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ASYMPTOTIC NORMALITY OF THE RECURSIVE KERNEL
REGRESSION ESTIMATE UNDER
DEPENDENCE CONDITIONS

By GEORGE G.‘ROUSSAS AND LaNH T. TRAN

University of California, Davis, and Indiana University

For i=1,2,..., let X; and Y; be R%valued (d > 1 integer) and
R-valued, respectively, random variables, and let {(X;,Y})}, i > 1, be a
strictly stationary and a-mixing stochastic process. Set m(x) = £(Y;|X; =
%), x € R?, and let i ,(x) be a certain recursive kernel estimate of m(x).
Under suitable regularity conditions and as n — , it is shown that 7 ,(x),
properly normalized, is asymptotically normal with mean 0 and a specified
variance. This result is established, first under almost sure boundedness of
the Y’s, and then by replacing boundedness by continuity of certain
truncated moments. It is also shown that, for distinct points Xpyeor Xy
in RY (N = 2 integer), the joint distribution of the random vector,
(i, (%), ..., M, (xy)), properly normalized, is asymptotically N-dimen-
sional normal with mean vector 0 and a specified covariance function.

1. Introduction and statement of the problem. Consider the strictly
stationary time series {Z;}, i = 1,2,..., where the random variables (r.v.’s) Z,,
i > 1, are defined on the probability space ({2, %7, P) and take values in the
Euclidean space R’ with ¢ > 1 integer, and suppose we are interested in
estimating some function of s r.v.’s in the future, Z,,,,...,Z,,, given the
immediately previous % r.v.’s, Z,_,.,,...,Z;, i > k. To put it differently, let
¢: R” > R (v = st) be a given measurable function for which the conditional
expectation

Go[‘P(Zi+1"‘"Zi+s)|Zi—k+1 =2 p41r--0 L = zi]

is finite. Then the problem is that of estimating this conditional expectation.

This problem is a special case of the following one, where {(X;,Y,)}, i > 1, is
a strictly stationary sequence of R%-valued (d > 1 integer) and R-valued r.v.’s,
respectively, and the objective is that of estimating the regression function
m(x) = &(Y;|X; = x), assuming, of course, that it is finite. The quantity m(x)
will be estimated by means of the pairs (X;,Y;), i = 1,..., n, which we have at
our disposal.

The proposed estimate is a recursive kernel-type estimate in that it is based
on a recursive kernel estimate of the probability density function (p.d.f)
involved. To be more precise, let f be the p.d.f. of X, with respect to Lebesgue
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RECURSIVE REGRESSION ESTIMATE 99

measure, which is assumed to exist, let K be a p.d.f. defined on R? and let {b,}
be a sequence of positive numbers converging to 0. Here, as well as elsewhere
in this paper, limits are taken as n — =, unless otherwise specified. Let f (x)
be the usual recursive kernel estimate of f(x); that is,

171 - X
(11) fn(x)=;;15;K(x ; )

Define ,(x) by

(1.2) ,(x) =%2ﬂ i1(1K’(°'C_X").

Then the proposed estimate of m(x) is 7 ,(x) defined by

(1.3) (%) = (%) /Ful(x).

The estimate 71, is a recursive counterpart of the regression estimate

) EA)

proposed by Nadaraya (1964, 1970) and Watson (1964). The pointwise conver-
gence of m, to m is treated in Watson (1964) and Rosenblatt (1969). The
uniform convergence of m, with sharp rates was obtained by Mack and
Silverman (1982). Schuster (1972) established the joint asymptotic normality
of m,(x),...,m,(xy) at fixed points x,,...,xy.

In the independent case, weak conditions for various forms of consistency of
i, have been obtained by Ahmad and Lin (1976) and Devroye and Wagner
(1980). Under dependence, m, has been investigated by Robinson (1983,
1986), Collomb (1984), Collomb and Hirdle (1986) and Roussas (1990). Again
in the independent case, Devroye and Wagner (1980), Krzyzak and Pawlak
(1984) and Greblicki and Pawlak (1987) have considered another recursive
estimate, m ,(x), of m(x) defined by

m,(x) = Z YK(

n(x)—ZYK( 3 ) ZK( bX’)

i=1 i

This paper, however, concerns itself with /2, and establishes its asymptotic
normality under a certain set of regularity conditions.

A problem closely related to the one discussed here is that of estimating
f(x) by f.(x). For relevant papers, the reader is referred to Masry (1986,
1987), Masry and Gyérfi (1987), Pham and Tran (1985), Roussas (1989), Tran
(1989, 1990) and the references therein. The methods of proof and the
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assumptions employed in this paper are reminiscent of those used in Robinson
(1983), Masry (1986), Schuster (1972) and Tran (1990).

The recursive computation of 7, can be carried out by means of the
relations fy(x) = y(x) = hg(x) = 0 "and for n > 1,

fu(x) = _—fn i(x) + — K((x X,)/b,),

1
B, (x) = n—n—w,,_l(x) + de K((x - X,)/b,),

so that

(n - l)bgfn—l(x)mn—l(x) + YnK‘((x _Xn)/bn)
(n=1)b3fos(x) +K((x - X,)/b,)

(%) =

This recursive property is particularly useful in large sample sizes since 7,
can be easily updated with each additional observation. This is especially
relevant in a time series context, where recently there has been an interest in
the use of nonparametric estimates in very long financial time series. Also,
under certain circumstances, the recursive estimate is more efficient than its
nonrecursive counterpart m,, when efficiency is measured in terms of the
variance of an appropriate asymptotic (normal) distribution. Although recently
recursive estimation of p.d.f.’s and regression functions has been given some
attention, it is felt that its full potential has not been appreciated as yet. This
paper may also be looked upon as a contribution toward this end. At this point,
it should be mentioned that stationarity of the underlying process is exten-
sively used throughout the paper. Nonstationary time series are certainly of
great interest. The study of such stochastic processes is an undertaking of
major proportions, which cannot be accommodated by minor modifications
here.

The paper is organized as follows: In Section 2 the assumptions used
throughout the paper are gathered together for easy reference, followed by
some brief comments. The main results of the paper, Theorems 2.1-2.3, are
also formulated in the same section. The following three sections are devoted
to the proofs of the theorems. In the course of these proofs, a substantial
amount of auxiliary results are needed. Their justification is deferred to an
appendix in order not to disrupt the continuity of the arguments. The letter C
will be used throughout to indicate constants whose values are unimportant
and may vary.

2. Assumptions and statement of main results. One of the basic
assumptions made in this paper is that of a-mixing. For the definition of the
strong mixing property and relevant literature, the reader is referred to
Rosenblatt (1956); see also Roussas and Ioannides (1987).
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AsSUMPTION A.1l.

(i) For i > 1, the sequence {(X;,Y;)}, i > 1, is strictly stationary.
(ii) The sequence {(X;,Y,)}, i > 1, is a-mixing (or strongly mixing).
(i) £1Y,1**° < o for some & > 0.

(iv) &(Y,1X, = x) is finite for all x € R€.
() Y (w)| < C for all i > 1 and almost all [P], w € Q.

ASSUMPTION A.2.

(i) For any i and j with 1 <i <j, ther.v.’s X,, Y;, X;, ¥; have a joint
pdf fx v, X, Y,(" -, , ) with respect to Lebesgue measure.

(ii) The following moment of the p.d.f. fx y(:,") is finite for all x € R%:
h(x) =/ |y|2+8fxb y(%,y) dy, where 8 is as in Assumption A.1(iii). Also set

w(x) = [¥fx, v(%,7) dy,
w*(x) = flylfxl,yl(x,y) dy,

v(%) = [¥*fx, v(*,¥) dy.

For all ; #j and all values of the arguments involved,
(ii1) Ifxi'xj(xi, xj) - fxi(xi)ij(xj)l <C.
(iv) |f(X,~,Xj)|Y}(xi’ ij’j) - fXAYj(leyj)in(xi)l <C.
(V) f(xl’ Xj)|Yi,YJ(xi, leyi, yJ) <C.
(vi) The p.d.f. fx(-), to be denoted by f(-), has continuous second-order
partial derivatives which are bounded in R%.
(vii) The function w(-) defined in Assumption A.2(ii)) has continuous
second-order partial derivatives which are bounded in R¢.
(viii) For each L > 0, the following truncated moments

wi(x) = [ yfx,v(%5) dy,
(yl<L)

v(x) = [ ¥frn(%,5) dy,

(yl<L)

hi(z) = [ Py, v(%,5) dy,

(yl<L)

wi(x) = [ ¥y v(x,5)dy
(yl<L)

are continuous, and so are the quantities @w,(-), o,(-), A(-) and @} (-), where
w;(+) = w(-) — wy(+), and similarly for the others.
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AssuMPTION A.3.

(1) The kernel K is a bounded p.d.f. defined on R¢.
(i) llx|I*K(x) = 0 as ||lx|| = o, where || - || is the usual norm in R,
(i) fu;K(u)du =0, j=1,..,d,and [lul’K(x)du < .

ASSUMPTION A 4.

@) b, 0.
() (1/n)L?_b,/b)* - 6,, for some A € [1, 3).
(iii) nb%** = o(1) and L7_(b,/b,)? = O(n).

ASSUMPTION A.5.
(i) There exists a selection of positive numbers ¢, — = such that
c,=0(b;?) and 5,2 MY al~7(l) -0,
l=c,
where y = 2/(2 + §) and § is as in Assumption A.1(iii).
(ii) There is a choice of p = p(n), ¢ = g(n) and r = r(n) such that

10, ra(q) -0, pPnT Y0, b OTMEY plTv(l) -0,

l=q

qrn

REMARK 2.1. Let the a-mixing coefficient be given by a(n) = O(n~"),
p > 0, and consider the popular choice for the bandwidth b(n) =n=9 6 > 0.
Then there always exist p = p(n), ¢ = q(n) and r = r(n) for which Assump-
tions A.4 and A.5 are satisfied. Detailed discussion may be found in Roussas
and Tran (1989).

The notation C(g) is used to indicate the set of continuity points of the
function g.

THEOREM 2.1. Let 11 ,(x) be defined by (1.3) and suppose that Assumptions
A1, A.2()—(vii) and A.3-A.5 are satisfied. Then, for every x € C(w*) N C(v)
N C(h) with f(x) > 0,

(nb2) [, (x) — m(x)] >4 N(0,0%(x)),
where

o?(x) = [ f(x)v(x) - w?(2)]0, [ K*(u) du/f¥(x).

THEOREM 2.2. Under Assumptions A.1()-(iv) and A.2-A.5 and for every
x € C(v) N C(h) with f(x) > 0, the conclusion of the previous theorem holds
true.
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Finally, let N > 2 be an integer and let x,,..., xy be distinct points in R¢
arbitrarily chosen but kept ﬁxed Then‘ we have the following theorem.

THEOREM 2.3. Under Assumptwns A. 1(1)—(1v) and A 2-A. 5 and for every
N distinct contmuzty pmnts S xN of v. and h with f(xl) . f(xN) >0,

((nb2)"*[ () - m(xl)l,-..,(nb:f)‘”lmn(xN) - m(y)])

N(O’ EN(x))
where x = (x,,..., xy), the covariance EN(x) zs gwen by Zy(x) =
D(x)od JK*u)du and D(x) is the. dtagonal matrix . wzth (dzagonal ) elements
given by : ) . ,
e e [ e
ll( t) w(x) U(x) f( l)’.‘ ) ,..,N

, REMARK 2:2. Notice that the variance in Theorém 2.1 and the covariance

in Theorem 2.3 are, in general, dlstmct from the correspondmg quantities for
the nonrecursive case with the same bandwidths, by the factor 6, [see, e.g., the
theorem on page 85 in Schuster (1972)] This fact may. lead to a reduction.of
the variance or of the covariance. This.is,. mdeed the case for the popular
selection. of the bandwidths &, = cn 4", ¢ >0, <0<} For details, the
reader is referred to Example 8. 1 in Roussas and Tran (1990)

3. Proof of Theorem 2. l. Flrst note that m(x) = w(x)/f(x) Second
by (1.1)-(1.3) and the standard Cramér«-Wold devme [see, e.g., Theorem (xi),
page 103, in Rao (1965)] the desu'ed convergence in. Theorem 2.11is equlvalent
to o . ,

(3.1) £,(x) —y4 N(O,rfd(x)) for'every 'c'l‘,d1 -in,waiih c? +‘df 4 o,
where I e L
£ (x) = (nb'g)‘/ 2{c1'[ff,,'(“'_}cf')"_‘-e—i_f"(l‘x.)] + dyfd,(x) = w(x)])
(32)  (x) = [clf(x) + 2c1d1w(x) +¥d v(‘x’ﬂb’g [ ) dus

recall that the quantities wlx), v(x) are deﬁned in Assumptlon A 2(11) In turn,
(3 1is equlva.lent to the followmg two couvergences, namely, T

(3 3) L Yalx) = f,.(x) -0,

(34) A ¢n(x) ""d N(O ”'cd(x))

where ¢,(x) = (ndd)l/z{cl[f(x) e°f (x)] + d,[w (x) é’w (x)]}
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Relations (3.3) and (3.4) are established in Sections 3.1 and 3.2 below. There
and subsequently, we restrict ourselves in presenting the main points of the
proofs. Details may be found in Roussas and Tran (1989).

Ll

3.1. Proof of the convergence in (3.3). It would be convenient to write
K, =b;°K((x — X,)/b,)) and observe that

(3.5) é’Ki=fK(u)f(x—biu)du.

Then, from (1.1) and (3.5), we obtain

(36) &f(x)—f(x)=n""t i /K(u)[f(x ~ 5iu) - f(x)] du.
i=1

Next, use Assumptions A.2(vi), A.3(iii) and A.4(iii), in conjunction with the
dominated convergence theorem and relation (3.6), in order to obtain

(3.7) (nb2)*[£fo(x) = f(x)] - 0.

Utilizing Assumptions A.2(vii), A.3(iii), .A.4(iii) and ‘working.similarly with
w,(x), we obtain

(3.8) (nd2)*[£i,(x) — w(x)] — 0.

Relations (3.7) and (3.8) establish (3.3).

3.2. Proof of the convergence in (3.4). Set
(89) Z; =2Z,(x) =bl*c(K; - €K;) + d|[(V,K;) - £(V;K))]},
and S, = S,(x) = X7_,Z,. Then ¢, = n~'/2S,, and it will be shown that
(3.10) n~128, =, N(0,7%(x)).

In discussing the convergence in (3.10), we use the familiar technique of
Doob (1953) (see Theorem 7.5, pages 228-231) of big blocks separated by small
blocks; see also Masry (1986), page 262. More precisely, let p = p(n), ¢ = q(n)
be positive integers tending to  and such that p + ¢ < n. Let r = r(n) be the
largest positive integer such that r(p + g) < n. The quantities p, ¢ and r are
also selected, so that the first convergence in Assumption A.5(ii) is satisfied.
Partition the set A, = {1,...,n} into 2r + 1 subsets A,,,, A", ,, m=1,...,r,
and A", where ‘

rn?

A,mn={(m_1)(p+q) + 17’(m_1)(p+q) +p’m= 1,...,"},
A”mn={(m_ 1)(p+q) +p+1’7m(p+q)’m=1”r}7
A, ={r(p+q)+1,...,n},
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sothat A, =X, _A,,+X, _,A, + A7, Ignore dependence on x, and for
m=1,...,r, set

k,+p—1
Ymn = Z Zin= .Zin’ km=(m_1)(p+q)+17
iel,,, i=k,,
l,+q—1
(311) y'mn= Z Zjn= Zjn’ lm=(m_1)(p+q)+p+17
JEX B A
n
y:-+l = Z an = Z an'
keAy, k=r(p+q)+1
Also, set
r r
(3'12) Srlt = Z ymn’ S;: = Z y;nn’ S;:?:Y:%l:
m=1 m=1
sothat S, =S, + S, + S;/. It will be shown (see Section A.1) that
(3.13) : n=&(80)* + €8] - o,
(3.14) n_l/zs;l 4 N(O, Tczd(x)).

Then the desired result in (3.10) will follow. In establishing (3.14), the
following convergence is also needed (see Section A.2); namely,

n_l Z Var(ymn) —)Tczd(x)’

(3.15) m=1
xe€C(f)nC(w)NnC(w*)nC(v) nC(h).
Now we proceed as follows. Let Y,,,, m = 1,...,r, be independent r.v.’s with

Y,,, distributed as y,,,n"'/2 so that £Y,,, = 0 for all m. Let ®,,, be the
characteristic function (ch.f) of y,,,, so that the ch.f. of y,,n % is
®,, (tn"1/2) and that of ©7, _,Y,,, is [17,_®,,,(tn~1/2). It will be shown that
n YL Ymn=n"'28. and 7 _,Y, . have the same asymptotic distribu-
tion and that this distribution is N(0, 72,(x)). This will establish the desired
result. Now, by Lemma 1.1 in Volkonskii and Rozanov (1959) [see also
Theorem 7.2 in Roussas and Ioannides (1987)],

- T .

(3.16) ‘&[mljl exp(itn—l/zymn)] _ ,,!L:II G”[exp(itn'l/zymn)]

< 16(r — 1)a(q).

At this point, suppose that p, ¢ and r have been chosen as specified so far and
also such that the second convergence in Assumption A.5(ii) is satisfied. Then
the left-hand side of (3.16) tends to 0; or :

] T1 exp(itn/250)| = TT @pa(en=7)
m=1 m=1

- 0.
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It remains to be shown that TT7, CDmn(tp“l'/ %) converges to the ch.f. of
N(0, 72(x)). To this end, set Co

r

. 8'2; = Z var(Ymn)‘, =n"! Z var(ymn) ’
m=1 :
and let X,,, =Y,,,/s,. Then the r.v’s X,,, m=1,...,r, are independent
with cfX,,m =0 and T _, var(X,,,) = 1. So, by the norma.l convergence
criterion [Loeve (1963) page 295}, 7. -1X,,, =4 N(O,1), provided, for every
>0, g,(e) =L 1fjxzex’dF,, 0, where F,,, is the distribution func-
tion of X,,,. But

| '[(I-xlee) #* dFun = é)[X lemlzs)] =5, -—léc[ymnI(Iym,Jzas n-w)]

From the definition of ymn, the boundedness of the p.d.f. K, and the (almost
sure) boundedness of the r.v.’s Y;, we have

C U hptp-1 km;pwl b \?
|Ymal < CbE72 % b7%=Cb7e/2 "% (-1) < Cpb;*/*.
=k, : i=k;, b;
Therefore, ,
/ 2dFm,,sce—2(s2) n=2p*; % var(Ymn),
(xl=€)
so that .

‘ 2
ga(e) < Ce"z(sﬁ)—zn 2b ~dpl Z var(ym,,) = Cs ?(s2) ( pbd).
m=1
Since s2 - 72,(x) [by (3 15)] the right-hand side above converges to 0, on
account of the third convergence in Assumption A 5(ii). This completes the
proof of (3.4) and therefore that of Theorem 2.1. O

RemARK 3.1. Tt is to be noticed that after relation (3.16) the arguments
proceed as in the independent case. On the basis of such an observation, a
referee has suggested that the lack of any influence of the dependence struc-
ture may suggest a very weak klnd of dependence, hidden under the conditions
imposed. , .

4. Proof of Theorem 2.2. For somé L > 0, define Y/ = Y. Iy, <1, and
set /=Y, -Y = YI“Y|> Ly SO that Y; =Y/ + Y. In (3. 9) replace Y; by Y
and let Z] = b"/z{cl(K ¢K;) + d,[(Y/K,) — &(Y/K))]}, so that Z, = Z] +
d,b3” 2[(Y"K ) = &(Y/K,)]. By setting

i=1

= E z;, T” =d b"/2 Z [(Y'K,) - €(¥/K)],
(=1 . .
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we then have S, = T, + T,. Next, by taking the limits as n — o« first and as
L — « next, it is shown (see Section A.3) that, for x € C(h),

(4.1) var(n~'/2T)) - 0.

On the other hand, for each L > 0, relation (3.10) implies that
(4.2) n~V2T, -4 N(0,725.(x)),

where

(43)  72u(x) = [c2f(x) + 2¢,dwy(x) + divy(x)]0, [ K2(u) du

and
wi(x) = [ Iwx(®Ndy w0 = [ 9 x(59) dy.
Finally, it is also shown (see Section A.4) that
(4.4) Tear(x) = 7o4(x) as L — .
Combining relations (4.1), (4.2) and (4.4), we obtain
(4.5) n~128, -, N(0,7%(x)),

and, in effect, the proof of Theorem 2.2.

[Relevant with the argument below is also the proof of Theorem 18.5.2,
pages 344-346, in Ibragimov and Linnik (1971).] In the derivations below,
write 72 and 77 rather than 72,(x) and 72,,(x), respectively. We have to show
that the ch.f. of n=1/2S, converges to exp(—t272/2) for all ¢ € R. Indeed,

'éoeitn‘l/zsn _ e—t21-2/2' = Iéoeitn'l/zT,’,+itn'1/2T;[ _ e—t21-2/2|
itn — /20 i4n—1/27 2.2
< é)leztn T, _ 1' + léoeztn T, _ et TL/2|
+ Ie-tzfg/z — e—tz‘r?;/zl‘

The first term on the right-hand side of the above inequality tends to 0 by
(4.1). The second term tends to 0 by (4.3). Next, take the limit as L — «. The
last term converges to 0 by (4.4). This completes the proof. O

5. Proof of Theorem 2.3. Without loss of generality, it suffices to prove
the theorem for N = 2. Arguing as in Section 3 and utilizing Theorem (iii) on
page 322 in Rao (1965), it suffices to show that, for all ¢;,d; in R with
cZ2+d?+0,i=1,2, (,x) >, NO,2;,(x), where

£,(x) = (nb?)"*{ey[ Fu(x1) = F(21)] + di[ (1) — w(ay)]
el Fulx3) = F(a2)] + dy[a(x5) — w(x2)]},
72(x) = {[2f(21) + 2¢,dw(x;) + d3v(xy)]

+[cBF(x2) + 2¢5dw(x5) + dFv(x5)]}0q [K?(w) du.
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Also, define y,(x) by
Un(x) = (nb2)" i Fu(w)) = EFu(x0)] + do[@,(21) — E,(x1)]

+cz[ Fu(x2) — 6’)fAn(i’Cz)] +dy[@,(x,) - éo“A’n("Cz)]}-

Then, as in Section 3, the proof of the desired result will be completed by
showing that

(5.2) Un(X) =4 N(0,724(%)).
For j = 1,2, set
0y = (1) (e 1u(x) = Fxp] + [0, - w(z)]},
by = (n3) e[ Fulx) = Efu(xp)] + dy () = ()]},
so that
d’n(x) = d’n = wnl + l/an’ fn(X) = gn = gnl + §n2‘

Thus ¢,(x) — ¢,x) = (y,;, — &,1) + (Y, — £,2), and the convergence in (5.1)
follows by (3.3). In order to establish (5.2), define

Z(xj,¢j,d;) =2Z;; = bg/Z[cj[Ki(xj - X;) - €K;(x; - Xi)]
+d,{VKi(x; - X;) - €[ VK (x; - X,)]}].
Then observe that
Z(x,¢,d) = Z(x) = br(zi/z[cl[Ki(xl - X;) - €Ki(x, - X,)]
+d (Y, K;(x, - X;) - E[YK (x; — X;)]}
+eo[ Ki(x — X;) — €K (%, — X;)]
+do{Y,K,(x, — X)) — €[V,K,(x, - X,)]}].

Next, the quantities y,,,(x), y,,,(x) and y., (%) are defined as in (3.11) by
employing the Z,(x)’s. Thus

ymn(x) = ymn(xl) + ymn(xZ)’
YmnX) = Von(21) + Vun(%2),  ¥rir(X) = ¥pi1(%1) + ¥ 1(%3)-
The definition of the quantities S;(x), S.(x) and S”(x) is obvious. By (3.12),
Sp(x) = 85(x1) + S5(x2),  Sy(x) =87(x,) +Sy(x,).
Then, by (3.13),
(5.3) n~He[Si®)]* + €[Sy (x)]%} - 0.



RECURSIVE REGRESSION ESTIMATE 109
As in (3.15), it is also shown (see Section A.5) that

(5.4) Rl Y varypa(®)] - ).

m=1

By (5.3) and (5.4), the arguments used, following relation (3.15), establish (5.2)
for the bounded case; see Assumption A.1(v).
In the unbounded case, Z(x) = Z!; + Z!,, i = 1,...,n, where

Zj; = bg/z[cj[Ki(xj - X;) - €Ki(x; - Xi)]
+d,{[¥/K(x; - X,)] - €[V/Ki(x; - X,)]}]
and
zy; = d b2 [ YK (x; - X,)| — €[ V'K (x; - 3(1)]}, ji=1,2.
Thus
/ n~ Y28 (x) = n712T!(x) + n™ 2T/ (x,) + n™ 12T (xy).

As in Section 4, by taking the limits as n — « first and as L — « next, we
have, by (4.1) [where Assumption A.1(v) is not used],

(5.5) var[n~Y2T}(x,)] + var[n=Y2T!(x,)] - 0.
On the other hand, as in (4.3), for each L > 0 and as n — «,
(5.6) n=Y2T(x;) =g N(0,733.(x)),
where

TzdL(x) = {[cff(%) + 2¢,d wi (%) + d%’-’L(’H)]
+ [Cgf(xz) + 2¢,dwi(x,) + d%vL(xZ)]}Gdez(u) du.

Also, as in (4.4),
(5.7 120(X) = 12(x) as L > .

Its justification is the same as that given in the proof of (4.4). On the basis of
(5.5)-(5.7), the arguments employed in Section 4 after relation (4.5) complete
the justification of (5.2). The proof of Theorem 2.3 is thus concluded. O

APPENDIX

A.1. Proof of relation (8.13). Under assumptions made in the paper
and by means of (3.5), we have

(Al1) &K, = [K(u)f(x - bu)du—f(x), =ze€C(f).

This is so by the d-dimensional version of Theorem 1.A in Parzen (1962),
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which is a modified version of a result in Stein (1970). Likewise,
(A.1.2) bEEK? = fKZ(u)f(x—b,-u)du —>f(x)fK2(u)du

and also
(A.13) €(YK;) = fK(u)w(x—biu)du—>w(x), x € C(w),

bI&(Y,K,)* = {K*(u)v(x — bu) du — v(x) [K*(u) du,

(A.14)
x € C(v)
and
(A15) bi&(V,K?) = [K*(u)w(x — bu) du - w(x) [K*(u) du,
x € C(w).

Next, from (3.9), (3.11) and (3.12), we have

(A1.6) n @(8S2) 2 =n"1 Y var(y,,) +2n7t ¥ coV(¥ins¥in)

m=1 l<i<j=<r
and
l,+q—1
var(yp,,) = Var( )y Z,-)
i=1
(A.1.7) A
i=1l,, lp<i<j<l,+q+1
Since b, | [by Assumption A.4(i)], relations (A.1.1)-(A.1.5) lead to
(A.1.8) var(Z;) < C foralli.
Hence

r lm+q_1 qr
n~t Y Y Var(Z) < C(;) -0,
m=1 i=1l,

by means of the first convergence in Assumption A.5(ii).

Next, it will be shown that the second term on the right-hand side of (A.1.7)
also converges to 0, when summed over m. In so doing, we borrow a technique
used by Masry (1986). More precisely, divide the set of pairs (i, j) with 7, j in
{1,...,n}and i <j as follows:

S, ={G, N, je(l,...,n},1<j-i<c,}
S, ={G, N, je(1,...,n},c,+1<j—i<n- 1},

where {c,} is a suitably chosen sequence of positive numbers tending to = [see
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Assumption A.5(1)]. Then
Y cov(K;,K;)=Y cov(K;, K;)+ Y cov(K;, K;) ilen + dJy,-
1<i<j<n S, S,

By Assumption A.2(iii),

L]

n Jj—2 n n
|Ji,] < ¥ |eov(K, Kj)|<sCL1=C|Y L1+ ¥ ¥ 1|<¢C,
s, s, j=2i=1

J=Cpy1i=j—c,

so that n=1b2|J,,| < Cc,b%. If ¢, is chosen as in the first part of Assumption
A.5(i), then

(A.1.9) n~edJ,, - 0.
Next, work with oJ,, and employ Davydov inequality [see, e.g., Deo (1973), or
Theorem 7.3 in Roussas and Ioannides (1987)] to obtain, by means of Assump-
tion A.1(i),

|cov(K,, K)| < 10a2/@*9(j — i)(€K2?) (K3

for some 6 > 0 _[which is taken to be the same as that in Assumption A.1(ii)].
Set

)1/(2+6)

2 2(1-v)
Y= , sothat 0 <y<1,6=———~,
A.1.10 246 Y
(A.1.10) . s s 1
+6=— =1—+.
v’ 2+8 Y
Then

|lcov(K,, K;)| < 10a~7(j — i)(£K¥ )" (K2 7)"*.
Working as above, |
(A.1.11) e”‘K?/" =b;I*+g (%),  q,(x) < sz/V(u) f(x — bu) du
with
(A.1.12) q:(x) = f(x) [K*"(u)du, x€C(f).
Therefore, by also employing the Cauchy-Schwarz inequality, we obtain

P11y | < 10n BT @1 - i) [ b7 g (x)] [ by 4+ (x)]*
2

© n 1 b (2-vy)d
< 106:0-7 ¥ a1-v(p)| 3 —(b—”) a1(0)|.

l=c, i=1

(A.1.13)

The second term on the right-hand side above converges to a finite quantity by
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Assumption A.4(ii) and (A.1.12). The first term on the same side converges to 0
by means of the second part of Assumption A.5(1). Then combining relations
(A.1.9) and (A.1.13), we obtain the following lemma.

LEMMA A.1.1. Under Assumptions A.1()-(ii), A.2(), (iii), A3()-(ii), A.4G)-
(i) and A.5(),

n~d Y |eov(K,,K;)| >0, =xeC(f)

l<i<j=<n
and
Y cov(K;,,Y,K;)= Y cov(K,;,Y,K;) + ) cov(K;,Y,K})
1<i<j<n S, S,
df
=J1n + Jzn.

On the other hand,
cov(K;, V;K;) = [ [ [wK(u)K ()| fix, xom, (x = bite, x = b;vlw)

~fxx, (% — bjolw) fx(x = bu)] fy, (w) dudvdw.
Then, by Assumption A.2(iv) and the first part of Assumption A.5(@),
(A.1.14) n~1dd,, - 0.
On the set S,, working as above, we have
2
|cov(K;, V;K)| < 10a'77(j — i)(fK?/y)Wz(‘ﬂYjKj |2/y)7/ ’
EIYK, [ = b7 (x),  hy(x) S [K¥"(u)h(x - bu)du,

where A is as in Assumption A.2(ii). [Recall that 2/y = 2 + & from (A.1.10).]
Also,

(A.1.15) hi(x) = h(x), x € C(h).
Next, working as in (A.1.12) and utilizing (A.1.11), we have by the
l=c,

Cauchy-Schwarz inequality
n 1 b 2- 'Y)d 1/2
X{{Z ;(b—n) q7(x) :
i=1 i

Therefore, by the second part of Assumption A.5(i), relations (A.1.12), (A.1.15),

n—lbff|J2n| < ]_Ob,:(l—‘y)d E al_V(l)

n 1 @-y)d
> Z(_b—) RY(x)

Jj=1 J
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Theorem 1.A in Parzen (1962) and the Toeplitz lemma, we have
(A.1.16) n=1b%dJ,, — 0.
Then combining relations (A.1.14) and (A.1.16), we obtain the following lemma.
LEMMA A.1.2. Under Assumptions A.1()-(ii), A.2(1)-Gi), (v), A.3(1)-G1),
A 4(1)-(ii) and A.5(),
n~d ¥ |eov(K,;,Y;K;)| >0, xe€C(f)NnC(h).
1<i<jsn
Finally, we occupy ourselves with cov(Y;K;, Y;K ). First,
(A.1.17) |cov(YiKi,Y}Kj)| < &Y, KY,K;| + €YK, |€|Y,K;|,
and by means of Assumptions A.1(iii) and A.3(i),
€|Y,K;| < C andlikewise &|Y,;K;|<C
(A.1.18)
foralliand j,1<i <j.
Also,
€|Y,K,V,K,| < C&|Y,Y;| < C£1Y, |” < C  [by Assumption A.1(iii)].
That is,

(A.1.19) SV, K,Y,K;| <C foralli,j,1<i<j.
Therefore, by means of (A.1.17)-(A.1.19), we have on S;:
(A.1.20) n~%d|dJ,, | = 0.

On S,,

2
(A121) |eov(YK,;, V,K;)| < 10a*77(j - i)(£| VK, |2/7)’/2(¢0|15Kj|2/’)”.
But

(A.1.22) E\YK, [*7 = b7 O+ (),

where h,(x) = [K*"(u)h(x — b,u)du and h is as in Assumption A.2(ii) and
(A.1.23) hi(x) » h(x), xe€C(h).

On the basis of (A.1.21)-(A.1.23), we proceed as in (A.1.13) to obtain
(A.1.24) n= 14| dJ,, | - 0.

Finally, combining (A.1.20) and (A.1.24), we have the following lemma.
LEMMA A.1.3. Under Assumptions A.1()-(ii),~A.2()-(@D), (v), A.3(1)-(i),
A.4()-(i) and A.5(),
n~¢ Y |eov(YK,,Y,K;)| >0, xe&C(w)nC(h).

l<i<j<n
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Next,
cov(Z;, Z;) = blcf cov(K;, K;) + bic,d, cov(K,, YV;K})
+ ble,d; oov(Y,K,, K;) + bld? cov(Y,K;, Y K,),
and by Lemmas A.1.1-A.1.3, | '

r

n~d Y > |cov(K;, K;)|
m=11,<i<j<!,,+q-1
<n ¢ Y |eov(K,, K;)| -0,
l<i<j=<n :
- .
n~e Yy Y |cov(K,, YK;)|
m=11,<i<j<l,,+q-1
<n ¢ Y |eov(K,,YK;)| -0,
1<i<j<n

n~1pd Er Y Icov(Y,-Ki,Y}Kj)]

m=11,<i<j<l,+q-1

<n ¢ ¥ |cov(YK,,Y,K;)| -0,

1<i<j<n
so that
-
n~ty Y |cov(Z;, Z,)|
(A125) m=11,<i<j<l,+q-1

<n ! ) |cov(Zl, J)|—>0

1<i<j=<n

Combining relations (A.1.7)-(A.1.18) and (A.1.25), we then have the followmg
lemma.

LEMMA A.1.4. Under Assumptzons A.13)-(ii), A. 2(1) ), A. 3(1) (ii), A. 4(1)—
(ii), A.5(i) and the first convergence in A.5(ii),

n1 2 var(y,,,) >0, xeC(f)nC(w)NnC(v)nC(h).

m=1

Now, by (3.11),

24

l;+q—11l;+q—-1

L _leovoidls B X% |eov(2,, Z1)|.

l<i<j=<r l<i<j<r k=l;

At this point, recall that any two Z,, Z, have ind_i‘ces Wh;ch dlﬁ'er b‘y at least p.
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Therefore, the right-hand side above is bounded by

n

n—p
C Z > ICOV(Zk’Zl)I'

k=ll=ﬁ+p
In other words,

nt Y Jeov(¥ ¥ <Cnt X Jeov(Z;,Z))],

l<i<j<r 1<i<j<n

and this last expression tends to 0 by (A.1.25). This result and Lemma A.1.4
imply, by way of relation (A.1.6), that

(A.1.26) n~1€(82)? - 0.
Finally, from (3.11), (3.12) and (A.1.8),

n

nle(8?=n"t ¥ var(Z)

(Al 27) i=r(p+q)+1
n—r + r r
_C_@_quc(l_l’__q_)ao,
n n n

since gr/n — 0 by Assumption A.5(ii), and pr/n — 1, as is easily seen.
Relations (A.1.26) and (A.1.27) complete the proof of (3.13). O

A.2. Proof of relation (3.15). From (3.9) and (8.11), it is clear that

k,+p—1
var(ym,) = by L var(e,K; + d,Y,K,)
(A2.1) Pk
+ 2b¢ Y cov(e,K; + d\Y;K;,c,K; + d,Y,K}).

kp<i<j<k,+p-1

Therefore, the desired result will follow from (A.2.1), in conjunction with
Lemma A.1.4 and relation (A.1.27), by showing that

n

(A.2.2) n~12 Y var(c,K; + d,Y,K;) = 72(x)
i=1
and
(A2.3) nb¢ ¥ |cov(c,K; +d,Y,K,,c,K; + d,Y;K;)| - 0.
1<i<j=<n

From (A.1.1), Assumption A.4(i)-(ii) and the Toeplitz lemma,

' n n 1(b, \?
(A.2.4) n~eY (€K'= L —(—") bi(SK;)" ~ 0,
i=1 icin\b

13
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and likewise, by means of (A.1.2) and for x € C(f),

(a25) n’lb;‘fél(fKi)2= i %(%) sz(u)f(x—biu)du

f=1
= 0, f(x) [K*(u) du.

Hence (A.2.4) and (A.2.5) imply

(A.2.6) n-lbgf; var(K;) - 0, f(x) [K*(u) du,  xeC(f).

i=1
Utilizing relations (A.1.3) and (A.1.4) in a similar fashion,

(A2.7) n‘lb;‘ff, var(Y,K;) - 0dv(x)[K2(u) du, xe€C(w)nC(v).

i=1
Finally, relations (A.1.1) and (A.1.5), together with Assumption A.4(i)-(ii) and
the Toeplitz lemma, yield as above

n~1pd ) cov(K;,Y;K;) - 6,w(x) [K*(u) du,
(A2.8) L cov( ) = gw(x) [K?(u)

xeC(f)NnC(w).

Relations (A.2.6)—(A.2.8) taken together imply then that, for x € C(f) N C(w)
N C(v),

n~2y var(c,K; + d,Y,K,)
i=1

- [e2f(x) + 2¢,dw(x) + dfv(x)]()d[K2(u) du.

Since the right-hand side above is 72,(x), by (3.2), relation (A.2.2) has been
established.
As for relation (A.2.3), it is an immediate consequence of Lemmas

Al11-A13.

A.3. Proof of relation (4.1). Clearly,

var(n~'2T)) = d.bZn~'var ), (Y/K;)
i=1
(A3.1)
+2d%int Y cov(Y7K,, Y/K,).

l1<i<j<n

Consider first the covariance terms and let S; and S, be as in Section A.1.
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The individual covariances are bounded as follows on S;:
|cov(Y/ Ko, Y/K;)| < [ [ [ [loelK () K (w)
X lei’Yi’Xj,Yj‘(x —bu,v,x —bjw, z)
~fx,v,(x = bu,v) fx v (x - bw, z)ldudvdwdz.

From this point on, the proof is the same as that in Lemma A.1.3, regarding
the set S;. As for the set S,,

v/2

ICOV(Yi”Ki, Yj”Kj)I < ].Oal_y(j _ l)(@{)lYth |2/Y)Y/2(00|Y}Kj |2/7) ,
and the proof is then the same as that of the corresponding part in Lemma

A.1.3. Thus
(A.3.2) bin~t Y cov(Y/K;,Y/K;,) >0 asn — .

l<i<j=<n

As for the variance terms, we have
var(Y/K,) < b; ¢ jK2(u)aL(x - bu)du,
where U;(x) = [> 1,t*fx, v(%, t) dt, so that

(A.3.3) U;(x) >0 as L — o,

Therefore, var(Y;K,) < b, %x,;, where
X = [K2(u)l7L(x —bu)du —» DLfKZ(u) du asi — o for fixed L.

It follows that

n n 1(b;\*
(A.3.4) bin=t Y var(Y/K,) < Y, —(—l) XL
i=1 icin\b,

In (A.3.4), for each fixed L, take the limit as n — « to obtain
(A.35)  limsupbin~? f var(Y/K;) < 6,0,(x) [K*(u) du.
n i=1
Next, take the limit in (A.3.5) as L — « and use relation (A.3.3) to get
(A.3.6) bin~1 Zn var(Y/K,) - 0.
i=1
Relations (A.3.2) and (A.3.6) establish (4.1) by way of (A.3.1). O
A.4. Proof of relation (4.4). From the definition of the quantities 72,(x)

and 72,;(x) through relations (3.2) and (4.3), respectively, all we have to show
is that, as L — o, w;(x) = w(x), v,(x) = v(x). However, this is true because
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of the dominated convergence theorem and the assumption that A(x) =
/ |y|2+‘sfxl’ y(x,y)dy < » (8 > 0) [see Assumption A.2(i)]. O

A.5. Proof of relation (5.4). For simplicity, write ¥,,,, ¥mr1 and ¥,z
instead of y,,,(X), ¥,,,.(x;) and y,,,(x,), respectively. Then

r r r
n_l E var(ymn) =n_1 E Var(ymnl) +n_1 Z Var(yng)

m=1 m=1 m=1

r
+2n_1 Z cov(ymnl’ymn2)7

m=1

. and the sum of the first two terms on the right-hand side above converges to
724(x) by (3.15). As for the third term on the same side, we have by a simple
computation,

r
n_l E cov(ymn17 ymn2)

m=1
r knptp—-1 r
=n 1Y Y cov(Z,,Z,)+nt Y ¥ cov(Z,,,Z;,),
m=1 i=k, m=1i#j

and the second term on the right-hand side above converges to 0 as was seen in
(A.1.25). Regarding the first term on the same side, it is easily seen that it also
converges to 0, because of the following result.

Lemma A5.1.  Let K satisfy Assumption A.3()-(ii) and let 0 < b, — 0. For
g: R? > R integrable, set

£.(%.7) = b;d[K(xb;t)K(yb_ t

)g(t) dt, =x,y<R?

n

Then g,(x,y) — 0, provided x + y and x € C(g).

Proor. This lemma is the d-dimensional version of Lemma 2 in Masry
(1986). For the details, the interested reader is referred to Lemma 9.1 in
Roussas and Tran (1989).

The justification of relation (5.4) is then completed and therefore the proof
of Theorem 2.3 is concluded. O
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