COMPARING TEST TREATMENTS
WITH A CONTROL UTILIZING PRIOR INFORMATION!

By DiBYEN MAJUMDAR
University of Illinois, Chicago

Bayes A-optimal designs for the one-way and the two-way elimination
of heterogeneity models and optimal I'-minimax designs for the one-way
elimination of heterogeneity model for experiments to compare test treat-
ments with a control are given. Properties such as robustness, of these
designs are studied. Optimality results are derived in the exact theory
setup.

1. Introduction. We consider the problem of comparing a set of v test
treatments with a control. Such a problem arises, for example, when a set of
new treatments is to be compared with a standard treatment, or one that has
been in use for some time. Our objective is to obtain optimal and highly
efficient experimental designs utilizing prior information. A major portion of
this article is devoted to the Bayesian approach. I''minimax strategies are also
investigated. Two models are considered: the one-way elimination of hetero-
geneity model, which is appropriate for block designs, and the two-way elimi-
nation of heterogeneity model, which is appropriate for row—column designs.

Owen (1970) was the first to derive Bayes optimal designs for comparing
test treatments with a control. He considered the one-way elimination of
heterogeneity model. Giovagnoli and Verdinelli (1983, 1985) and Verdinelli
(1983) have also contributed significantly to this area. Smith and Verdinelli
(1980) investigated Bayes optimal designs for the zero-way elimination of
heterogeneity model and Toman and Notz (1991) investigated Bayes optimal
designs for the two-way elimination of heterogeneity model.

All of these approaches are in the setup of approximate design theory,
wherein the discrete optimization problem involved in finding an optimal
design is replaced by a continuous version. For example, in the block design
setup the nonnegative integers n,; (= number of times treatment i occurs in
block j) are allowed to be real numbers. This is done primarily for mathemati-
cal tractability. Researchers using this approach have produced strong theo-
rems applicable to large classes of prior distributions.

A characteristic of optimal approximate designs is that these designs may be
applicable only after ‘“rounding off”’ of some quantities to nearby integers,
thereby introducing inaccuracies. Moreover, the available theory cannot be
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applied to some types of experiments. For instance, all known optimal block
designs satisfy

n,; = --- =n,; foreachblock ;.

J vj

Hence they are not directly applicable to situations where the block size is less
than the number of treatments, that is, incomplete block experiments, which
are often encountered in practice, and consequently constitute a major area of
interest for researchers in design theory.

In exact design theory, on the other hand, the integer variables are not
extended to include real numbers in their domain. The optimization problem is
more involved here. It is extremely unlikely that one method which solves the
problem for all priors can be developed. In this article we derive exact optimal
designs for subclasses of priors which are rich enough to be quite widely
applicable.

Exact Bayes optimal block designs for a very special type of prior were given
in Majumdar (1988). We give more details on this in Section 3. Recently,
Stufken (1991) has identified some elegant families of Bayes optimal designs
for this class of priors.

Our study of the properties of exact Bayes optimal designs has produced
strong evidence that these designs are quite robust against certain departures
from the specified prior distribution. Robustness of designs over priors is
certainly a very desirable property. DasGupta and Studden (1991) have investi-
gated robust optimal designs—though not specifically for control-treatment
comparisons. The reader may also refer to Chaloner (1984) for general results
on Bayes optimal designs and to DasGupta and Studden’s paper for more
references on Bayes optimal designs.

There is considerable literature on optimal designs for comparing test
treatments with a control from a frequentist viewpoint—a brief survey is
given in Hedayat, Jacroux and Majumdar (1988).

Notation, definitions and criteria for optimality are established in Section 2.
Section 3 gives optimal block designs, including Bayes optimal designs and
optimal I'-minimax designs. Robustness and other properties of these designs
are investigated in Section 4. In Section 5 we give Bayes optimal row-column
designs. Some concluding remarks are given in Section 6.

2. Preliminaries. We start by giving Owen’s (1970) formulation of the
optimal design problem for treatment—control comparisons from a Bayesian
viewpoint. Let 2 be the set of all designs under consideration. For a design d
in 9, let Y be the vector of observations and suppose the model is

(2.1) Y=X.,0+X,y t+e,

where 0 is the vector of parameters that we wish to estimate, v is the vector of
nuisance parameters and ¢ is a random vector of errors. X, is a known matrix
and X,; is a known matrix which depends on the design. Suppose

Y0,y ~ N(X140 + X,,, E),
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while the prior is given by

*
(5)~n((2) (% 3)

The posterior distribution of 6 is

0lY ~N(M,, D,),
where
(2.2) D;'=X,,(E + X,BX}) " 'X,, + B*!
and

D;'M, = Xi4(E + X,BX;) (Y = X,p,) + B* 'y,
Under squared error loss L(8,6) = (6 — 6Y(6 — 6, the Bayes estimator of 8

is § = M, with expected loss tr.D;. Owen’s optimal design d* is given by
(2.3) tr Dy« = géi_rétr D,.

d* is called a Bayes A-optimal design, since (2.3) is a natural extension of the
definition of A-optimality to the Bayesian setup.

Next, we introduce some notation. Z,(v + 1, b, k) denotes the set of all
(exact) designs in b blocks of size k each, based on v + 1 treatments. Z,(v +
1, ¢, r) denotes the set of all (exact) designs in r rows and ¢ columns, one
observation per cell, based on v + 1 treatments. The treatments are labeled
0,1,...,v, with 0 as the control. For d € Z,(v + 1, b, k), let

ng4;; = number of occurrences of treatment i in block j,

b
ra; = ) Ng;j, the replication of treatment i,
j=1
and for i # 7/,
b
Agiy = Z NgijRaij-
j=1

BIB(v, b, r, k, A) denotes, as usual, a balanced incomplete block design, that is,
a design in 9(v, b, k) with

rdi =r and Adii' = A fOI‘ all i * i’.

Pearce (1960) and Bechhofer and Tamhane (1981) noted that a special class
of designs—called designs with supplemented balance by Pearce and balanced
treatment incomplete block (BTIB) designs by Bechhofer and Tamhane—
possesses desirable properties for control-treatment comparisons. These de-
signs can be defined as follows.

DErFINITION 2.1. A design d in 9(v + 1, b, k) is a BTIB design if
Agor = """ = Agoys
Agig = """ = )‘dv—l,u'
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The Fisher information matrix for control-test treatment contrasts is com-
pletely symmetric if the design is a BTIB design [see Bechhofer and Tamhane
(1981)]. A particular type of BTIB designs given below is important for us.

DEeFINITION 2.2. A design d in (v + 1, b, k) is a BTIB(v, b, k; ¢, s) if d is
a BTIB design with the property:

ndije{()’l}’ i=1,...,U,j=1,...,b,

Ngor = """ =Ngos =1,
Rgose1 = °'° =nNgop =1t + 1, respectively.

The notation BTIB(v, b, k;t, s) is due to Stufken (1987).

Several authors have shown that certain BTIB(v, b, k;¢,s) designs are
highly efficient, and indeed optimal according to criteria that do not involve
prior knowledge. Construction of these designs has been studied too, though
not as extensively. The reader is referred to Hedayat, Jacroux and Majumdar
(1988) for further information and references.

3. Optimal block designs. Suppose the experimental units are grouped
into b blocks of £ homogeneous units each, on which the v test treatments are
to be compared with a control. If treatment i is applied to plot p of block j,
then the model for the observation y;, ;, is

Yijp =K + 7+ B+ &,
where u is a general effect, 7 a treatment effect, B a block effect and ¢ a

random error. Let

0, =1, — 7, i1=0,1,...,v

'YJ=,U«+70+BJ, j=1,...,b.
The parameters 6, ..., 60, measure the performances of the new treatments
relative to the standard treatment, and the parameters y,, ..., y, measure the

performances of the standard treatment in the b blocks.
Then the model can be written as

Yijp =0 + vt &jp

Let Y=(...,¥1ps +e»--»Yigpsr++vs--+r > Yipps ---) be the bk X 1 vector
of observations written block by block Recall that _@l(v + 1, b, k) denotes the
set of block designs. For d € 9,(v + 1,b,k), let X;; be a bk X v matrix
which has a 1 in cell (I,7) if the observation number [ receives treatment

number i,i =1,...,v, or 0 otherwise. Let
1, O 0
0o 1, 0
X2 = N b
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a bk X b matrix, where 1, is a £ X 1 vector of 1’s. In matrix notation the
model has the same form as (2.1), viz.,

Y, =X,,0 + Xyy +&.

In subsequent discussions we assume the following properties for the
distributions

5.1) Var(e;;,) =02, Cov(e;;,,&y,,) = 02w forp +p/,
’ and Cov(s,,, £yyy) = 0?my for j #j,

(3.2) Var(y;)=0? and Cov(y;,v;) =0c%p forj+j,

(3.3) Var(9;) = o%; and Cov(6;,6,) = 0%,

fori #1i',i,i'€{1,2,...,v}.

We are, in effect, working in a setup that has exchangeability-type condi-
tions on the random variables. Note that for the designing problem we do not
need to impose any restrictions on the prior expectations.

The specialization of the model given by (8.1)-(3.3) is rich enough to
accommodate many realistic priors. Consider, for instance, the situation where
w, s and B,’s are all identifiable and independent, {ry,..., 7} are i.id. and
{B1,..., B, are i.i.d. Here (3.2) and (3.3) hold with p > 0 and &, > 0. Relaxing
conditions (3.1)-(3.3) is not an easy task; this will be attempted in the future.

It is not very difficult to show that, under (3.1) and (3.2) and the regularity

conditions,
34 T <1, 6(L-=p) +(my —my) #0,
(3-4) 1—-m,+ k(7w —my) + k6(1 — p) + bk(my + 8p) # 0,

the inverse of the posterior covariance matrix D; ' given by expression (2.2)

reduces to
35 TPt~ Disg(ru e - (b4 @) NN
’ —qryry + o?(1 - 71'1)B*—1,

where
a=(1-m)[8(1—p)+ (m —m)] ",
1= (1—m)(my + 8p)[1 = 7y + k(my — 73) + k3(1—p)]

X[1 =7y + k(my — my) + k8(1 — p) + bk(my + 8p)] ',

Ny = (ndij)i=1 ,,,,, v, j=1,...,b0 83U X b matrix,

which is the usual treatment-block incidence matrix without the row corre-
sponding to the control, and

rd = (rdl,...,rdv)l.
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REMARK. In the special case where the errors are homoscedastic, =, =
my = 0, the expression (3.5) reduces to

0Dyt = Diag(ras,- -, 7a,) = (k + 8711 = p) ") N,
—8p(1 + k8(1 — p)) (1 + k8(1 — p) + bkdp) ‘ryry + o2B* 1.
In addition, if p = 0,
o2D7' = Diag(ryy,...,r4,) — (k + 8~ 1) 'N,N} + 02B* 1,
If the prior information on 6 is vague, B**~! = O,
o2D;! = Diag(ry,...,rs,) — (k+ 81 'N,N,.

When the prior information on vy is also vague, § = 0;,

02Dy = Diag(ryy,...,ry,) — k7 IN,NJ,

which coincides with the Fisher information matrix for the treatment—control
contrasts. The optimality criteria used in Majumdar and Notz (1983) was
based on this information matrix.

We assume that

(3.6) 2<k<v.

Thus we are in the incomplete block setup. To state the first theorem of this
section, we need some more notation. Let

e=(1-m)(6- &) e=(-m)(E+ (v - 1)
For nonnegative integers ¢ and z,let T =bq — z, S = bq® — 2qz + 2,
g(g,2) =v(v - D}k +a)[((v—-1)(k+a) —v)T+8
+u(v — 1)(k + a)e]
+u(k +a)[(k+a)T —n(k+a)T? =S +v(k +a)ey] ',
A={(g,2):qg=int[3(k +a+1)/(bn(k +a) +1)] +1,...,k;
z=0,1,...,b},

where int[-] is the greatest integer function. The function g(gq,z) equals
07 %(1 — 7)) *tr D, and the quantities T and S equal T, and S, (to be
defined later) respectively, when d is a BTIB(v, b, k; k£ — ¢, 2).

- THEOREM 3.1. Suppose the conditions (3.1), (8.2), (3.3) and (3.6) hold and
further

(3.7 1>, >m,, e+ 8p =0, £, > 0.
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Case 1. 3(k + a + 1)/(bn(k + a) + 1) <k.

Let g(qo,2,) = min{g(q, 2): (¢,2) € A}. Then a BTIB(v, b, k; k — q,, 2,) is
Bayes A-optimal in 2,(v + 1, b, k).

Case 2. 1(k + a + 1)/(bn(k + @) + 1) > k.

Then a BIB(v, b, r, k, ) in the test treatments is Bayes A-optimal in (v +
1, b, k).

ReMarx 1. (8.7) is a technical condition which we need to prove the
theorem. It is not clear to us whether the results hold even when (3.7) is false.
Since the matrix B is positive definite, p < 1; hence (3.7) ensures (3.4). The
condition 7, + 8p > 0 means that (y,; + ¢,;,)’s are positively correlated and
&, > 0 means that 6,’s are positively correlated. The condition (3.7) holds, for
instance, when {7,,...,7,} are i.id. and {B,,..., B,} are iid, u, 7,’s and B,’s
are independent and 1 > 7; > 7, = 0.

REMARK 2. In case m, + 8p = 0, the condition for Case 2, viz., £ + a +
1 > 2kbn(k + a) + 2k holds if and only if

§<(1—km)(k—-1)""
In case 7, + 8p > 0, the condition holds if and only if
bka(my +8p)(a+k—-1)<(1—m)(k+a)(a—k+1),
for which it is necessary that
8(1—p)<(1—km)(k-1)""+m, and 8p < (1 —m)(bk) " —m,.
These two inequalities imply
d<(1—km)(k—1)""+ (1—m)(bk)™".

It follows, therefore, that we are in Case 2 when the prior information on the
performance of the control has very little uncertainty (6 small). In the case
ms + 8p > 0, an alternative interpretation is that the available number of
experimental units is small (b small). When this is the case, the theorem states
that, for the model and the criterion under consideration, a BIB design in the
test treatments is optimal; all information on the control is to be derived from
the prior. In actual practice, however, there may be other, overriding factors
against not allocating any experimental unit to the control.

ProoF oF THEOREM 3.1. For any d € 2,(v + 1,b,k), we show that
o721 — m) " tr D, > g(q,, 2,), With equality when d is a BTIB(v, b, k; & —
o, 2¢)- Here is an outline of the proof.

The first step is to note that, by ‘‘averaging” over all permutations of the
test treatments 1,...,v, we get

o021 —m) 'trDy2 (v=-1)(P+e) '+ (Q+e)
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where
1 1 b v 1
P=-T,-

v @ (v—1)(k+a)Z § 44 v(v—1)(k+a)Sd
v

_ 2 . M e

v—1 Elrd”’ v(v—-1) Ta

1 1

=——T —_ —
@ v ¢ v(k+a)Sd v v
b v
th,» Sd=zt¢21ja td‘=2ndij’ Jj=1,...,0b.

Next observe that since /v < 1, L}_ing;;/v < L Hence
Ji‘,l Eln?ﬁj > T,, equalitywhenng,; € {0,1},fori=1,...,v,j=1,...,b.
Also

:, rk > Tsz, equality when ry; = -+ =rg,.

Combining these facts with the inequalities & > 0 and n > 0, which follow
from (3.7), we get

o 2(1—m) "trDy; > (v—1)(P,+e) ' +(Q +ey) T,

where P, = (v "' = (v — D"k +a) DT, + v (v — Dk + a)'S,. Let us
write

(v=1)(Py+e) " +(Q+e)  =&dTsSa),
a function of 7, and S,. It can be shown, using the fact e; > e,, which is a
consequence of (3.7), that

J
E_S_dgl(Td’ Sq4) 2 0.

This implies that, for fixed T, g,(T;, S;) is smaller when the ¢;;’s are chosen
such that |t,; — ¢, < 1. Thus g(T,, Sy) > g(q,2) with ¢q = 1nt[Td/b] + 1,
z2=0bq - T, The rest of the proof follows once it is noted that, for a fixed ¢ in
[0, 5 (k + a + 1)/(bn(k + a) + 1)], the quantities (v — 1Nk +a) — )T + S
and (k + a)T — n(k + a)T? — S are each nonincreasing in z and hence g(q, )
is nondecreasing in z, hence the theorem. O

JExampLE 3.1. Let v=17, b="7 and k =5. A BTIB(7,7,5;1,0) is Bayes
A-optimal when 7; = 0.2, m, = 0.1, p = 0.5, {;, = 1.64 and &, = 0.57. The
design BTIB(7,7,5;1,0) can be constructed by augmenting each block of a
BIB(7,7,4,4,2) in the test treatments by one replication of the control.
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Writing columns as blocks, an example of this design is

0 0 0 0 0 0 O
3 4 5 6 7 1 2
5 6" 7 1 2 3 4.
6 7 1 2 3 4 5
7 1 2 3 4 5 6

If we change ¢, and ¢, to £ = 0.806 and &, = 0.706 but keep the values of all
other parameters unchanged, then a BTIB(7,7,5;2,0) is Bayes A-optimal.
This design is a BIB(7, 7, 3, 3, 1) augmented by two replications of the control
in each block. It can be written as

AN~ O O
W N OO
D WO O
SN OURO O
HOOMMO O
NIOOoO O
WHJOoO O

This example serves to illustrate Theorem 3.1. As a matter of practical
application, however, it is more useful to identify a design which is highly
efficient, if not actually optimal, for a large set of values in the range of the
parameters. Based on our experience thus far, we believe that a Bayes optimal
design of Theorem 3.1 possesses such a robustness property. More detail will
be provided in the next section.

We turn our attention to optimal I'-minimax designs. Instead of the ex-
changeability conditions (3.2) and (3.3), suppose the prior belongs to the wider
class

(38) TI'={B,B*:0%,I<B<0¢%,I,0%,] <B*< o’y 1},

where “ < is with respect to the nonnegative definite, or Léwner, ordering.
From expressions (2.2) and (2.3) it is clear that, for a design d, the risk of the
I'-minimax rule [cf. Berger (1980), page 134] is given by tr D,(I'), where

3.9 DyT) ' = X}y(E + 0%, X,X}) "X, + 0%,
d 1d M“22432 1 M

An optimal I'-minimax design can be defined as one that minimizes this risk,
that is, d* given by
tr Dy«(T) = Min  tr Dy(T).
a+(T) de Dv+1,b, k) a(l)

Priors similar to those given by (3.8) have been considered by DasGupta and
Studden (1991). The class T is very general since the only restriction in it is a
bound on the spectrum of the prior covariance matrices. As a matter of fact, it
follows from (3.9) that, for our purpose, the lower bounds 0, and £, can be

taken to be 0 without any loss of generality.
The following theorem is immediate.



OPTIMAL DESIGNS UTILIZING PRIOR INFORMATION 225

THEOREM 3.2. Suppose the conditions (3.1) and (3.6) hold and 1 > 7, >
my 2 0. Suppose T is given by (3.8). An optimal T-minimax design is given by
Theorem 3.1 with

p=£§&=0, 0=0y and ¢ =¢y.

The test treatments in some applications are new, untried treatments, while
the control is a standard treatment. The prior information on 6, = 7, — 7,
i =1,...,v, may be sufficiently vague in these experiments to imply &, = .
In addition, let us assume, for simplicity, that the errors &; jp are homoscedas-
tic (7, = m, = 0). I''minimax designs for this special, but nevertheless impor-
tant, case may be derived from Theorem 3.2. These designs coincide with
Bayes A-optimal designs for homoscedastic errors (7; = 7, = 0), vague prior
on 6(B*'=0) and B = 02I. We studied this special case in Majumdar
(1988); indeed, Theorem 3.1 can be looked upon as a generalization of Theo-
rems 2.1 and 2.3 of Majumdar (1988). To aid in the study of robust designs in
the next section, we restate the result for this case, using a slightly different
notation, in Corollary 3.1. Let

A(8) ={(q,2):q =int[(E + 1+ 871 /2] +1,...,k;2=0,1,...,b},

A=(k+8 )", C=v'l-Aw-1)"' E=A‘(v-1)""L
T=0bq —zand S = bqg? — 2qgz + 2, as before, and
f(q,2;8) =v(T —AS) ' + (v - 1)(CT + ES) "

COROLLARY 3.1. Letv >k > 2 and E = o*I. Define d, as follows.

@ If (k+1+861/2 <k, then d, is a BTIB(v, b, k; k — q, 2,), where
1(qo, 29; 8) = min{ f(q, 2; 8): (q, 2) € A(5)}.

G) If (k+1+6Y)/2>k, thend, is a BIB(v, b, r, k, A) based on the test
treatments only.

Then d,, is an optimal T-minimax design for T = {B, B*: B < ¢20I, B* ! =
0}, in 9(v + 1,b, k); d, is also Bayes A-optimal for B = o261, B* "' = 0O, in
(v +1,b, k).

4. Robustness and approximation. The study of robustness is very
important since, as Berger (1980), page 129, puts it, “the main worry is that,
in a Bayesian analysis, one could be led, by an inadequate description of prior
beliefs, into making a bad decision.” Efficient designs that are robust over
priors will be very useful; a practitioner may be quite willing to give up some
efficiency to ensure against departures from the assumed prior. This is pre-
cisely what DasGupta and Studden (1991) do. They determine the most robust
design among designs that are at least 100(1 — )% efficient.

Even though our method is different, our goal is the same, that is, to
identify designs which are robust and highly efficient. We would like to obtain
a finite partition of the parameter space of the prior distributions such that,
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for each set in the partition, there is one design which, at each point, is
optimal or at worst 100(1 — £)% efficient for a small &. As a first step we
intend to study how much perturbation in the prior parameters can be
introduced before an optimal design ceases to be optimal.

There is another problem closely related to robustness. Suppose, for a given
set of prior parameters, an optimal design is unknown, that is, it cannot be
obtained from Theorem 3.1 or Theorem 3.2. Do any of the known optimal
designs, perhaps one with a slightly different set of values of the prior
parameters, provide a good approximation? We shall consider both problems
simultaneously.

The presence of several parameters and the complicated structure of the
functions g in Theorem 3.1 and f in Corollary 3.1 makes the problems of
robustness and approximation very difficult; indeed ‘a proper treatment of the
problem in its generality is a major research project by itself. We will initiate
this research by establishing some interesting properties of Bayes and TI-
minimax optimal designs. This will enable us to partition the range of the
prior parameters and establish robust optimal designs for some sets of the
partition. For the remaining sets, these results along with the detailed study of
an example will indicate what the robust efficient designs are most likely to be.
Since it is technically very difficult to tackle this problem when there are
several parameters, we shall consider the simplest situation, that is, the setup
of Corollary 3.1 which contains only one parameter 8. This will also enable us
to interpret the results easily and will serve as a first step toward solving the
more general problem. Even in this setup the problem is fairly complicated.

We will examine the robustness and other properties of optimal Bayes and
I'-minimax designs given by Corollary 3.1. For the rest of this section we adopt
the notation of Corollary 3.1.

LemMA 4.1. Given v, b, k and &, suppose (k+1+8-1)/2 <k and q €
{intf(k + 1+6"1/21+1,..., k)

(i) For each fixed q, there exists z* € [0,b], a function of q, such that
f(q, 2; 8) decreases with z when z € [0, z*] and f(q, 2; ) increases with z when
z € (2*,bl. If z* = 0, then f(q, z; 8) increases with z in [0, b] and if z* = b,
then f(q, z; 8) decreases with z in [0, b].

(i) (@) For g € {intl(k + 1+ 67V /21+ 2,...,k}, f(g,b - 1;8) < f(q, b; )
implies f(q —1,0;8) <f(q — 1,1;8). (b) For q € {int[(k + 1 + 61)/2] +
1,...,k —1}; f(q,1;8) < f(q,0;8) implies f(qg + 1,b;8) < f(q + 1,b — 1,9).

When 6 = », Lemma 4.1(1) reduces to Lemma 2.2 of Ture (1982) [also
reproduced in Lemma 2.2 of Hedayat and Majumdar (1985)]. Moreover, when
8 = », Lemma 4.1(ii) reduces to Lemma A.2 of Cheng, Majumdar, Stufken and
Ture (1988). The proof of Lemma 4.1 needs no new techniques beyond those
used to prove Ture’s and Cheng, Majumdar, Stufken and Ture’s results and,
indeed, follows along the same lines. We omit the details.
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Let r,=0bk — bg + z. As functions of ry,q = int[(bk — ry)/bl+ 1; z =
bg + ry —bk, T=0bk —ry, S=(bint[T/b]+ b — TXint[T/b]D? + (T —
b int[T/b])int[T /b] + 1)2. So we may write

f(q,2;8) = f*(ry;8).
The range of r, as (g,2z) varies in A(8) is {0,1,...,bk — bint[(Z + 1 +
871)/2] + 2b}. Note that f(q,b;8) = f(qg — 1,0;8). Using q,, z, from Corol-
lary 3.1, we get
f*(rg,8) = minf*(ry;8), where r§ = bk — bq, + z,.
To

The following theorem is an immediate consequence of Lemma 4.1.

THEOREM 4.1. Suppose (k + 1 + 67 1)/2 < k. Then f*(ry; d) <
f*(rg — 1;8) forry < rg and f*(ry;8) < f*(ry + 1,8) forry > r§.

CoROLLARY 4.1. Suppose (k+ 1+ 8 1)/2 <k. Then a BTIB(v, b, k; k —
Qo> 29) With bqy — zo = bk — r§ is optimal Bayes and optimal T-minimax
design in 9(v + 1,b, k) if f*(rg; 8) < min{f*(r¥ — 1;6), f*(r& + 1;8)}.

Corollary 4.1 gives a simple way of identifying optimal designs. In many
situations the experimenter may be able to arrive at an approximate value of
rg. A quick search in the neighborhood of this value, with the help of Corollary
4.1, will lead the experimenter to the correct rj. We shall soon see that
Theorem 4.1 also plays a prominent role in studying approximations and
robustness.

Let us turn our attention to the behavior of the optimal number of
replications of the control (r¢) as & varies.

First, observe that Lemma 4.1 guarantees that for each §, ry is unique, or
it is either one or two consecutive integers. We shall henceforth replace r§ by
the notation r¢(8), which, for each § € [0, «], is

ry, if f*(ry;8) has a unique minimum r§,
ro(8) = {r* 4+ 1, if f*(r¥;8) = f*(r¥ + 1,8) = minf*(r;0).
0 0 0 0
o

THEOREM 4.2. Let 8, and 8, be any two nonnegative real numbers satisfy-
ing 8; < 8,. Then

(4.1) - r5(8y) <15 (8y).

Proor. It follows from Theorem 4.1 and the fact f(q, b;8) = f(q¢ — 1,0;6),
that (4.1) is equivalent to the following statement for each (g, z) and §, < 8,:
(4.2) If f(q,2;8,) <f(q,z+1;8,), then f(q,2;8,) <f(q,2+1;8,).

Since f(q, z; §) is increasing in z for each ¢ < int[(k + 1)/2], it is enough to
prove (4.2) for an arbitrary (q,z) with ¢ € {intl[(k + 1)/2] + 1,...,k}, z €
{0,1,...,6 —1}.
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Recall that T=bq —2, S=bq% —2qz + 2. Let T, =bg —(z+ 1), S; =
bg?—2q(z+ 1)+ (z+1),a=(w-172and B=(v—- 1) — Av. Then we can
write

vl (q,2;8) = (T —AS)™' + (BT + AS) ..
As & increases from 0 to », A = (k + §~1)~! increases monotonically from 0
to 271 For A in [0, 271], it is not difficult to see that f(q,z;6)is >, =
or <f(q,z+ 1;9) if and only if f;(A)is <, = or > 0, respectively, where

FA(A) = Fi(As 7o) = a(T - AS)(T, - AS)((v — 1) + A(2g — 1~ v)

— (BT + AS)(BT, + AS,)(A(2¢ - 1) — 1),
where r, = bk — bq + z.

In order to study the behavior of f;(A) for A €0, k1], it will be useful to
consider f,(A) as a function of A in (—o,®). f; is a cubic in A, and

(4.3) f1(0) > 0,
(4.4) f1(1) = 0,

with equality in (4.4) only when 2 = 2, ¢ = 2 and z = b — 1. It can be shown
that

k" 1<T/S<T,/S, <1.

If we choose an arbitrary real number A, from the open interval (T'/S, T, /S)),
then it is easy to see that, with (g, z) as chosen before and B, = (v — 1) — Ay,
T-A,S<0,T,—A,8,>0,(v—-1+A,29—-1-v)>0,B,T+A,S>0,
BT, + A;S; > 0and Ay2q — 1) — 1 > 0. Hence

(4.5) f1(Ao) <0

for an arbitrary A, in (T/S, T, /S,). It follows from (4.4) and (4.5) that f,(A)
has at least one root in (A, »). Since f,(A) is cubic in A, it follows from (4.3)
and (4.5) that f,(A) has exactly one root in (0, Ay). Let A; = (k + 8 D7,
i =1,2. Clearly, 0 < A; < k™. From this analysis of f,(A) it follows that

fi(Ay) = 0 implies f,(A) > Oforall A € [0, A,).
Thus we get (4.2). This establishes Theorem 4.2. O

In other words, Theorem 4.2 says that as the prior knowledge on the control
increases, its replication in the optimal design decreases. This is a very
appealing property.

For a pair (q, 2), for which f,(£~!) < 0, there exists exactly one & for which
fi(A) = 0 with A =(k + 8 1)~ For this §, both (g,2) and (g, z + 1) mini-
mize the function f. For all other 8’s, f is minimized at a single point (g, 2).
From these observations, we can make the following statements:

f*(re;85) < f*(ro + 1;8;) implies f*(ry;8) <f*(ro+ 1;90)
(4.6) forall 8 € [0,5,),



OPTIMAL DESIGNS UTILIZING PRIOR INFORMATION 229

f*(ro;81) = f*(ro + 1;8,) implies f*(ry;8) > f*(ry + 1;6)
4.7
(D for all 6 € (8,,).

COROLLARY 4.2. Let 8, < 8, be such that r§(5,) = r(8,). Then ri(s) =
ry(8,) for all & in [5,, 8,].

Proor. Let rg =rg(8,) =rg(8,), and let & €(8,,8,). If f*(rg;8) >
f*(r§ + 1;68), then, using (4.7), we arrive at a contradiction to the fact that
f*(rg; 85) < f*(ry + 1;8,). Thus f*(r§; 8) < f*(ry + 1;6). Similarly, it can
be shown that f*(rg;8) < f*(r§ — 1;8). This establishes the corollary. O

The value of r;(8), in the case of a vague prior on y (§ = «), is denoted by
14 (). Let us define a nonnegative real number §, by the relation
A, =(k+58;Y)7" with fy(A,;rE(x) —1)=0,
with f, as in the proof of Theorem 4.2. Clearly,
r3(8) =r3(8,) =ri() forall s € [5,,],
but
re(8) <ry(w) forall 5 <§,.

COROLLARY 4.3. Let ry be an integer in the interval [0, r§(5,)]. Then there
exists a 8, 8, say, such that ri(8,) = r,.

Proor. Let us define
8, = Inf{d: f*(ry;8) < f*(ro — 1;8)},
8y = Sup(d: f*(ry;8) < f*(ro + 1;0)}.

First, observe that &6, <4, since if &, > 8,, then for any & € (§,,34,),
f*(re; 8) > f*(rg + 1;8) and f*(ry; 8) < f*(r, — 1;8); this contradicts Theo-
rem 4.1. To complete the proof, now observe that in view of Theorem 4.2, any
6 € [8,, 8,] can serve as §,. Hence the corollary. O

These results give us a good insight into the nature of the optimal designs.
We summarize this in the following theorem.

THEOREM 4.3. (i) For i=1,...,r§(8,) — 1, define &;; by f{(k + 6517
i—1=0. For i =0,1,...,r¥(5,) — 2, define 6,, by f{(k +8;)7%i)=0.
Let 610 = O, 817‘3‘(8") = 82’r6k(8")_1 = Su, 82"3‘@:;) = oo, Then, for 1= O, 1, ceey
ry@s,) — 1,

01; <89 = 84441
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(i) Fori=0,1,...,r§(8,), let the interval [§,;, §,;] be denoted by E;. Then
U E; = [0, »], the range of 4.

(iii) Fori =0,1,...,r&(5,), a BTIB(v, b, k; ¢, s) with bt + s = i is optimal
for each & in E;. ,

For intervals E; which are such that a BTIB(v, b, k;¢,s) with bt +s =i
exists, the BTIB(v, b, k;¢,s) is optimal and robust for all § in E;. The
problem, therefore, reduces to finding robust optimal (or highly efficient)
designs for the remaining intervals E;, that is, those for which no
BTIB(v, b, k; t, s) with bt + s = i exist. Let us begin by studying an example in
detail.

ExampLE 4.1. Let v =3, k=2 and b = 24. It is easy to see that g, =2
and z, is given by

f(2,24;8) = min{f(2, b(int[w]);8), (2, b(int[w]) + 1;8)},
where [recall A = (2 + 6™,

w = [(3A - 1)1/2(2 —-A) - \/5(2 - 4A)H\/—2_(3A -1)+ (84 - 1)1/2]—1'

The optimal replication of the control is rF(8) = z,. When § < 1.58, it can be
seen that r(8) = 0; in these situations, a BIB(3, 24, 16, 2, 8) based on the test
treatments only is optimal. When & > 1.58, an optimal design is
BTIB(3, 24, 2; 0, r§(8)). This design can be obtained as the union of r§(8)/3
copies of d; and (24 — r§(8))/3 copies of d,, where d, and d, are (columns
are blocks)

0 0 O 11 2
diy g 3 %ig 3 3
Clearly, a BTIB(3, 24, 2; 0, rX(8)) exists if and only if r§(8) = 0 (mod 3).

In Table 1 we consider 22 different values of 8. The largest rg(8) is
r¥(8,) = 18 which corresponds to & = « (vague prior on y). If 0 < r§' () < 18,
then a BTIB(3, 24, 2; 0, r¥(5)) exists only for r§(8) =0, 3, 6, 9, 12, 15 and 18.
For each §, there are two possibilities. (1) rF(8) = 0 (mod 3), in which case an
optimal design can be constructed as mentioned above. (2) rg(8) # 0 (mod 3),
in which case we look for an approximately optimal (highly efficient) design.
Following Cheng, Majumdar, Stufken and Ture (1988), we seek a
BTIB(v, b, k;t, s) with ry = bt + s “close” to the “optimal” ry, that is, rg.

Suppose 6 = 8, is such that the corresponding rg(8) # 0 (mod 3). Let ry,
and rg, be such that ry; < rg(8) < rg, ro; =0 (mod 3), ro; — ro; = 3. Theo-
rem 4.1 tells us that the “best” BTIB design for 6 =3J, is one of
BTIB(3,24,2;0,7,,), i = 1,2. The efficiency of BTIB(3,24,2;0,r,;) will be
measured by

W; =f(2, r§(50);80)/f(2,r0,~;80).
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TABLE 1
Efficiency of designs forv =3,k = 2,b = 24
(see Example 4.1)

. ®)
(5) Efficiency

(1) (2) (3) (4) Efficiency of non-Bayes
] r§(s) ry, Efficiency ry, Efficiency of ro=18 strategy
1.70 0 0,1 — 0.8476 0.6450
1.75 1 0, 0.9995 3, 0.9984 0.8556 0.6544
1.80 2 3, 0.9996 0, 0.9982 0.8630 0.6632
1.81 3 3,1 — 0.8647 0.6652
2.00 5 6, 0.9993 3, 0.9979 0.8874 0.6940
2.10 6 6,1 — 0.8969 0.7070
2.20 7 6, 0.9994 9, 0.9970 0.9054 0.7191
2.30 8 9, 0.9988 6, 0.9979 0.9129 0.7300
2.50 9 91 — 0.9252 0.7495
3.00 11 12, 0.9992 9, 0.9952 0.9464 0.7870
3.15 12 12,1 — 0.9510 0.7961
3.50 12 12,1 — 0.9598 0.8145
4.00 13 12, 0.9976 15, 0.9963 0.9684 0.8352
5.00 14 15, 0.9999 12, 0.9902 0.9794 0.8655
5.50 15 15,1 — 0.9824 0.8765
6.00 15 15,1 — 0.9850 0.8859
6.50 15 15,1 — 0.9875 0.8946
7.00 16 15, 0.9994 18, 0.9891 0.9891 0.9016

10.00 16 15, 0.9958 18, 0.9947 0.9947 0.9297

25.00 17 18, 0.9996 15, 0.9844 0.9996 0.9732

30.00 18 18,1 — 1 0.9762
®© 18 18,1 — 1 1

This gives a lower bound to the actual efficiency, since
f(2,r8(80);8,) <min{o~2trD;:d € D(v + 1,b,k), 8 = 5,).

In Table 1, column (2) gives r§(§) and columns (3) and (4) gives the values of
ro;, W; for i = 1,2. Column (3) gives the better approximation. Both approxi-
mations are seen to be excellent for this example. When r&(8) = 0 (mod 3)
column (38) shows an efficiency of 1—signaling the fact that a
BTIB(3, 24, 2; 0, r5(3)) exists and it is optimal.

If no prior information is used to design the experiment, then the optimal
replication of the control r, is 18. For each 8, column (5) shows the efficiency
of BTIB(3, 24, 2; 0, 18), that is, it gives f(2, r§(8); 8)/f(2, 18;8). This gives the
loss of efficiency suffered by the Bayes, or I'-minimax, estimator upon using an
optimal “non-Bayes’ design.

Column (6) gives f(2, r§(5);8)/f(2,18;x) for each 8. This essentially gives
the efficiency of the non-Bayes strategy (one that uses an optimal non-Bayes
design and the least squares estimator) with respect to the optimal Bayes, or
I-minimax, strategy at 6. Not surprisingly, the loss of efficiency in ignoring
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prior information is quite significant when the prior information is accurate (&
small).

The optimal designs are seen to be quite robust for small and moderate
departures from §. For example, a BTIB(3,24,2;0,15) is optimal for & =
5.5,6,6.5, and hence for all 5 € [5.5,6.5], and highly efficient (perhaps even
optimal) for 8 as small as 5 and as large as 10.

Given v, b and %, suppose {ey, ..., e;} C [0, rF(5,)] are integers such that a
BTIB(v, b, k; t;, s;) exists with e; = bt, + s;, for each i = 1,..., L. We proved
earlier in Theorem 4.3 that there are intervals E,, for each i = 1,..., L, such

that BTIB(v, b, k;t;,s;) is optimal for all 6 € E,. Example 4.1 seems to
indicate that there will be intervals I, ..., I;, satisfying

IiDEi’ i=1,...,L; UIi‘=(O7°°),

such that a BTIB(v, b, k;¢;, s;) is either optimal or highly efficient for all
6 € I,. For instance, in Example 4.1, if e; = 15, then I, can be [5, 10] or wider,
with E; 5[5.5,6.5]. In other words, a BTIB(v, b, k;¢,, s;) is expected to be
efficient and robust for all § in I;. The precise identification of each I, and a
study of the efficiency of BTIB(v, b, k; ¢;, s;) for 8’s in I, will be the subject of
future research. We feel that the techniques of Stufken (1988) will prove to be
useful in this venture.

5. Bayes A-optimal row-column designs. Consider an experiment to
compare v test treatments with a control using bk experimental units. Sup-
pose that these units can be arranged, at least conceptually, in a rectangle with
k rows and b columns. The set of all designs is denoted by Z,(v + 1, b, k). The
model is

Yipj =+ 7; +,\/p+ﬁj + &ip)s

where u is a general effect, 7; treatment effect, X, row effect, B; column effect

and ¢;,; the experimental error. Let 8, = 7, — 7, for i = 0,1,...,v and y,; =

w+rtogtx,+B; for p=1,...,k j=1,...,b. The quantity y,; measures

the performance of the control in cell (p, j). Then the model can be written as
Yipj = 0 t vpj t €;p;.

Let d € 95(v + 1,b,k), Y and y be the bk X 1 vectors:

Y= ("”yipl’ ey ""yip2’ ceey caey ""yipb’ ...)’,
Y= (oesYpir o onesVYpas eoes vns oo Ypbs L)
Let ¢ be the bk X 1 vector of ¢,,;’s and 6 = (8,,...,6,). In matrix notation

the model has the same form as (2.1), viz.,
Y=X,,0 +X,y +5¢,
with X, =1, and X,,;, a bk X v matrix with entries 0 and 1. Given a design

d, for a particular row, the entry in column i of X,, is 1 if the experimental
unit corresponding to this row receives the test treatment i, i =1,...,v; it is
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0 otherwise. In particular, if the experimental unit receives the control, then
the corresponding row has all entries 0.

In addition to the distributions of Y, 8 and y specified in Section 2, we
make some additional assumptions. With L = (1 — p))I, + p;1,1, and L* =
(py — p)I,, + p3l, 1), we demand

L* L - L*
(51) B + E = 0'02 : : : : N
L* L+ - L
(5.2) Var(6,) = o2¢¥,  Cov(0;,0;) = alts fori+7i'.

Note that the comments which were made regarding assumptions (3.1)-(3.3)
hold true here as well. The subscript in o is used to avoid confusion with
Var(e; ;) in Section 3.

For d € 9,(v + 1, b, k), we denote by m ;;, the number of times treatment
i occurs in row p, n,,; the number of times treatment i occurs in column j
and ry; the £%_in,;; = Z%_mg;,. We shall use the matrices

and
rd = (rdl,...,rdv),.
It is not too difficult to show that under (5.1) and the conditions

ps < min(py, p3),
k(py —p3) + (py —p3) + (1 —py — py + p3) + psbk # 0,

the inverse of the posterior covariance matrix D;! given by expression (2.2)
reduces to

o2(1 = p; — py + p3) Dy = Diag(ray, ..., 7a,) — (k + o) NyN;
(5.4) —(b+A) "M M, + gy
+0d(1 —py—py+ps) B,

(5.3)

where
ag=(1—p;—ps+ps)(p: _Pa)_l’ A= (1-p;—py+ps)(p: —Pa)_l’
¥ = [k(p1 — ps) +b(pz — ps) +2(1 — py — py + p3)]
x[(b +A)(k + ag)[k(py = p3) + b(pz = pg) + (1 = p1 = p2 +p)]]
= p3(1 —py —pa +p3)
X [[E(py = ps) + b(py = pg) + (1 = p1 — pa + p3)]
X [k(py = ps) +b(py = p3) + (1 = p1 — py + pg) + bkps]]
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The optimality results of this section relate to experiments where min(b, &)
is “small.” Stating it more precisely, we assume, as in (3.6),

2<k=<wv.
To state the main theorem of this section, we need some more notation. Let
(5.5) F=k Y (b+A)"'—y.
For integers q and z, denote T'=bgq — z and S = bq? — 2qz + 2.
II= {(q,z): q= int[%(k +ay+ 1)/(Fb(k + ay) + 1)]
+1,...,k,2=0,...,b},
h(q,2) =v(v — D*(k + ao)[((v - 1)(k +ap) —v) + T+ 8

+u(v = 1)(k + ap)p,]

+u(k + ag)[(k +ag)T — (k+ag)FT? = S + v(k + ag)us] ',

where py = (1 — py — py + pg)/(€F — £3), and py = (1 — p; — py + pg) /(£F +
(v — DE).

THEOREM 5.1.  Suppose conditions (5.1), (5.2) and (8.6) hold and further
(5.6) 0 < pg <min(py,p,), &5=0.
Case 1. 3(k + ay + 1)/(Fb(k + ay) + 1) < k. Let
h(qo,2,) = min{h(q,2): (q,2) € II}.

Suppose d* € Dy(v + 1,b,k) is such that it is a BTIB(v, b, k;k — q,, 2y)
design in 9 (v + 1, b, k) with columns as blocks and
Maeig = **° =Mgey fori=0,1,...,0.

Then d* is Bayes A-optimal in D,(v + 1, b, k).

Case 2. 3(k + ay + 1)/(Fb(k + ay) + 1) > k. Then a Youden design d* in
9,(v, b, k) based on the test treatments only is Bayes A-optimal in D,(v +
1,b, k).

PrOOF. As in the case of Theorem 3.1, we shall show that o5 %(1 — p, —
ps + p3) "t tr Dy > h(q,, 2,), with equality when d is d*. By “averaging’’ over
all permutations of test treatments 1,...,v, we get

_ -1
o1 =py=py+pg) trDyz (v = D(Gv - )T - H( —v) " + )

+(Hv™! +;u2)'1,
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where
1 v b 1 v k i
G=T, Ynki- X ¥ mh,+yv) i,
k+ag /2y ;20 Y b+A T, i1 “
H=T ! LS hym
= s2 + ¢T2,
Ckta,  b+A P vla
with
b b v
T,= Y Lajs S;= % t§j1 tgj = P ng;j
j=1 j=1 i=1

for j=1,...,b,and
v
Sap = ) Mmgyip
i=1

forp=1,...,k.
Since £ < v, X{_iny;;/v < 1. Hence

Jj=1li=1
with equality whenever n,,; € {0,1} for i = 1,...,v, j=1,...,b. Also
v k v
Z m%{;p = Z rdzi/k
i=1p=1 i=1
with equality whenever m ;;, = -+ =my,, fori=1,...,v. Thus G < G* =

(1 - (k+ay) VT, — FL?_,r2, with F as in (5.5). From (5.6) it follows that
F > 0. Moreover,

with equality whenever r;;, = --- =r;,. Hence
G<G*<G*=(1-(k+ay) \T,— FT}/v.
It follows, therefore,
o1 -p—pyt+ Pa)_ltde
>(v-1)(G*(v -1 -H@ -v) "+ Ml)'l + (Ho '+ )

Let us call the right side of this inequality A ,(G**, H). Using (5.6), it can be
shown that

a
mhl(G**, H) <0.

This implies that for fixed T,, h,(G**, H) is smaller when the ¢,,’s are chosen
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such that |t,; — ¢,/ < 1 and the s;,’s are chosen such that s;, = - = sg,.
Thus h(G**, H) > h(q, 2) with ¢ = int[T,;/bl + 1, z = bq — T,.

Now observe that (v — 1Xk& + ay) — v)T + S is decreasing in z for each g
in {1,..., %}, while (¢ + ()T — (k + ay) FT? — S is decreasing in z for all
q < 3(k +ay+ 1)/(Fb(k + ay) + 1). This completes the proof of the theo-
rem. O

We give two examples to illustrate the theorem.
ExampLE 5.1. Let v =9, b = 12 and % = 4. The following design is Bayes

A-optimal in 2,9, 12,4) when p; = 0.2, p, = 0.3, p; = 0.1, £f = 0.84 and
£ = 0.58:

O Wk o
OB DN
cowmwo
SO w
=S IS N
- 00O Wt
MO g
WO ™=
NN
oo d
IS I )
oo ®

ExamMpLE 5.2. Let v =3, b =24, k= 2. The following design is Bayes
A-optimal in 9,(3,24,2) when p, = 0.48, p, = 0.04, p; =0 and B* ' =0
(vague prior on 6):

1 2312312312312 3
2 3123123123123 1°

6. Concluding remarks. In this initial study to explore the nature of
exact optimal designs utilizing prior information, we obtained Bayes A-optimal
designs for the one- and two-way elimination of heterogeneity models and
I'-minimax designs for the one-way elimination of heterogeneity model, for a
class of distributions of the random variables. It is virtually impossible that
orie method can be used to obtain the optimal designs for all prior distribu-
tions. A priority for future research should be, therefore, to develop tools
beyond those used in this article, that can handle other classes of prior
distributions.

One attractive feature of the optimal designs of this article is the robustness

against misspecifications of the prior.
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