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ON PREDICTIVE LEAST SQUARES PRINCIPLES'

By C. Z. WEI

University of Mc;ryland and Academia Sinica

Recently, Rissanen proposed a new model selection criterion PLS that
selects the model that minimizes the accumulated squares of prediction
errors. Usually, the information-based criteria, such as AIC and BIC, select
the model that minimizes a loss function which can be expressed as a sum
of two terms. One measures the goodness of fit and the other penalizes the
complexity of the selected model. In this paper we provide such an interpre-
tation for PLS. Using this relationship, we give sufficient conditions for
PLS to be strongly consistent in stochastic regression models. The asymp-
totic equivalence between PLS and BIC for ergodic models is then studied.
Finally, based on the Fisher information, a new criterion FIC is proposed.
This criterion shares most asymptotic properties with PLS while removing
some of the difficulties encountered by PLS in a finite-sample situation.

1. Introduction. In this paper we are concerned with the model selection
problem in regression. A large number of criteria, such as the multiple decision
rule [Anderson (1963)], C,, [Mallows (1973)], AIC [Akaike (1974)], BIC [Schwarz
(1978)] and cross-validation [Stone (1974)], has been proposed to solve this
problem. Among them, the information-based criteria usually select the regres-
sor x that minimizes the loss (or criterion) function

(1.1) log 62 + ¢, /n,

where n is the sample size, 62 is the residual variance after fitting the model
based on x and ¢, is a nonnegative random variable that measures the
complexity of the chosen model. For example, if ¢, = 2p, then we have AIC,
and if ¢, = p log n, then we have BIC. The complexity is proportional to its
number of parameters.

Recently, based on his predictive minimum description length (PMDL)
principle, Rissanen (1986a, b, c) proposed a new criterion that selects the

regressor X which minimizes

n
(1.2) PLS(x) = ¥ (3 - biix),
i=m+1
where y is the response variable, b is the least squares estimate based on
{x;,y;: i <j} and m is the first integer j so that b; is uniquely defined. Since
(y; — b,_;x,)? is the square of the prediction error at stage i, this criterion is
called the predictive least squares (PLS) principle. When the conditional
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2 C.Z. WEI

density of y, given {x,,...,X;,¥;,...,¥;_1} is normal, as done in Hannan
(1987) for the autoregressive model, by changing the base of the logarithm and
eliminating constants, one obtains

n .
(1.3) PMDL = Y [log62, + (v — bj_ix,)*/62,].
i=m+1
If lim, ,, 62 = o as., then

(1.4) PMDL = [nlogo?](1 + o(1)) + (PLS/a?)(1 + 0o(1)) a.s.

It is clear that PLS and PMDL have a strong relationship. In this paper we
concentrate on the predictive least squares principles although some previous
results on PMDL will also be discussed.

There are four interrelated issues addressed in this paper. The first one
deals with the following problem. Is it possible to provide PLS an interpreta-
tion as that given by (1.1)? More precisely, can one decompose PLS as a sum of
a term that measures the goodness of fit and a penalty term that reflects the
complexity of the model? In Section 2 we first give an identity [see (2.6)] that
expresses PLS as a sum of the residual sum of squares and a penalty term.
This result is natural in the sense that one expects that the accumulated error
squares, due to recursive prediction, should be larger than the residual sum of
squares. To give the penalty term a statistical interpretation, some asymptotic
results for this term are also given (Theorems 2.2 and 2.3). Note that all the
results given in this section do not require any model assumption, although
the statistical meaning can be attached when a model is imposed.

The second issue deals with the strong consistency of PLS for the stochastic
regression model. Rissanen (1986a, b, c) is the first one to show the weak
consistency for the multiple linear regression model with Gaussian noise. Wax
(1988) obtains the same result for the stationary autoregressive process with-
out Gaussian assumption. Hannan, Mcdougall and Poskit (1989) and Hemerly
and Davis (1989) independently show that Wax’s result can be strengthened to
be strongly consistent. The stochastic regression model [Lai and Wei (1982a);
see also Section 3] not only covers multiple regression models and autoregres-
sion models, but also input—output systems that arise from the control litera-
ture. Furthermore, the consistency results described above require that for all
candidate regressors x:

1 n
(1.5) lim — ) x;x;=T as,
noe g

for some positive-definite matrix T'. This condition is violated in the optimal
control systems [Lai and Wei (1986) and Davis and Hemerly (1990)] as well as
in the unstable autoregressive models [Chan and Wei (1988)]. Using results
from Section 2, in Section 3 we provide some sufficient conditions (Theorems
3.2 and 3.3) to obtain the strong consistency result of PLS in the stochastic
regression model. Examples on fixed design models (Theorem 3.4) and unsta-
ble autoregressive processes (Theorem 3.5) are given to illustrate the general
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results. The strong consistency of BIC for the unstable autoregressive model is
also obtained as a side result of our analysis. For previous results on BIC, one
can see Paulsen (1984) and Tsay (1984) for weak consistency and Huang
(1990) for a related strong consistency result. Note that Pétscher (1989) also
studies the strong consistency for the stochastic regression model. However,
his result covers neither PLS nor BIC for unstable autoregressive models (see
Section 5).

The third issue we are interested in is the equivalence between PLS and
BIC. For a stationary AR(p,) model,

Yn = Blyn—l + - +Bp0yn—po + Sn

if the order p > p, is selected, Hannan, Mcdougall and Poskit (1989) show
that :

(1.6) PLS = né2 + o2(plogn)(1 + o(1)) as.,

where o? = E(52). By Taylor expansion and the fact that lim , _,,, 62 = o2 ass.,
one has

(1.7) log(PLS/n) = logé?2 + pn~'logn[l + o(1)] a.s.

Except the o(1) term, this is BIC. Now it is natural to ask whether PLS is
asymptotically equivalent to BIC. In this paper the asymptotical equivalence
will be used in its strict sense; that is, (1.7) holds whenever the dimension of
the regressor x is p. The result given by Hannan, Mcdougall and Poskit (1989)
does not resolve the case where p < p,. Recently, Kavalieris (1989) also
attempts to solve this problem for the AR(») process. However, his result is
not conclusive [see also (4.2.12) and its discussion]. Since an AR(p) process can
be viewed as an AR(x) process and for a true AR(») process any AR(p) fitting
is misspecified, in Section 4 we study the asymptotic equivalence property
when the fitted model may be incorrect. We treat the regression and time
series separately. For the regression case, the regression function can be
nonlinear. We obtain an asymptotic expression for PLS (Theorem 4.1) and use
the polynomial regression as an example to show that PLS is not asymptoti-
cally equivalent to BIC. For the time series model, the asymptotic result for
PLS is obtained under very general ergodic assumptions (Theorem 4.2.1). If
the involved variables are jointly normal, then PLS is asymptotically equiva-
lent to BIC (see Corollary 4.2.1 and the remark following the proof of Theorem
4.2.2). In particular, this is true for the Gaussian AR(«) model.

The fourth issue is related to the performance of PLS. From our asymptotic
study, it indicates that PLS is sensitive to the magnitude of the variables
selected while other criteria treat each variable equally. This is a desirable
feature especially for nonstationary regressors. However, as a procedure, PLS
is computer intensive and tends to select the model with fewer variables when
the sample size is small. Furthermore, although it is natural to use PLS for
the on-line purpose, its dependency on the particular order of data seems not
to be so attractive for the off-line situation. (For a detailed discussion, see
Section 5.) To resolve these difficulties, a new criterion FIC, based on the
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Fisher information, is proposed in Section 5. The special feature of FIC and its
relationship with PLS are explained. A simulation study is also reported to
demonstrate the advantage of using FIC.

Finally, some results on the unstable autoregressive process, which are used
in the main text, are given in Appendix A.

2. Decomposition. Throughout this section, we assume that {y;} is a
sequence of real numbers and {x;} a sequence of vectors in R? such that for
some positive integer m, V, = (L7_,x,x,)"! exists if n > m. Let B € R”.
Define ¢; =y, — B'x;, b, =V,L_1x;y;, &(n)=y, - b x;, and ¢; =y, —
b’ _;x;. .

THEOREM 2.1. The following identity holds:

n n m
(2.1) Y eX(1-xVx;) = X &(n) - X &(m).
i=m+1 i=1 i=1

Proor. Let @, = (X?_,x}¢;)V(X?_,X;¢;) and d; = X}V;x,. Then (2.8) of
Wei (1987) gives
n
@ -Q.+ L [xi(b,i-B)](1-dy

i=m+1

= Y die?+2 ¥ [x(biy - B)]e(1-dy).

i=m+1 i=m+1

Therefore, by this and the definition of e;,

(2.2)

n

Y oef(l-d)= Y [e-xibi_s - B)1-d)

i=m+1 i=m+1
= ¥ 21-d)-2 ¥ [xi(b,_;—B)]e(1-d)
i=m+1 i=m+1
+ ¥ [xib;_, - B)](1—d)
i=m+1
- Y 2-Q + Q.
i=m+1

~(£e-a)-(E-a
i=1 i=1
n m
= Y &X(n) — X &(m). o
i=1 i=1
 REMARKS. (1) Note that by Lemma 2(i) of Lai and Wei (1982a),
(2.3) X, V,x, = [det(V;?) — det(V,; ;)] /det(V, ).
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Since in the regression model where ¢; are i.i.d. N(0, o2), the Fisher informa-

tion matrix is 0~ 2V 1. The quantity (2.3) can be interpreted as the ratio of the

information of the design point x,, with respect to the whole design {x,,...,x,}.
(2) Since det(V; ') increases with n, we have

(2.4) 0<xV,x, <1

This and (2.1) imply the intuitive fact that the sum of squares of prediction
errors is larger than the residual sum of squares, that is,

n m

(25) L &> L) - L #m).

i=m+1 i=1

This inequality is very useful when one studies the consistency property of the
PLS criterion (see Section 3).

Theorem 2.1 gives a decomposition:

n n m n
(2.6) Y el=YX&(n) - Lem+ L xVixel
i=m+1 i=1 i=1 i=m+1

where the first two terms can be viewed as the measure of the goodness of fit
and the last one can be viewed as a penalty term. The remaining part of this
section provides some asymptotic results as a first step to understand the
statistical meaning of this penalty term.

THEOREM 2.2. Assume that

n

(2.7 lim ) x(V.x;e2 = 0.
%=1
If
lim x)V,x, =0 and
n-—so
2.8 n n
28 Y [xi(b;_; - B)]z = 0( ) x’iVixiEiz)
i=m+1 i=m+1
or
lim x/,(b,,_, — B) =0 and
n-—-»o
2.9 i i
(2.9) liminf Y, x\Vx,e2/ Y x;Vix;>0,
2P j=m+1 i=m+1
then

n

(2.10) T e?- Y e(n) +
i=m+1

i=1

n
’ 2
Z x;V,x;¢e;

i=1

(1+0(1)).
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Proor. By (2.6) and the definition of e;,

n n m n
Y el=Y & n)- X & (m)+ X df
(2 11) i=m+1 i=1 i=1 i=m+1
. n . N
+ X [x'i(bi—l - B)] d, -2 Z [x'i(bi-l - B)]sidi’
i=m+1 i=m+1

where d; = x/V,x,. Hence, to show (2.10), it is sufficient to prove

n

Y (b - B -2 ¥ [xi(biy — B)]ed,

i=m+1 i=m+1

- o( ¥ dis?).

i=m+1

(2.12)

By the Cauchy—-Schwarz inequality,

2s{ i [x'i(bi—l_B)]zdi}{ f dieiz}.

i=m+1 i=m+1

n

> [x,i(bi—l - B)]sidi

i=m+1

Therefore, to show (2.12), we only have to prove

(2.13) L -l o ¥ d)
i=m+1 i=m+1

Under conditions (2.8), since d, = x,V,x, - 0,

Zn: [xi(b;_, — B)]"d; = O(1) + 0( f [xi(bi-1 = B)]z)-

i=m+1 i=m+1

This in turn implies (2.13) by (2.7) and (2.8). Similarly, under (2.9),

Y [xi(bi_s — B)]* = O(1) +—o( > di)

i=m+1 i=m+1
and (2.13) follows in view of (2.7) and (2.9). O
REMARK. In the stochastic regression model [see (3.1)], (2.8) will be shown
under minimal conditions. Condition (2.9) is convenient when we study the

case for incorrect models.(see Section 4).

The following results give the penalty term of (2.10), a further decomposi-
tion which can be interpreted statistically when the model is incorrect.

LEMMA 2.1. Assume that there is a positive-definite matrix T’ such that

1 n
(2.14) lim (nV,) ' = lim — ) x,x;=T.

n—ow n—»coni=1
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Let 8; be a sequence of real numbers such that

1
(2.15) lim — Z x;x;82 =G

n—»mn‘ 1

for some nonnegative-definite matrix G. Then

n

(2.16) lim Y x\Vx;82=tr(I''G),

nowlogn

where tr(M) denotes the trace of a matrix M.

Proor. We first assume that

2.17 lim — 5 Xl x = tr(I"1G
(2.17) n-r»r:olognl 1 i ( )

By (2.14), for any a > 0, there is N such that for n > N, IInV -~ T Y < a/lT|.
Since T is positive definite, for all x € R?, x T~ !x > ||| /IIT|l. This in turn
implies that

(2.18) (1-a)xT'x<x(nV)x<(1+a)xT7x, Vx.
Consequently,

x'.T X 62

’F' X; 82 n n xiT
< Y xVix;87 < (1 +a) Z
i=N i=N

(2.19) (1-a) _f

The conclusion (2.16) now follows easily from (2.17) and (2.19) since a can be
arbitrarily small.

Let us go back to prove (2.17). Define S, = £*_,, . x,x/6? Using summa-
tion by parts and the convention S,, = 0,

n x' T 1x.§2 n o tr(F'x,x;87)
E 12 - 172 2 — E - l 172 2
i=m+1 ! i=m+1 !

_ Zn‘, te[T7Y(S; — S;_1)]

i

(2.20) el
tr(T71S, -1
=r—(—n——-l+l§+ltr(l" 15)[i7t - (i + 1)
r-is, nl (T8 1
B e ARG S P

By (2.15) and (2.20), (2.17) is proved. O
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THEOREM 2.3. Assume that (2.14) holds and ¢; = h; + a;. If there exist a
nonnegative definite matrix G and a nonnegative number o2 such that

12 N 1 n

(2.21) lim — ¥ x,x;h?=.G, lim — ¥ x;x/af =T
n——»ooni=1 n_)°°ni=1
and
n n

(2.22) Y xVixhe =0 L (xVix)'hi,

i=m+1 i=m+1
then

n

2.23 li 'Vx.e2 = pol + tr(T-1G).
(2.23) m g 7 i=§+lx, iX;8; =po” + tr( )

If we assume furthermore that
(2.24) lim x,(b,,_, — B) =0,
n-—o

then

n

(2.25) Y €= Zn: £2(n) + (log n)[p02 + tr(l"‘lf})](l +0(1)).
i=1

i=m+1

Proor. First observe that
n n n
Y xVixiel= Y xVix,h2+2 Y x\Vix;he

i=m+1 i=m+1 i=m+1

(2.26) )
+ ¥ xVxal
i=m+1

By Lemma 2.1 and (2.21),

n

2.27 lim x'Vx;h? = tr(T"'G
(=20 AT (=)
and

(2.28) lim Z xll.‘/lxlatz = 0'2 tr(F_IF) =p0'2.

n—wlogn 7

Now by (2.14), x,V, x, — 0. This, (2.22) and (2.27) imply that
(2.29) Y x\Vxha, = o( Y x’iVixihf) + 0O(1) = o(logn).
i=m+1 i=m+1
Consequently, (2.23) follows from (2.26)—(2.29).
Let us show (2.25) by using Theorem 2.2. First, (2.14) and Lemma 2.1 with
8, = 1 imply that

1 n L
2.30 lim x;\Vix, =tr(I'"'T) =p.
( ) n-w logn i=§+1
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In view of (2.23), (2.30) and (2.24), (2.7) and (2.9) hold. Therefore, (2.10) holds.
Combining this and (2.23), we obtain (2.25). O

Remagrks. (1) In applications (see Section 4), k; is the bias due to fitting
and «, is the random error which in general is independent of
{X4,...»X;, Bty - -, h;}. Under minimal assumptions (see the proof of Theo-
rem 4.1), (2.22) is a consequence of Chow’s (1965) local martingale conver-
gence result.

(2) In the conventional criterion, the penalty term increases linearly with p.
However, in (2.25) the second term tr(I'~1G), which in general can be viewed
as a standardized measure of the goodness of fit, is expected to decrease as p
increases.

3. Consistency. In this section we consider the following stochastic re-
gression model:

(3.1) Yo =Bx%x, +8,,

where {3,} is a sequence of martingale differences with respect to o-fields {%,}
and x, is an %,_,-measurable, p-dimensional random vector. Fixed design
regression models, autoregressive time series and linear input-output control
systems are some important stochastic regression models.

To study the effect on the PLS by adding (or deleting) variables, we need
some notation. Let T, = (x,,,...,%,,) and rewrite V:1=X? x,x| as

v;l=

n

n
Y« K,
i=1 .
K, H,
Define 8,(n) =y, — T{H;'L"_,T;y; and s% =L} {(x;; — K,H;'T,)? Note
that s2 is the residual sum of squares obtained by regressing x; on x,, ..., x,.

The following result gives a lower bound for the difference between the
residual sum of squares obtained by regressing y on x,,...,x, and L} 182,

THEOREM 3.1. Assume that (3.1) holds. If for some a > 2,

(3.2) ‘ supE[|8,1°F,_1] <» a.s,

and

(3.3) 52 > o, log( f | T; ||2) =o(s2) a.s,
i-1

then

v 8% (n) — L7 .87
(3.4) lim 19 )2 L -2 as.

n-—wo Sy
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Proor. Let L be the linear space generated by
{Xjn = (x4,...,%,;):2 <j <p}.

Denote the projection of the veetor U onto L by U*. Let Z, = B,X,, and
3,=(6,...,8,). Then

n n
Y 8(n) - L 67 =12, - Zy + 8, - 8" ~ |3,
i=1 i=1

(3.5) =12, - z: I + 22, - 23,8, — |83
n
= Bisk + 2B, L (xa — K, H;'T,)5; - |84 ",
i=1 .
By Theorem 3(i) and Lemma 3 of Lai and Wei (1982b),

(3.6) 1851 = 0({log T II2}) as.,
i=1
and
(3.7 X (% —K,H;'T), = O(sn{log s2+1log ) |T; ||2}) a.s.
i=1 i=1

In view of (3.5)-(3.7) and (3.3), (3.4) follows. O

ReMarx. Let A*(M) and A,(M) denote the maximum and minimum
eigenvalues of a matrix M. We then have

(3.8) LTI < X lIx ] = tr(V;Y) < pa*(V;Y)
i=1

i=1
and, by (1.6) of Lai and Wei (1982b),
(3.9) s2zp A (Vi ).
Therefore, (3.3) is a corollary of the assumption
(3.10) Ae(Vi') > and log2*(V; ') =o(A,(V, 1)) as.

A weaker version of (3.4) is proved in Pétscher (1989) under assump-
tion (3.10).

In the following, the least squares estimate of B in (3.1) is denoted by b,
and 8t(n) = yi - x,ibn.

LEmMa 3.1. Assume that (3.1) and (3.2) hold. If
(3.11) limsupx)V,x, <1 a.s,

n-—ow
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then

n

(3.12) Y [xi(b,,-B)]°=0

i=m+1

n

’ 2

1+ ¥ XiViXiEi)
i=m+1

.

O({logdet(V; )}'™’) a.s.,

where m = inf{j: V}‘l exists}.

Proor. By (2.17) and (2.18) of Lai and Wei (1982a),

i=m+1

{ Zn‘. [xi(b;_, — B)]*(1 - X'iViXi)}(l +o(1))

=0(1)+ Y xVix;e? as.
i=m+1
By (3.11), the first identity of (3.12) is obtained. The second identity follows
from (2.21) of Lai and Wei (1982a). O

Let Cy(n) and Cy(n) denote the PLS by selecting a subset M C {x,,..., x,}
and {x,, ..., x,}, respectively.

THEOREM 3.2. Assume that (3.1), (3.2), (3.10) and (3.11) hold. Then
¢ Cy(n) — Cy(n)

(3.13) lim in 5 > B2 a.s.

n-—o S

Proor. Note that the residual sum of squares based on M is larger than
the residual sum of squares based on {x,, ..., x,}. By Theorem 2.1 and Chow’s
(1965) result,

n

Ci(n) = Co(m)™*P 2 T 8%(n) = L [y~ xibis]’

i=m+1

[i 512(”) - i 312] -2 i x;(B—b,;_,)9;
i=1 i=1

i=m+1

(3.14) - Zn‘, [xi(B - b,_1)]”

i=m+1

5 82(n) - ¥ 6?]
i=1 i=1

—{ i [x(B - bi_l)]z}(l +0(1)) + O(1) aus.

i=m+1

In view of Theorem 3.1, Lemma 3.1, (3.9), (3.10) and (3.14), (3.13) follows. O
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Given a set of variables x, we define it as a correct model if (3.1) holds for
some B and 3. Assume that there exists a correct model, say x. Then for any
incorrect model, we can always add variables from x, so that the enlarged
model is correct. Theorem 3.2 provides conditions which ensure that this
incorrect model would not be chosen by the predictive least squares principle
eventually. To find conditions that ensure the selection of the ‘‘desired”
one (say with least variables or least order), more delicate study of the
terms L}, x;V;x;87 and @, = (Z7_,x;8)V,(E7_,x,8,) = L} 87 —
r7_(y; — b, x;)* is required.

LemMA 3.2. Assume that {5,, %,} is a sequence of martingale differences
such that for some o2 > 0 and a > 2,

(8.15) E(82|#,_,) =0? and supE(|5n|"I:9f,_1) <® a.s.

If x, is &,_,-measurable, A ,(V,;!) > © a.s. and

(3.16) XV.x, >0 a.s.
then
n
(3.17) Y. x[V;x;82 ~ 0% logdet(V, ') a.s.
i=m

This lemma is shown in Wei (1987), (2.12) and (2.14). O

LemMa 3.3. The following identities hold:

2 _ .2 2
$S7—8Sn_1 S

(3.18) XV, x, = DL :;‘ T H'T,,
sn n
(3.19) logdet(V, ') = log(s2) + logdet(H,),

n n n 2 1
( x'iai)vn( Y XiBi) = [Z (21 — KnHr:lTi)Bi] pe}
(3.20) i=1 i=1 i=1 n
+

n n
)» Ti'5i)H;1( ) Ti5i)-
i=1 i-1

Proor. By Lemma 4(vi) of Lai, Robbins and Wei (1979),
1+x,V, x,=(s2/s2_,)(1+ T,H;}\T,)
or
(1-x,V,x,)"" = (si/s7-1)(1 - T, H,T,) "

By simple algebra, we obtain (3.18). For (3.19), observe that Xf, =
(x,, - K,H;'T,,...,x,, — K,H;'T,) is orthogonal to X, = (x,...,%,,)

for i > 2. Let
_ -1
w o=l —K.H; )
0 I



PREDICTIVE LEAST SQUARES PRINCIPLES 13

where I is the (p — 1) X (p — 1) identity matrix and 0 is the (p — 1) zero
vector. We then have
(3.21) W, (Vo)W = Y (Wox,)(W,x,) = s» U,
. n\Vn n = i nai U;z H |’
where
U, =Y (xi1 — K,,H,flTi)Ti = (XénX{"n, e X;mXi"n)' =0.
i=1

Thus
det(V; 1) = det( W, )det(V)det( W)
= det(W,V;1W,) = s2 det(H,)
and (3.19) follows. For (3.20), it is an immediate consequence of (3.21) and

(Z x’isi)Vn( > xiai) = ( > ani3i) [WnVrz_lwr:]_l( > W,.x,5,
i=1 i=1 i=1 i=1

. O

LEMMA 3.4. Assume that the martingale difference sequence {5,,, %,} satis-

fies
(3.22) supE(|6n|a|9f,_1) <o a.s.,

for some a > 2 and A, (V1) - .
If x,, are nonrandom vectors, then

(3.23) ( i xiéi)Vn( i xiﬁi) =o(log &*(V,; 1)) a.s.
i=1 i=1

Proor. Let @, = (X7_,x,6,)V,(X?_,x,5;). Consider the case p = 1. Since
re_,lIx,|I?> = , by (2.30) of Wei (1987), for every y > 2a7,

Q, = o([log(iZ:‘,1 Ix; "2)}7) a.s.

Using the fact that a > 2,
Q. = oftog| £ 11| - oo (7).
i=1
Now, let us consider the case p > 1. By (3.20) of Lemma 3.3, an induction

argument and the facts that X*(V 1) > A*(H,) and A,(V,!) <A, (H)), it is
sufficient to show that

n 2 1
(3.24) [z (% — K,,H,;lT,.)a,.] = =o(log #(V;")) as.
i=1 n
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First, let us assume that there is K > 0 such that
(3.25) supE(|5, Ial%_l) <K as.
n

In view of (3.9), s2 — . This and*Corollary 2 of Lai and Wei (1984) imply that
for all y > 2a71,

n 24
E (X - K,,H,:ITi)ai} = = o((log s2)")
i=1 n

The conclusion (3.23) follows from the fact that « > 1/2, s < A*(V,1), (3.20)
and an induction argument. Finally, let us remove condition (3.25). By the
above arguments, (3.23) holds if we replace 5, by 8,1 55 |« )<k There-
fore, it holds on the set

(E(15,"%_,) <K,V n) 2 {supE(|gn|a|9;L_l) < K}.
n
Letting K — «, we complete our proof. O
CoUNTEREXAMPLE. When x,, are random vectors, (3.23) may not hold. For
this, consider the following example [Lai and Wei (1982a)]:
(3.26) ¥i =Byt Byx; + 8,

where §; are ii.d. random variables with E(5;,) = 0, E(8?) =1 and x; are
defined inductively by

x, =0, X,,1 =X, +cé,, n>1,
where ¢ # 0. It is known [Lai and Wei (1982a), page 160] that
Ll q(x; —X,)8; 1
(3.27) b,o — By = TNOE 3?,,)2 - -7 as,

n
(3.28) Y (x;—-%,)° ~c?logn as.,
i1

(8.29) (V) ~ n{l + 02( ‘E 2)} a.s.

j=1
Now by (3.20), (3.27)-(3.29) and the law of iterated logarithm,

{Z?ﬂ(xi _5C-n)5i}2 + (Z?=15i)2

_ 2
L i(x;, —%,) n

= (b, — 32)2 i (x; — fn)2] + O(loglog n)
i=1

Q, =

~log n + O(loglog n)
~log *(V; 1) as.
Therefore, (3.23) is violated.
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The above counterexample shows that for the stochastic regression model, it
is impossible to obtain (3.23) without further conditions. The following results
provide a remedy.

Ll

LEmMA 3.5. Assume that (3.1) and (3.22) hold. Also assume that there
exists a nonsingular matrix A such that Ax, = (z',, w),) satisfies

n -1/2/ p n -1/2

(3.30) ( Y z,-z',») ( Y ziwi')( Y WiW{) -0 a.s.,
i-1 i-1 i-1

and

(3.31) liminf)«*(Dn‘l(Z ziz;)D,;l >0 a.s.,

— 00 .
n i=1

where D, = {diag(L7_,z,z,)}'/>.
Then

= (i W;ai)(i wiw;)_l(élwia,.) +o(log X*(V,; 1)) a.s.

Proor. Let u, = (z%,w,y, J,=L? uwu;,, P,=X7,z;2; and G, =
r?_,w;w/. Since A is nonsingular,

Q, = Z x’iai)Vn( Z xi3i)
i=1 i-1

n

(3.33) =Y Axiﬁi)’[ Zn‘, Axi(Axi)']_ ( i Axiﬁi)
i=1 i=1

i=1

n n
=X u’i‘si)Jr:l( > uiai)'
i=1 i=1

By (3.30),

P12 0
Tl 0 g

P12 0
0 G’:1/2
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This in turn implies that

@ =( P2 iézi‘sj 2+ G,'? iZ:‘,lwis,. 2)(1 +0(1))
(3.34) = [(é ) (; 23)
(Z:‘, ) (é (1 +0(1)).

Since A,(V;1) - o, A,(P,) > ». In view of this, (3.31) and (2.33) of Wei

(1987), for y > 2a71, .
n n n Y
(Z Z'i3i)Pn_1( )y ziBi) 0((log )y ”zz") )
i=1 i=1
o(log 2*(V,; 1)) aus.

i=1
Combining (3.34), (3.35) and the fact [Lai and Wei (1982a)] that @, =
O(log X*(V; 1)), (3.32) follows. O

(3.35)

Remark. If Ax, =z, and z, satisfies (3.31), then (3.30) can be omitted
and (8.32) holds without the first term. The same remark also applies to the
following corollary.

COROLLARY 3.1. Assume that (3.1), (3.22), (8.30) and (3.31) hold. If
B1 = 0 and A can be expressed as
a,; &
(3.36) A= ( 0 B)’

where a € RP~Y and Bis a (p — 1) X (p — 1) nonsingular matrix, then
(Z x'i3i)Vn( ) xi5i) - (Z Tilai)H;I( )y Ti5i)
i=1 i=1 i=1 i=1
= o(log /\*(Vn_l))

ProoF. Let z), = (2,,...,2,,) and t), = (z,,,...,2,,). Then, by (3.36),
BT, = (t',,w,). By (3.31), it is easy to see that

(3.37)

>0 a.s.,

(3.38) liminf A, ( (Ztt')D 1

n-—o

where D, = {diag(Z?_,z,2/)}*/2
Also observe that under (3.31), (3.30) holds if and only if

n n -1/2
(3.39) Dn'l/z( Y ziwi’)( Y wiw{) -0 as.
i=1

i=1
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But (3.39) implies that

n n -172
ﬁn‘l/z( Y tiw{)( Y Wiw{) -0 as.
i-1

i=1
Therefore, by (3.38),

n -1/2 n n -1/2
(3.40) ( Y t,.t;.) ( Y t,.w;)( Y Wiw{) -0 as.
i=1 i=1 i=1
Replacing x; in Lemma 3.5 by T; and A by B, (3.38) and (3.40) give

(£ o £ 70
(3.41) -t

n n -1 n
= ( Y W{&i) Y Wiw{) ( Y Wiéi) +o(log **(V, ') as.
i=1 i=1 i=1
Combining (3.32) and (3.41), we complete the proof of 3.37). O

Now we are ready to state a result that provides conditions under which the
correct model with least variables would be chosen eventually. Let C(n) and
Cy(n) denote the PLS by selecting {x,, ..., x,} and {x,..., x,}, respectively.
Note that if 8; = 0, both models are correct.

THEOREM 3.3. Assume that (3.1), (3.15), (3.16) and (3.22) hold. Also
assume that B, = 0 and
log A*(V,; 1)
. liminf ——————~
(342) e s (V, 1)
If either x, are nonrandom vectors or (3.30), (3.31) and (3.36) are satisfied,
then

>0 a.s.

Cy(n) — Cy(n) o2

(3.43) lim log 52 a.s.
Proor. Let
n n n n
Q, = ( Y x,isi)vn( Y xiai) and Q, = ( P Ti"si)H;l( M Tiai)'
i=1 i=1 i=1 i=1

By Lemmas 3.1 and 3.2 and Theorem 2.2,
(3.44) Cy(n) = ¥ 82— Q, + [0? logdet(V; )| (1 + o(1)) as.,
i=1

and

(3.45) Cy(n) = Zn‘, 52— Q, + [o? logdet(H,)](1 + o(1)) as.
i=1
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Therefore,
Cy(n) — Cy(n) = o?[logdet(V; 1) — logdet( H,)]
(3'46) ] A
~[@. = Q.] + o(logdet(V,))) as.
By (3.19) of Lemma 3.3,
(3.47) o?[logdet(V; 1) — logdet(H,)] = (log s2)o2.

Now, if x, are nonrandom vectors, applying Lemma 3.4 on x, and T,, we
have

(3.48) Q, — Q, = o(logdet(V; 1)) . a.s.

If x, are random vectors, (3.48) also holds through Lemma 3.5. Combining
(3.46)-(3.48), (3.42) and (3.9), (3.43) is obtained. O

To illustrate the applications of Theorems 3.2 and 3.3, we consider two
examples.

ExampLE 1 (Fixed design). Let M* = {x,,..., x,} be the set of all indepen-

dent variables to be chosen. Based on the observations {yy, ..., ¥,, %1,..., %,
1 <j < p}, we would like to select a model M € .#={M: M c M*} so that
M is a correct model with least variables. Let M,={x,,..., xlq}, x) =
(xill, ceey x”q)’, Xi = (xil, sy xip), and

(3.49) ¥ =vx{+38;,

where y = (yy,...,7,). We assume that {5,} are i.i.d. random variables with

E(5,) =0, E(62)=02> 0 and E|§,|* < » for some a > 2. We also assume
that y; # 0, i = 1,...,q. It is not difficult to see that if V, = (Z7_;x,x))"*
exists, M, is the unique model with least variables. In the following, M,
denotes the model chosen by the predictive least squares principle.

THEOREM 3.4. Assume that there exists a sequence of positive real numbers
a, such that

(3.50) lima,'a,,,=1

n-—o

and for some positive-definite matrix T',

1 n
(3.51) lim ——( Y xix’i) =T.
n-—o an i=1

Then
(3.52) P[Mn =M, eventually] = 1.
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Proor. Note that
X,V x, = tr(V,x,x,,) = tr[V,(V; ! - V;1))]

(3.53) = tr[I-q;%,_(a,V,)(a;1 Vi)
>tr[I-1]=0

by (3.50) and (3.51). Furthermore, (3.51) also implies that

(3.54) lim X(V; 1) /A4 (Vi) > 0.

Given any subvector u; of x;, (3.51) also implies that

1 n
lim ——( Y u,-u’;‘) =TI*,
nowo @, \;_4

where I'* is also positive definite. Consequently, (3.53) and (3.54) also hold if
x; are replaced by u,. Thus Theorems 3.2 and 3.3 are applicable if u; is
correct. Now given any incorrect model M, M U M, is a correct model. Choose
a variable x* from M, \ M. Clearly, the regression coefficient, say B, of x* is
nonzero. By Theorem 3.2,

(3.55) P[PLS,(M U M,) < PLS,(M) eventually] = 1,

where PLS, (M) denotes the PLS value based on model M. Now given any
correct model M # M, there are I, M;, 1 <i <[, such that M, = M and for
1<i<l, M, - M,_, has only one element. Applying Theorem 3.3 [ times, we
obtain

(3.56) P[PLS,(M,) < PLS,(M) eventually] = 1.
Combining (3.55) and (3.56), (3.52) is proved. O

REMARK. Theorem 3.4 also holds for the stochastic regression case if (3.51)
holds a.s. The only difference between the stochastic and fixed design cases is
that (3.30), (3.31) and (3.36) have to be satisfied for the stochastic case. Choose
A to be the identity matrix and z,, = x,,. By the remark immediately following
Lemma 3.5, we do not have to verify (3.31). By (3.51), (3.30) holds. Since A is
the identity matrix, (3.36) also holds.

ExampLE 2 (Unstable autoregressive process). Let us consider the follow-
ing AR(p) model:

(3‘57) IYn = ¢1yn—1 + - +¢pyn—p + 6n7
where {8,,} satisfies (3.15) and the characteristic polynomial
(3.58) $(2) =2P — 2P — - =g,

has all roots either on or inside the unit circle. [This is the unstable case. For
statistical properties of unstable AR(p) processes, see Chan and Wei (1988)
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and the references therein.] Assume that p is known and p, = max{;: ¢; # 0,
1 <j < p}. For each j, let PLS,(j) be the PLS value based on fitting an AR(j)
model. Then the predictive least squares principle selects p, which satisfies
PLS,(p,) = inf{PLS,(j): 0 <j < p}.

THEOREM 3.5. Assume that {y,} is an unstable autoregressive process that
satisfies (3.57) and y,,...,y_, ., are Fymeasurable. Then

(3.59) P[p, = p, eventually] = 1.

Proor. For j > p,, letx), = (y,_j,...,¥,-1) and V' = £"_,x;x’. Since,
by the definition of p,, AR( J) is a correct model, it is known [Lai and Wei

(1983)] that

(3.60) liminf A, (V,')/n>0 as,

n—oo
(3.61) limsupA*(V,; 1) /n* <« a.s. for some & > 0,
(3. 62) " lim xV,x, =0 a.s.

€.

Now let us show that if 1 < DPos then
(3.63) P[PLS, (1) > PLS,(p,) eventually] = 1.

Since AR(p,) is a correct model, (3.1) is satisfied. The assumed condition (3.15)
implies (3.2). By (8.60) and (3.61), conditions (3.10) and (3.11) also hold.
Therefore, in view of the fact that ¢, # 0, (3.63) is a consequence of Theorem
3.2. Next let us show that if j > p,, "then

(3.64) P[PLS,(j) > PLS,(p,) eventually] = 1.
For this, it is sufficient to prove that if j > p,, then
(3.65) P[PLS,(j) > PLS,(j — 1) eventually] = 1.
Note that by (3.57),

Yn=@Yn-1t " FD Yt O,

where ¢; = 0, since j > p,. Thus condition (3. 1) is satisfied. By (3.15) and
(3.60)- (3 62), conditions (3.16), (8.22) and (8.42) are also satisfied. To apply
Theorem 3.3, it remains to show (3.30), (3.31) and (3.36). Define

(3.66) ¢(z) =2/ — ¢1zj_1 — . _¢j‘

Since ¢(z) = 2P Jp(z) and ¢(2) has all roots inside or on the unit circle, so
does ¢. Therefore,

(3.67) ¢(2) = ¥(2)6(z2),
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where
¥(2) =2° — ¢,2°71 — - -+ —y, has all roots inside the unit circle,
3.68
( )G(z) =2'—0,2'"! — .-+ —0, has all roots on the unit circle,
" and s +¢=j. Let
(369) Up =Yn — olyn—l - _otyn—t’ z, = (un—s”“’un—l):7
vn=yn_¢1yn—1_ T _lpsyn—s’ Wn=(vn—t"“’vn—l)
and define the s X j, r X j and j X j matrices A,, A, and A by
_ot _ot—l “e _01 1 0 “ee 0
0 —0 -0, _ e —0 1 0 PPN .
A= ot L ' T B E
0 o _ot 0t—1 e _01 1
¥, —Y R 41 1 0 0
0 _dls _dls— e _d, 1 0 coe .
Ay = 0 ' ' ’
0 cee _lps _d,s—l oo _lpl 1
A,
A= A,

Since ¢; = 0, ¢, = 0 and (3. 36) is satisfied. Note that Ax, = (z,,w,). It is
known [La1 and Wei (1985)] that for some positive-definite matrix T’,

1
(3.70) hm—Ezz—l" a.s.

n—)oonl 1

Hence (3.31) is satisfied. But (3.30) is a corollary of Theorem A.1. Therefore,
Theorem 3.3 is applicable and (3.65) is proved. Combining (3.63) and (3.64), we
obtain (3.59). O

As a side result of our analysis, we are also able to obtain the strong
consistency for BIC. Recall that

BIC(k) = log 62(k) + kn"'logn,
where n62(k) is the residual sum of squares based on an AR(k) fitting.
THEOREM 3.6. Assume that {y,} is an unstable autoregressive process that
satisfies (3.57) and y,,...,¥_,+1 are Fymeasurable. Let k be the order that

minimizes BIC over {0, .., p}. Then

(3.711) P[IQ,, =Py eventually] =1.
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Proor. Note that for j > p,, by (3.61),
(3.72) }1_1)1; log X*(V,;1)/n =0 as.
Therefore, by Lemma 3 of Lai and Wei (1982a),
(3.73) lim 7(j) = 0? as.
Now if & < p,, then

log 6;7(k) — log 6,7(P,)
(3.74) > log 6,/(po — 1) — log 6,7(p,)
= log(1 + [62(po)] '[62(po — 1) ~ 62(po)]}-

By Theorem 3.1,

n n
5 8%(n) - ¥ a?] ~ 5267 as.
i=1 i=1

(8.75) n[62(po— 1) — 62(py)] 2
By (3.9), (3.60) and (3.75),

liminf[3%(py — 1) — 6%(po)] >0 as.
This, (3.73) and (3.74) in turn imply that

lim inf [BIC(%) — BIC(p,)]
3.76 "
(3.76) > liminf [log 32(k) — log 62(py)] >0 aus.
Now if I > p,, by (3.37) of Corollary 3.1 and (3.61),

n[62(1 - 1) — 62(1)] =o(logn) as.
This and (8.73) imply that
n[log 32(1 — 1) — log 62(1)]

— nlog{1 + [2(1 - )] T[62(1 - 1) - 5]}

<n[62(1 - 1)] [62(1 - 1) — 62(1)] = o(logn) as.
Consequently,

lim »[BIC(Z) — BIC(I — 1)] /(logn) =1 as,,

and
(3.77) lim n[BIC(!) — BIC(p,)]/(logn) =1 —p, as.

Combining (3.76) and (3.77), (3.71) is proved. O
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ReEMARK. The criterion PLS is different from BIC. For example, if p = 1
and ¢, = 1 in (8.57), then by (2.10), (8.17) and (8.5) of Wei (1987),

PLS ~ n62(1) + o2 log( Elyf)
i=1
~né2(1) + 20%log n.
Consequently,
log[PLS/n] ~ log 62 + 2log n = BIC + log nn.
In general, the penalty term depends on the number of roots of (3.58) which
are inside and on the unit circle, see (3.11) of Wei (1987).

4. Incorrect models. In this section we study the asymptotic decomposi-
A =

tion of the PLS when the model is incorrect. For this, we introduce &,
(1/n)L?_,£%(n). In the following discussion, regression and time series models
will be treated separately.

4.1. Regression model. Consider the regression model

(4.1.1) ¥ =f((Xy)) + e,

where X; = (x;;, %;9,...) € 12,. f is a measurable function from /2 into R and
a; are ii.d. random variables with E(a;) = 0 and var(e;) = ¢? > 0. One much
discussed regression function [see Shibata (1981)] is of the form

(4.1.2) f(Xl) = Z oJle, Where(ol, 02,...) (S l2.
j=1
Let x; = (x;3,..., x;,). The following theorem gives the PLS an asymptotic

decomposition when p variables x; are selected.

THEOREM 4.1.1. Assume that (4.1.1) holds. If

n

(4.1.3) lim Py Y x,x,=T for some nonsingular T,
n=eli=1
1 n
(4.14) lim — Y x;f(X;) =¥,
noe =1

1n ~
(4.1.5) lim ~ Y xx[f(X;) - Bx;]° =G, wherep=T"1y,
n—o i=1

(4‘1'6) Sup "xn " < 00,
n
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then
(41.7) ¥ e?=né! +(logn)[p0' +tr(F71G)]|(1 + o(1)) a.s.
i=m+1
Proor. Let ¢, — B'x;. Then ¢; = (f(X,) — B'x;) + a;. We will apply

Theorem 2.3 w1th h = f(X ) — B'x;. Observe that (4.1.3) is exactly the same
as (2.14). By (4.1.5), to show (2.21), we only have to show

n

(4.1.8) lim — ) x;x}a? = o7T.

noe g

If lo;| < K a.s., then by Chow’s (1965) result and (4. L 6),

Z x;;%,(af — 0?) = o( B A K4) =o(n) as.
i=1
This and (4.1.3) imply (4.1.8). For the general case, let &; = ;I .k Then
by (4.1.8) and the strong law of large numbers,

% xox (o - ) <

n

1
(Sup (EM ) Him — 3 aflj.,s k)
me Ry

lim sup

n—oo

2
= (sup 120 17) Bl

n

Applying the result for the bounded case, we obtain (4.1.8) by letting K — .
Now let us prove (2.22). By Chow’s theorem again,

n n n
Y xVix;ha; = 0( )y (x’iV;'xihi)zEaz?) = 0( Y (xVix,)*h?).
i=m+1 i=m+1 i=m+1

Finally, let us verify (2.24). It is known [Lai, Robbins and Wei (1979)] that

n -1 n
( Yy xix'i) Y x;a;=0(1) as.
i=1 i=1

This in turn implies that

n -1 5
= ( > xix'i) Y Xy -
i=1 3

i=1
n -1 5 n -1 5
= (Z xix’i) Y xf(X)-B+ (Z xix'i) Y x;a;
i=1 i=1 i=1 i=1

>T ly—B=0 as.
Hence, by (4.1.6),

|%,(b,_y = B)]| < (sup %, 1) b,_s — Bl = 0(1) ass. o
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REMARK. Theorem 4.1 also holds for arbitrary p variables of (x;;, x;5,...).

ExampPLE. Polynomial regression. Let
f(x)'=Y 6;x/71,
j=1

where (6, 02,...) €1? and 0 < x < 1. This is a special case of (4.1.2) with
x;; = (x;)’~'. Assume that {x,} is chosen so that there is a distribution F' and
for any continuous point x of F,

Z I[x,sx] = F(x)

n—»oonl 1

Assume that f is bounded. Let x = (x%,...,x%) be the selected variables.
Then T = [xx' dF, y = [x f(x)dx, G = ]xx’(f(x) p'x)2dF. Clearly, (4.16)
is satisfied with sup,, [Ix,,|l < ‘/_ The only assumption we have to impose on
F is that T is nonsingular.

ReMARK. To check whether PLS is asymptotically equivalent to BIC, by
(1.7), it is equivalent to check whether

po? + tr(T71G)

4.19 lim = .S.
( ) nl_>°° &’? p a.s
Assume that
(4.1.10) lim — Z fAX,) =c?

Then by (4.1.3), (4.1.4) and (4.1.10),

1 n
lim 62 = o2 + lim — Y [A(X;) - 3"‘;‘]2
n—ow n—>w =1

=o02+c?2-28y+BTB.
Therefore, (4.1.9) is equivalent to
(4.1.11) tr(F"1G) = p[c? — 28’y + BTB].

In the polynomial regression case, let F' be the uniform distribution over [0, 1)
and f(x) = 1. Assume that the variable x = (x) is the selected variable. Then

T=1/3,vy=1/2B=3/2
G- folxz(l — (3/2)x)%dx = 1/30, tr(I'"'G) = 1/10
and
p(c? — 2By + BTB) = [01(1 — (3/2)x)%dx = 1/4 + 1/10.
Clearly, PLS is not asymptotically equivalent to BIC.
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4.2. Time series. In this section we assume that

(4.2.1) (¥,.,X,) is ergodic and E(]y,| +||x1||)4 < o,
(4.2.2) E(x,x}) =T is nonsingular.
Let y = E(x,y,), B = -1y, g =y, —PBx;,and G = E(xlxrlef)'

THEOREM 4.2.1. Assume that (4.2.1) and (4.2.2) hold. Then

(4.2.3) Zn: e? =né? + (log n)tr(I''G)(1 + o(1)) a.s,

i=m+1
if one of the following conditions is satisfied:

(4.2.4) sup||x,|| <® a.s.;
n
(y,,x,) is strong mixing with mixing rate a(n) and
(4.2.5)  thereexistr > 2,8 > 0, such that £7_i"/* Ha(@)P/ "+
< w and E(ly;| + [Ix,|D?7*® < oo;

there exist i.i.d. mean zero random variables {3,},
sequences {a,}, {b,(j)} and r > 4, such that E|5,]" < o,
L2 fla,l + 16, <o, y, =L%.a,;8; and x,;=
% Wb, _(j)s;.

(4.2.6)

Proor. We will prove that the conditions of Theorem 2.3 hold with
h; =¢;, a; = 0 (hence 0® = 0) and G = G. Condition (2.14) and the first part
of (2.21) follow from the ergodic theorem. The second part of (2.21) and (2.22)
are immediate consequences of the fact that a; = 0. It only remains to show
(2.24) or

(4.2.7) lim x/(b,_; —B) =0 as.

Now by the ergodic theorem
n -1 p

lim b, = (Z xix'i) Y Xy = [E(x1x'1)]_lE(x1y1) =p as.
' i=1

Therefore, under (4.2.4),
I, (b,_1 = B) | < (sup %, 1)Ib,_, — Bl = 0(1) ass.

To show that (4.2.7) holds under (4.2.5) or (4.2.6), observe first that E||x,[|* < «
implies [Ix, || = o(n'/*). Hence it is sufficient to show that

(4.2.8) b, — Bll=0(rn""*) as.
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Note that

n

n -1
b, -B= ( Z xi.x,i) Z x,(y; — B'x;).
i=1

i=1

By the ergodic theorem, proving (4.2.8) is equivalent to proving

(4.2.9) Y x,(y; - Bx;) = L x;6, = O(n**) as.
i=1 i=1

Now fix j and let Z; = x,;

(4.2.10)  E(x¢1) = E(xyy,) — E(x;x})B =y - T(I''y) =0,

E(Z,) = 0. Under (4.2.5), we have E|Z,|"*® < » and the mixing rate @(n) of
{Z,} satisfies

g;. Since

i ir/z_l[d(i)]s/(r+8) < o,
i=1

since obviously @(n) < a(n). Consequently, by Corollary 2 of Yokoyama (1980),
page 47,

(4.2.11) Y. Z,=o(n'?logn) as.,
i=1
and (4.2.9) holds. Now let us assume (4.2.6). By Lemma A.1 and the fact that
E(Z) =0,
r/2

E < Kn"/* for some K > 0.

2 Z
i=1

Since /4 > 1, by Corollary 1 of Lai and Wei (1984), (4.2.11) holds and so
does (4.2.9). O

ExaMpLE. Let y, be an AR(«) process defined by
Z D Yn—j =0y,
j=0

where ¢o = 1, L5 _old;| < ®, ¢(2) = T5_¢,;2’ # 0 for |z| < 1 and §, are i.id.
random variables with E(5,) = 0, E(6?) = 02 and E|5,|" < » for some r > 4.
We fit the model by an AR(p) model. Hence x, = (y,_y,...,%,_,). By a
theorem due to Wiener and Lévy [Zygmund (1959), page 245], there is a
sequence {a,} such that Zla,| < ® and y, = X7_,a;5,_;. Therefore, (4.2.6)
holds.

Let y(i) be the covariance function of y,. We then have that T =
(G = jor,. ¥ =(Q),...,¥(p)), B = I''y. Furthermore, by the inde-

.....
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pendence of &, and {y;: j < n},

2
P
G = Exlxll(yZ - Z Bij—j)
j=1*

. 2
= Exlx'l(_ Py b¥a_; — Bjyz—j) + 0 ’E(x,;X})
j=1

T'M*u
-

=G, + o’ (say).
Therefore, tr(I'"1G) = po? + tr(I'"1G)).

REMARK. Under slightly stronger assumptions on ¢; and §;, Kavalieris
(1989), Theorem 1, claimed that in an AR(x) model
n
(4.2.12) Y. e?=né2+ (logn)(psf +C,)(1+0(1)) as.,

i=m+1

where
2

>

» 2
0'p2=E(y2_ Zﬂjyz—j) =0'2+E(
Jj=1 J

P
$1Y2_j — X Bj¥a-j
1 j=1

and 0 < C, < C(g? — o) for some C.

This does not coincide with our result. Let us check a simple example where
¥, =8, + pd,_; with |p| < 1. Consider fitting this process by an AR(1) model.
We obtain

I'=(1+p%)0% y=pao®, B=p/(1+p%.
Hence
03 = E(y2— By)" = 0 + (p = B)’0® + BP%0” = o® + 0% /(1 + p?).
But
G, = E[y}(y, - By, — 85)7)
= [20°E(82) + (p® — 4p° + p*)o*] /(1 + p?)°
= 2p%[E(58%) — 30%] /(1 + p?) + p*ot.
Therefore,
tr(I'G) = o + tr(I'G,)
— o2+ {20%/[(1 + p7)07] [ E(a1) - 30°].

Clearly, when E(8}) < 30*, tr(I'"'G) <o? + C,. This is the case when
P[5, = 1] = P[5, = —1] = 1/2.

In the above discussion, we find that in general tr(I'"'G) may not be
equivalent to ¢?. Since lim,, _,,, 6,7 = 0? a.s. [see (4.2.17)], this in turn implies

(4.2.13)
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that PLS asymptotically may not be equal to BIC. However, by (4.2.13), if
E(87*) = 80*, then tr(I'"'G) = 0 and PLS is expected to be equal to BIC.
This is not an accident. We have the following result.

THEOREM 4.2.2. Assume that (4.2.1), (4.2.2) and (4.2.6) hold. If

(4.2.14) E(8}) = 304,
then
(4.2.15) tr(T'G) = pE(¢?) = pE(y, — B'x,)"
and
1 logn
(4.2.16) log(— Y e?) = log 62 +p(T)(1 +0(1)) a.s.
i=m+1 .

COROLLARY 4.2.1. Assume that (4.2.1), (4.2.2) and (4.2.6) hold. If §; is
Gaussian, then (4.2.15) and (4.2.16) hold.

The corollary follows immediately from Theorem 4.2.2 since a normal
random variable satisfies (4.2.14).

Proor oF THEOREM 4.2.2. Since the calculation of T and G only involves
o? and E(8}), without loss of generality, we can assume that 8, is Gaussian.
By (4.2.10) and the Gaussianity of (x,, ¢,), X, is independent of ¢,. Therefore,

G = E(x;x}¢}) = E(x,x})E(¢}) = TE(¢})
and
tr(F~'G) = tr(I'T) E(£7) = pE(&3).
Therefore, (4.2.15) is proved. By the ergodic theorem and (4.2.8),

1~ 2
62=—Y (y;, - b,x;)
ni=1

1 n 2 1 , n
(4.217) = E‘.l (: — Fx;)" = —(b, — B) ( X x,-X’,-)(b,, - B)

i-1
= E(f)(1 + o(1)) + O(|Ib, - BI*)
=E(s?) +o(1) as.

By (4.2.3), (4.2.15) and (4.2.17),
1 ?
log(— Yy eiz) =log 62 + log[l +p ( 1) logn

n

i=m+1

— @+ (1))]

~ log 62 logn
log 67 + log|1 + p Py (1+0(1))

Clogs? 4 p BT
logé? +p - (1+o0(1)) as.

This completes our proof. O
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ReEMark. If (4.2.1), (4.2.2) and (4.2.5) are satisfied and (y,,x,) is Gauss-
ian, then by the same proof, (4.2.15) and (4.2.16) also hold.

5. A Fisher information criterion. In this section we propose a new
model selection criterion that is based on the Fisher information. We first give
this new criterion a statistical interpretation and discuss its relationship with
the predictive least squares principles. We then use a simulation study to
demonstrate its advantage.

5.1. FIC. The criterion we propose is to select the model that minimizes

(5.1.1) FIC(M) = né2 + 6 logdet( o xix’i),
i-1

where M is the model with design vector x; and 6 and 6 are variance

estimators based on the model M and the full model, respectively.

When y; = B'x; + &;, where ¢; are i.i.d. N(0,0?) and X, is o(gy,...,5_)-
measurable, the conditional Fisher information matrix for B is ¢ 2L}_;X;X].
The quantity det(c~ 2L 7_,x;x}) can be interpreted as the amount of informa-
tion about B. Our criterion replaces the conventional penalty term, which is
proportional to the topological dimension of the selected model, by a term that
is proportional to the logarithm of the statistical information contained in M.
The redundant information by introducing a spurious variable is used to
represent its penalty. When this variable, say x;, is uncorrelated to other
variables [so that in (3.19) s2 ~ ©7_,x2], the penalty term is larger if the
magnitude of this variable is bigger. This is a desirable property since the
prediction error for the variable with larger magnitude is expected to be bigger.
The conventional criteria do not possess such a feature. Furthermore, when an
l-variate AR(p) model is fitted, one may have conceptual difficulty deciding
whether p or Ip should be used in the conventional criteria. Our criterion does
not have this ambiguity.

The relationship between FIC and PLS is very close. In the stochastic
regression model, using (2.6) and Chow’s (1965) result, one can see that

n
PLS ~ né?2 + o? logdet( Z\xix'i)
(5.1.2) . =t
+ ¥ xVx[xi(b,_, - B)]" as.
' i=m+1
When the model is correct, under the assumptions given in Lemmas 3.1 and
3.2, the last term can be dropped and we have

(5.1.3) PLS ~ ng? + o? logdet( Y xix'i).
i=1

Replacing o2 in (5.1.3) by an estimator, say 6,2, we then obtain FIC. When the
model is incorrect, in comparison with FIC, PLS has an extra penalty term.



PREDICTIVE LEAST SQUARES PRINCIPLES 31

However, this gain seems to be minimal. Because in this case, né? is the
dominant term. Furthermore, PLS has the following unpleasant features in
practice.

(1) It is computer intensive: Although there are some algorithms
[Friedlander (1982) and Wax (1988)] to reduce the size of the computation
operations, due to its recursive nature, it is still very computer intensive. For a
discussion, see Hannan, Mcdougall and Poskit (1989).

(2) It tends to select the model with fewer variables when the sample size is
small. This is observed by Rissanen [(1986¢c), page 60] and a philosophical
explanation is also given there. According to the simulation study below, we
observe that at earlier stages, the model with more variables tends to have
larger prediction errors. When the sample size is small, these errors tend to
dominate the PL§. Consequently, it rejects the compllcated models more
frequently than it should. Instead of computing PLS starting from m + 1
when the first prediction error is well defined, one may start at a later stage,
say m. Presumably, this would improve the performance of the prediction for
the model with more variables and resolve the problem mentioned above.
However, when the sample size is small, it is not clear how to choose such a
cut point 7,

(3) It is a criterion that depends on the particular order of data. Although
using PLS as an on-line model selection procedure is quite natural since the
data come in sequentially, conceptually it may not be that sound for the
off-line case. For example, if {y;} is a stationary Gaussian process, then
(y1,¥9.--,¥,) and (¥,,,_1,...,¥,) have the same distribution; that is, the
process is reversible. In this situation, when one observes {y,,...,y,}, should
he or she use the time-ordered data or its reverse? Furthermore, as recognized
by Rissanen (1986a, b), when the data are modeled as being independent, a
permutation-invariant criterion is required. Since using all permuted se-
quences to compute PLS is a formidable task, Rissanen also suggests a
modification [see (2.6) of Rissanen (1986a)] of the PLS. However, the computa-
tion of this modification, although not of exponential complexity, is much more
involved than the computation of any particular PLS. Furthermore, this
modification is a local optimal procedure. It is not clear, at least conceptually,
that it would perform as well as the one by all permutations.

Our criterion FIC is permutation invariant, easy to compute and of no
initialization problem as stated in (2). It seems that FIC provides a resolution
to the above-mentioned problems. Furthermore, FIC also shares strong consis-
tency properties. This is the context of the following theorem.

THEOREM 5.1.1. Assume that (3.1), (3.2), (8.10) and (3.11) hold. Then
(8.13) holds if one replaces PLS by FIC. Furthermore, assume that (3.1),
(3.15), (3.16), and (3.22) hold. Also assume that either x, are nonrandom
vectors or (3.30), (3.31) and (3.36) hold. If B, = 0 and (3.42) is replaced by

(5.1.4) lim log *(V,")/A.(V,') =0 a.s,
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and

(5.1.5) lim log A*(V,')/n=0 a.s,
n—oow

then (3.43) also holds for FIC.

Note that (5.1.4) is weaker than (8.42). The reason for introducing (3.42) is
to handle the o(1) term appearing in (3.44) and (3.45). The condition (5.1.5) is
to ensure that 62 in the FIC would converge to o2 a.s. [see Lai and Wei
(1982a)]. The proof of Theorem 5.1 follows the same arguments as those given
in Theorems 3.2 and 3.3. We omit it. Note that FIC (5.1.1) is a special case
considered by Potscher (1989). But in his consistency results, the penalty term
is assumed to be of order larger than log det(X ?_,x;x’). Therefore, his results
are not directly applicable here. Also note that the two examples, all subset
selection for the regression model and order determination for an AR(p)
process, considered in Section 3 both satisfy (5.1.5). Hence FIC also picks up
the desired models consistently.

5.2. Simulation study. The criterion has been applied to the motor vehicle
death data [Draper and Smith (1981), page 191]. The variable x,, which
reports whether there are more males than females, is not included in our
study. All chosen criteria, FPE, AIC, BIC, C, and FIC select the same
variables x,, x; and x;. We also apply these crlterla to the cement data [Hald
(1952), page 647]. Our criterion FIC, which coincides with BIC and C,, selects
{x,, x;} while FPE and AIC select {x,, x,, x,}. It appears that FIC is quite
comparable with respect to the other criteria.

To demonstrate the advantage of using FIC, we also conduct a simulation
study. The model we consider is

(5.2.1) yi = Boxio + leil + Bzxiz + 8i’ i = 1, oy n,
where x;o = 1, x;; =i, 2, = L’ _,u, {4;} and {5;} are independent sequences

of i.i.d. N(O, 1) random variables. In economics [Phllhps (1986)], one may like
to see whether the data fit a constant model M, (i.e., B, = B3 = 0) or a linear

TABLE 1
Bo =By =1, By = 0(M, is true)

Model FPE AIC BIC c, PLS FIC
M, 0 0 0 0 0 0
M, 83 83 86 86 98 93
M, 0 0 0 0 0 0

M, 17 17 14 14 2 7
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TABLE 2
Bo =Bz =1, By = 0(M, is true)

Model FPE AIC BIC c, PLS FIC
M, 0 o 0 0 (] (]
M, 0 0 0 0 0 0
M, 86 86 88 87 99 98
M, 14 14 12 13 1 2

trend model M, (i.e., B; # 0, B, = 0) or a random walk model M, (i.e., B, = 0,
By # 0) or a mixture of them, M, (i.e., the full model). Note that in this
problem, L?_,x2 =n, L7 x% ~n%/3 and E(C?_,x%) = n(n — 1)/2. Each
variable has a magnitude of different order. Our criterion FIC (or PLS) is
expected to perform better than the other criteria.

Tables 1 to 3 summarize our study. There are three cases. (In regression
analysis, one always includes B,.) In each case, we choose sample size n = 50
and run 100 replicants. Each entry in the tables represents the frequency of
the model selected by a particular criterion.

As expected, the overall performance of FIC is better than the conventional
criteria, since it is sensitive to the magnitude of the selected variable. When
the model has fewer parameters (say M, and M,), PLS is better than FIC.
However, for the full model, PLS is the worst among all the criteria. When we
check into the details, we find that most of the unsuccessful samples for PLS
have large initial prediction errors. These errors carry over as the PLS is
calculated recursively and become the dominant factor as described in (2)
above. Overall, FIC is the best among all the criteria.

5.3. Final remark. One may find that FIC is not invariant under the
scalar change of x;. But this can easily be resolved if det(X ?_,x;X}) is replaced
by det(d, 2L"_,x;x;) or [det(L”_,x;x}) — det(L ™ ,x,x})] for some m < n.
Theorem 5.1.1. still holds under this modification.

TaABLE 3
Bo = By = By = 1 (Mg is true)

Model FPE AIC BIC c, PLS FIC
M, 0 0 0 0 0 0
M, 0 0 0 0 11 0
M, 0 0 0 0 0 0
M, 100 100 100 100 89 100
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APPENDIX A

Unstable autoregressive process. In this section we are going to show
that (3.30) holds for z, and w,, defined by (3.69). By (3.68) and (3.69),

(A'l) un = wlun—l + e +¢sun—s + an
and
(A.2) v,=0w,_1+ - +0,_,+9,,

where (z) and 6(z) satisfy (3.68). Therefore, (3.69) is a corollary of the
following theorem.

THEOREM A.1. Assume that {5,, %,} is a sequence of martingale differences
that satisfies (3.15). Assume that u, and v, satisfy (A.1) and (A.2). Let
u, =W, ... )y, vp=W,_y,...,v,), P,=X} juu| and H, =
L vl If u, and v, are Fymeasurable and y(z) and 6(z) satisfy (3.68),
then

n
(A.3) lim Pn‘l/z( Y uivi’)H,:l/2 =0 a.s.
n—e i=1

Before we prove Theorem A.1, we need a few lemmas which are of indepen-
dent interest themselves.

LeMMA A.1l. Let {%,} be a sequence of increasing o-fields. Assume that
{y,}, {x,} and {e,} are sequences of p-dimensional random vectors such that
Y, =X, +e¢,, X, is Z,_,-measurable and for some integer 1> 0, €, =
Lt _1e,()), where for 1 <j <1,

(A4) Ele () Fujor) =0, swpE{len(D)I| %o} <= @,
n

for some a > 2. Also assume that

n n
(A.5) A, = A*( Y oxx,+ ), eie’i) > a.s.,
i=1 i=1
n
(A.6) log A*( Y xix’i) =o0(A,) a.s.
i=1
Then
n
(A.7) lirnA*(Zyiy{)/An=1 a.s.
noe i=1

Proor. Let R, = L?_,x;X; and G, = L}_¢;€;. Then

n n n
(A.8) Y vy =R,+ X x¢+ ) gx; +G,.
i=1

i=1 i=1

We can assume that R, is nonsingular a.s. Otherwise for j = —p + 1,...,0,
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define y; =x; = e; and €; = 0, where {e;} is an orthonormal basis. This
reduces the problem to the case that R, is nonsingular. Now, by (A.4) and

Lemma 1 of Lai and Wei (1982), for each j, x; is %, ,;_,-measurable and
2

n
R;V2Y xie’i(j)] = O(log **(R,)) as.
i=1
Consequently,
n 2
(A.9) ’R;l/z Y x;&;|l =O0(log A*(R,)) aus.
i=1

Given any unit vector u, by (A.6) and (A.9),

n n
u) x;eu= u'R}/Z(R;l/2 Y xie'i)u
i=1 i=1

n
-1/2 !
R, / E X €E;

i=1

< {W(R, + G,)u}'*0[log"/? »*(R,,)]

<[wry|

<u/(R, + G,)uO[{log #*(R,) /A, }"7|
=u' (R, + G,)uo(1l) aus.
Applying this to (A.8), we have
(A.10) u’( Y y,.yi’)u =u (R, +G,)u(l +0(1)) as.
i=1

Since the o(1) term does not involve u, (A.7) follows. O

LemmA A.2. If all eigenvalues of a p X p matrix A have magnitudes 1, then

(A.11) ).,,=).*(2Ai(A')") o asn - ®,
i=1

Proor. We: prove (A.11) by contradiction. Since A, is increasing and
A is nonsingular, if (A.11) does not hold, then there is A > 0 such that
lim, ,,A, =A.Let H, = L7 ;A‘(A)" and e, be the eigenvector correspond-
ing to A, such that [le || = 1. Then there exists a subsequence n; and a unit
vector e such that lim; _, , e, =e. Fix n. We have

(A.12) | i 2e| <|| HY2(e - €,) | + |[HY %, |-

But since n; > n,

(A.13) || H,e,, ||2 =e,He, <e He, =1, <A\

n=n; j
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In view of (A.12) and (A.13), for all n,

| H1 % < 1im
Jj—o®

|H (e — e, )| + 172 = 072,

Consequently,
(A.14) 0< Y €A(A)ex<i<om.
i=1

Now, by Jordan decomposition, there exists an orthonormal (possibly complex)
matrix P such that

D, © 0
(A.15) papr=| % D= O
0 D,

where P* is the Hermitian transpose of P and D; are d; X d; matrices with
Zf=1d ;=p and

A, 1.0 0
0 "-. ... 0

(A.16) D= e Iyl=t
0 ............ :/\

In view of (A.14)-(A.16), it is sufficient to show that if |jul| = 1 and

(A.17) 0 < Y wDi(D*)'u* <

i=1

for some d X d matrix D which satisfies

A.1..0 0
o - 0
D= : ..1’ |A|=1,

then we have a contradiction. For this, observe that

i L)1 i i-d+1
)‘-..(1))‘ (d—l))‘
oo T : ;
D= |: ) , where(l)=0ifi<l.
Q " v v :Ai
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Therefore, if u = (¢4,...,uy), then
hm u ( Y. D! (D’ /[ |u1|2.
By (A.17), [u%l =0. Now if u;= -+ =u;=0, by a similar argument,

u;,, = 0. Consequently, u = 0, which contradlcts (A17). O

LemMmA A.3. Let {d,, %) be a sequence of p-dimensional martingale dif-
ferences such that for some a > 2 and matrix T,

(A18) E(3,8,|% _,) =T and supE(|3,]|F_,) <= a.s.

Let z,.,=Az, +3,, where z, is Fy-measurable and A a p X p matrix.
Assume that

(A.19) all eigenvalues of A have magnitudes 1,

q ) ’
(A.20) r,= ZOAJ Y (A4)’ is nonsingular for some q > 0.

Jj=
Then
n 1
(A.21) liminf A, ( Y ziz’,-) — = as.
n—o i=1

Proor. For any positive integer [,
lq
— Alg+1 j
z,.,~ A zn—lq + Z AJSn—J
Jj=0

Under assumptions (A.18)-(A.20), it is known [Lai and Wei (1985), Theorems
1 and 2] that for some integer m,

(A.22) A*( Y Altlg,_ .z ,qA"’”) = 0(n™) as.,
i=lq
and

n [ g lg ! Ig _
£ (£an (5 ) o wray

k=Ig \j=0 Jj=0 j=0

(A.23) Z (ZA’Z(A’ )(A’

s=1

=n Z AT,(A) as.
s=1
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In view of (A.22) and (A.23), we can apply Lemma A.1 to obtain

n 1 1
llmlan*(Z ziz'i); > A*(Z Asrq(A,)s)
i=1

o
n= s=1

> A*(Fq))«*( Zl‘, AS(A’)S) a.s.
s=1

Since ! can be chosen arbitrarily, Lemma A.2 and (A.20) imply (A.21). O
Proor oF THEOREM A.1. Let d, = (§,,0,...,0) and

01,...,0[_1 ot _ ¢1,0~~’¢3—1 ¢3
A‘( I_, 0)’ B“( I, 0/

Then all eigenvalues of A have magnitudes 1 and all eigenvalues of B have
magnitudes less than 1. We also have

(A.24) v,=Av,_;+393, and u,=Bu,_;+3,.

Let I = E(5,8,) = 02M, where M;; = 1 and other M;; = 0. It is known [see
Lai and Wei (1985), Theorems 1 and 2 and Example 3] that

(A.25) N(H,) = O(n®) forsomep >0,

n .
(A.26) limn~'P, = limn~') uwuw,= ) B'T(B)’ as,
n—o n—o i=1

Jj=0

and
s—1 . i-1 .

(A.27) Y. BT(B’)’ and ) A’T(A')’ are positive definite.
Jj=0 Jj=0

Therefore, to show (A.3), it is sufficient to prove
(A.28) (nH,) '? Zn: vu; >0 as.asn —>»,

i=1
First, let us assume that for all integers /,
(A.29) (nH,) '? Zn: v;d,, 20 as.asn—> o,

i=1
Then for any integer & ‘> 0,

(nH,) ™ % vy = (nH,) ™ ¥ v _y(B)*
i=k i=k

(A.30) +(nH,)V? iZ:: Vj’:gssj—l(B/)l_l

= Iln + IZn (Say)‘
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By (A.29), |II,, ]l = o(1) a.s. By the Cauchy~Schwarz inequality,

- 1724 2] [ & 2| gt
1l < = | £ 15 72%0) | £ o] 1821
i=k i=k

n 1 n
- tr(Hn 3 v,-v,’)(-— Y IIu,_k||2)||B"||
i=k ek
<t B*HI[n~ tr(P,) = nYu, ).
Therefore, by (A.26),

< t||B’°||tr( }E BIT( B')f).

Jj=0

n
-1/2
(nH,)™* ¥ v
i=k

(A.31) limsup

=308

Since all eigenvalues of B have magnitudes less than 1, lim, _ /|B*|| = 0. This
and (A.31) imply (A.28).
Now, it remains to show (A.29). For [ > 1, since v; is %, ,,_;-measurable, by
Lai and Wei (1982) and (A.25),
n
“ H;Y2 Y v8.,,|=0(ogA*(H,)) =o(logn) as.
i=1

Hence (A.27) holds. For [ < 0,

-1
(A.32) Vj = Z AiSj_i + Al_le+1_1
i=0

and
n n -1 .
B wsmmt § (5 A
j==1 j=-1\i=0
A.33 T
( ) +H, V2 ) Al—lvj+1—18/j+l ’
j=-1

=J1n+J2n (SaY)‘

Observe that by Lemma A.3 and (A.24) (with y; = 0),

wst =l £ 141 £ s ) <o s
im j-

Set R, = A'"U(Z"__,,,v;vi)XA)' "L Then in view of (A.9),

R;I/zj-i_l(Al_lew—l)s}u

= || #;2/2RY/*|0[ {log x*( R,))""?].

| Tanll < I1H; /2 R52

(A.35)
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However, by (A.32), we can apply (A.10) to show that for any vector z,
|tz R = 2R
< 2H;Y2(H,) H;?2(1 + 0(1)) "
= [lzI*(1 + o(1)).
Consequently,
| H;2R2) = 0(1) as.
In view of this, (A.25) and (A.33)-(A.35)

n

(an)_l/z Z V¥,
i=1

=o(1) + o([log n/n]""*) = 0o(1) as.

This completes our proof. O

APPENDIX B
Linear processes.

LemMA B.1. Let {5,} be a sequence of i.i.d. random variables such that
E(8,) = 0 and E|8,)*" <  for some r > 2. Assume that Y, = L% .a;5,_; and
Z,=1X%,b;8,_; with L= (la;| + |b;) < ». Then there exists a constant K such
that for all n,

r

E|Y (Y,Z, - EY,Z,)| <Kn'/2
t=1

A better result that only requires {5,} to be a sequence of martingale
differences can be found in Findley and Wei (1990). We omit the proof of
Lemma B.1.
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