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ONE-ARMED BANDIT PROBLEMS WITH COVARIATES'

By JYOTIRMOY SARKAR
University of Michigan

As does Woodroofe, we consider a Bayesian sequential allocation be-
tween two treatments that incorporates a covariate. The goal is to maxi-
mize the total discounted expected reward from an infinite population of
patients. Although our model is more general than Woodroofe’s, we are
able to duplicate his main result: The myopic rule is asymptotically opti-
mal.

1. Introduction.

1.1. Statement of the problem. Consider a population of patients who
arrive sequentially for treatment of a disease. Suppose each patient may be
treated with either a standard treatment whose statistical characteristics are
known, or a new treatment whose characteristics are unknown. Also suppose
that before deciding to assign a given patient to a treatment, we observe a
covariate X, such as age, severity of disease or general physical status, which
is specific to the patient.

Let Y° and Y denote the potential rewards from the standard and the new
treatment, respectively. Let 6 = 0 and § = 1 denote the choice of standard or
new treatment, respectively. We would like to assign patients to treatments in
such a manner that the total discounted expected reward over the whole
population of patients is maximized. The discount sequence is geometric with
discount factor a« € (0, 1).

1.2. Rationale for covariate model. In clinical trials, the goals an experi-
menter would like to attain are diverse and often conflicting. Ethical consider-
ations are prominent in all experimentation involving human subjects.
Conflicts are invariably generated by the obligation of a researcher to balance
the well-being of the current patient (individualistic view) with that of the
future patients (utilitarian view) who stand to benefit from new advances in
medical treatment. This long-standing dilemma has received considerable
attention in both statistical and medical literature such as Anscombe (1963),
Weinstein (1974), Byar, Simon, Friedewald, DeMets, Ellenberg, Gail and Ware
(1976), Bartlett, Roloff, Cornell, Andrews, Dillon and Zwischenberger (1985)
and Woodroofe and Hardwick (1990).
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Classical randomized clinical trials, which allocate approximately equal
numbers of patients to different treatments, exemplify an extreme utilitarian
goal. The individualistic goal, on the other hand, is exemplified by the ‘“myopic”
allocation rule in which patients are assigned to the treatment that has the
highest current expected reward.

The main result of this article is that in the presence of a suitable covariate,
the myopic procedure attains the utilitarian objective in addition to the
individualistic one. For the use of covariate models, however, one must ensure
the availability of concomitant information. In many medical trials, such
information is likely to be present at little or no extra cost.

1.3. Summary of results. We formulate the maximization of the total
discounted expected reward problem as a variation of the classical one-armed
bandit problem, in which the decision to choose arm 1 or arm 0 depends on the
present covariate as well as the previous covariates, allocations and responses
that have been observed up to the present time. Let Y be the difference
between the reward from the new treatment and the expected reward from the
standard treatment. We have obtained a reasonably explicit asymptotic solu-
tion (as @ — 1) to the maximization problem, in the case of a one-parameter
exponential family, for which the conditional distribution of Y given X and 6
may be described by

(1) g(ylx,0) = exp{6t(x,y) — ¢(x,0)}.

For this family of distributions, we describe the structure of the optimal
Bayesian policy 6 = (8, 8,, .. .) for a given prior distribution 7, over ©, using
the dynamic programming equation. The description is nonconstructive but
leads to easily verified conditions that prescribe whether arm 0 or arm 1
should be chosen.

Under some regularity conditions we show that the myopic rule is asymptot-
ically (as a@ — 1) optimal, in the sense described in Section 2. The proofs of
these results require detailed analysis of the sequence of likelihood functions
and the sequence of posterior distributions. The style is similar in spirit to that
of Woodroofe (1979) but the formulation is more general and there are
technical differences in the proofs.

In Section 2, we give the mathematical formulation of the problem. Section
3 contains the main results, Theorems 1 and 2, together with an example.
Some preliminary lemmas and propositions, including the strong consistency
of MLEs (Proposition 3) and the asymptotic normality of the sequence of
posterior distributions (Proposition 4), are presented in Section 4. Finally, in
Section 5, we prove Theorems 1 and 2.

1.4. Summary of references. Bandit problems have been studied by vari-
ous authors. A thorough discussion of bandit models appears in Berry and
Fristedt (1985). The pioneering work in the realm of covariate models for a
one-armed bandit problem was done by Woodroofe (1979) who studied an
extremely simple model for the geometrically discounted responses from an
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infinite population. He established the asymptotic optimality of the myopic
rule. Woodroofe (1982) studied the optimal allocation policy in the case of a
covariate model for uniformly discounted responses from a finite population
and investigated the asymptotic properties in the case of a large population. In
this article we extend Woodroofe’s (1979) model to a more general and
hopefully more realistic model, preserving most of its good features.

Clayton (1989) investigated a discrete time, finite horizon uniformly dis-
counted Bernoulli bandit with covariate. In his article the probability of
success-depended on the covariate through a “link” function such as logit or
log-linear. He also developed a notion of Gitten’s index for the covariate model.

2. Mathematical formulation.

2.1. The model. Let X,Y° Y! denote the covariate, the potential re-
sponses from arm 0 (standard treatment) and arm 1 (new treatment), respec-
tively. Suppose that:

1. X has a known distribution F;

2. the conditional distribution G°(:|x) of Y° given X = x is known;

3. the conditional distribution G(:|x, 8) of Y! given X = x is specified by an
unknown parameter 0, 6 € O,

4. O has a known prior distribution .

Also suppose that Y° Y! are real valued; initially X,® may be quite
general taking values in Polish spaces 2" and 0, respectively. Also assume that
F and 7 yield finite expectations for Y° and Y. Let (X,,Y°, Y,), 2 > 1, be
conditionally independent and identically distributed (iid) as (X, Y°, Y'!) given
0 =0.

2.2. Policies and their worth. Suppose further that X, X,,... are ob-
served sequentially and that for each k, we may observe either Y;? or Y}, but
not both. By a sequential allocation, we shall mean a sequence & = (8, 8,,...)
in which each §, takes the value 0 or 1 according as we observe Y, or Y;! as a
function of X, and % ;, where % , denotes the o-field generated by the
relevant data available at time &, that is,

F2=a(Xpyeoo, Xy sy 8y 8,1 + (1= 8) YD, .., 8,V + (1 - 8,) V).

&2 may be denoted by %, if the dependence on § is clear from the context.
The expected a-worth of a policy 6 when the prior is 7 is defined to be

(2) Vo(8,m) =E7| 3 a* 8, V) + (1 - 8,)Y)}|,

k=1
where E™ denotes the expectation with respect to the joint distribution of ®
and (X,,Y Y}, k > 1. The series in (2) converges almost everywhere and
may be integrated termwise in view of the assumption that F, G°, G' and =
have finite expectations.
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Given a and 7, we seek to maximize (2) by choosing 8.
As in Woodroofe (1979), we may reduce the problem to the case Y° = 0, by
letting Y, = Y;! — E(Y,°|X,} for k = 1,2,... . Then

1
V,(8,m) = l—E[YO] + U,(8, ),

- a
where
(3) U,(8,m) = E"[ )» ak_15kYk]

k=1

for all 6 and 7. Thus it is sufficient to maximize U,(8, 7) with respect to §;
and U, (8, 7) is of the same form as V, (8, 7) with Y! replaced by Y and Y°

replaced by 0. Moreover, for any k > 1, the posterior distribution of ® given
2 is the same as the posterior distribution of ® given X Boovoey Xp3 00peeey Op;

51Y1’ ey 8kYko
From now on, we shall suppose that Y° = 0 and write Y for Y. Let
(4) U,(m) = supU,(&',m),
5

where the supremum extends over all §'. Then U, is a convex function of
because U_(8, 7) is linear in 7 for each & [cf. DeGroot (1970), pages 125-128].
We call a policy 6* optimal if and only if §* attains the supremum in (4), and
we call the supremum itself the value of the bandit problem.

2.3. Notation and assumptions. Let G(:|x, 8) denote the conditional dis-
tribution of Y given X =x, ® = 0. Assume for each x € 2 the family of
distributions {G(:|x, 6): 6 € @} is dominated by a o-finite measure A,, with
versions of conditional densities {g(-|x,8): # € ®} such that G(dylx,0) =
g(ylx, 0) dA (y). We suppose that g may be chosen measurably with respect to
x, y and 6. Let 7* = 7*(-|x, y) denote the posterior distribution of ® given
X =x and Y =y. Then

m*(dO|x,y) x g(ylx,0) dm(0) ae.y(A,),ae. x(F).

The conditional expectation of Y given X = x, ® = 0 and that given X = x
are

p(x,8) = LyG(dny,B)

and
i(x,m) = /@ u(x,0) dm(6)

for all x, 6 and 7. Let y*= max(0, y) for —» < y < « and define

v(6) = [ n(%,0)" dF(x)
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and
v(m) = j@ v(0) dm(0).

If 6 were revealed at each allocation time, one would get a reward of v()
per patient on the average. Therefore, the maximum total discounted reward
would be ¥(7)/(1 — a). Clearly then for each &,

(5) U(5,m) < Uy(m) < B().

l1-a

2.4. Construction of optimal policies. Suppose we have observed X; = x. If
we observe Y; and then proceed optimally, our expected conditional (given
X, = x) gain is p(x,m) + a E™U(7*(-|x, Y}))|X; = x}. On the other hand, if
we do not observe Y, and then continue optimally, our expected gain is
aU (7). Clearly, it is optimal to observe Y, if and only if the former is larger
than the latter. So the optimal policy stipulates

(6) 6f(x;m) =1 ifandonlyif p(x,w) + ap,(x,7) >0,
where
pa(x,‘lT) = E"{Ua("T*(.Ix>Y1)) - Ua(ﬂ')lxl = x}

is a nonnegative functional, by the convexity of U, [cf. Woodroofe (1982),
Appendix].

The description of optimal policy §* may be completed by replacing X; and
m by X, and the posterior given %°", at later times k£ = 2,3,... .

REMARK 2.1. Observe that p_(x, ) is a version of the conditional expecta-
tion of U (7*(-|x,Y})) — U/) given X, evaluated at X; = x. Thus it seems
reasonable to regard ap (x,7) as the expected gain in relevant information
that would result from observing Y;. It is hard to compute p_(x, w) without
imposing further restrictions such as strong ancillarity [cf. Woodroofe (1982)].
We shall not address the issue any further in this article.

2.5. A class of strategies. Let
€= {8 =(8,,8p,...): 8, = 1if g(X,,m,_;) > 0}.
Notice that the myopic rule 8° given by
(7) 8¢ =1 ifandonlyif &(X,, =] ,)>0
and the optimal rule §* given in (6) both belong to <.

3. One-parameter exponential family model.

3.1. Assumptions. Let I, be the class of all prior distributions on ® and
endow II, with the topology of weak convergence. Let (X,,Y,), k> 1, be a
conditionally iid sequence of random variables, given 6 € ©. The following
conditions are needed.
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ConpITION 1. O is a compact interval of R.

ConpITION 2. The cumulative distribution function for Y, given x and 0 is
of the form

(8) G(dyl|x,0) = exp{6t(x,y) — ¢(x,0)}A (dy),

where ¢ is a measurable function on Z"X R and A, is a nondegenerate
sigma-finite measure on the Borel sets of R for each x. Moreover, there is an
open set ®, containing O such that

exp{y(x,6)) = [ exp{0¢(x,7)}A.(dy) <o
for all 6 € O, and all x € &

ConpITION 3. The initial prior distribution 7, has a positive continuous
density £, on @0, the interior of ©.

ConpITION 4. For each 8 € ©,, we have the following two conditions.

CoNDITION 4a. u(x, ) == E[Y]|x, 0] = [ryG(dy|x, ) is finite V x € R.

ConpITION 4b. u(x,6) is differentiable with respect to x on an open set
containing {x: u(x,0) =0} and {x: u(x,0) = 0} C {x: p,o(x,0) > 0}, where
[Lij(x, 0) = al+‘][.b(x, 0)/3xl 60‘].

ConDITION 5. Z°C R and F has a bounded continuous density f with
respect to Lebesgue measure, and satisfies the following conditions.

ConDITION 5a. F{x: u(x,0) =0} =0,V 6 € 0.
ConbpITION 5b. F{x: p(x,7) > 0} > 0,V 7 € I1,.
CONDITION 5¢. [ supgluo(x, 0)| dF(x) < .
CONDITION 5d. [ sup,luqe(x, 0)| dF(x) < .
CONDITION 5e. [ sup,lthge(x, 6)2 dF(x) < co.

ReMark 3.1. By Condition 1, I, is compact [cf. Billingsley (1968), Theo-
rem 6.1]. '

ReMark 3.2. By Corollary 2.3 of Brown (1986), y,(x,8) = E[¢(x,Y)l|x, 0]
and ¢y,(x,0) = Var[t(x,Y)lx,0] > 0 for all x and 6. Therefore, the log-
likelihood function of 6 given X; = x and Y, =y, namely, log(g(ylx, 8)) =
0t(x, y) — ¥(x, 6) is strictly concave in 6.
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RemarRk 3.3. Note the relationship between i,,(x,0) and u(x,0). By
Lemma 2.8 of Brown (1986), ¢,,(x, 6) is analytic in 6 for each x. So is u(x, 6).

REMARK 3.4. Condition 5a holds when p is strictly increasing in x for each
0 and Condition 5b holds when u increases without bound as x — «, for each
8. Condition 5b means that no matter what the prior distribution is, for some
nontrivial covariate values, the new treatment is preferable to the standard
treatment. Furthermore, if u(x, 8) > 0 for all x, then the allocation problem is
trivial:. Always use the new treatment. Hence of interest is the case when
u(x, 8) equals O for some x. By Condition 4b, there can be at most one such x.

REMARK 3.5. Conditions 4b and 5 are not satisfied by the model without
covariate. Conditions 5a and 5b account for the simplicity of the solution to
the allocation problem in the covariate model.

ReEMARK 3.6. Conditions 1 and 3 are used in proving Proposition 4. Condi-
tion 4b is essential to invoke the implicit function theorem in the proof of
Lemma T1.1. Condition 5a is used in Lemma T1.6; Condition 5b in Proposi-
tion 1; Condition 5c in Lemma T1.1; Condition 5d in Lemmas T1.4, T1.5, T1.6
and T1.7 to apply the dominated convergence theorem; and Condition 5e in
Propositions 1(ii) and 6.

3.2. Example 1. Suppose the reward for the standard treatment, given
covariate x, is described by Y° = 1 + VxZ, Z ~ N(0,1); and the reward for
the new treatment, given covariate x and parameter 0, is described by Y! = xV,
V ~ N(8,1), where 6 € O, a compact subset of (0,). Let the initial prior
distribution on ® be 7, having a continuous density &,.

In particular, for small values of x (x < 8~1), the standard treatment has a
higher expected reward, whereas for large values of x (x > 6~'), the new
treatment has not only higher expected reward but also large standard devia-
tion. This may be an appropriate assumption if very little is known about the
side effects of the new treatment. Therefore,

Y=Y'-E[YX=x] =2V -1~ N(x6 - 1,x?).
Hence

2

So that ¢(x,0) = 02/2, u(x,0) =x6 — 1 and 0~ %(9) = 1 — F(6~ 1), where o2
is defined by (10) below. Note that, Conditions 1-4 hold. The myopic policy
simplifies to 80 = 1 if and only if x > 1/¢,_,, where ¢, = {(7,) = [0 dm,(0).

Furthermore, ¢y,(x,6) = 1. So, with K, = ¥ %_,8,, the likelihood function
of 6 given &, is

K 1 2 Y, +1\°
Ln(ﬁ,e)dexp{7n(0—725k u )}

y+1 62
g(y;x,0) o exp{f
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Hence the MLE of 6 given %,

° s

Y, +1

A 1 2
0, = — 0
n Kn Zl k Xk

3.3. Results. In view of (5), we define the regret for a strategy 6 as

(9) R (m,8) = 7—=7(m) = U(m,3).
That v is twice continuously differentiable is shown in Lemma T1.1. Define
(10) o7H0) = [ ea(x,0) dF (),
ix, 0)>0
(11) c(6) = %«ﬁ(f»{v"(@ ~ [ poalx.6) dF(x)}
w(x,0)>0
and
(12) &(m) = [ c(6) dm(6).
)

For the one-parameter exponential family model, as described in (8), our
two major results are Theorems 1 and 2.

TueorREM 1. Under Conditions 1-5e

R (8% ) ~ ln( )5(71') asa - 1.

l-a

THEOREM 2. Under Conditions 1-5e

slgnga(‘o‘,w) =R (6% m) ~ ln( 1 _a)c(fn') as a > 1.

8.4. Comments. These two theorems assert that the myopic policy §° is
asymptotically optimal, provided the regularity conditions 1-5e hold. An inter-
esting comparison of this approximate solution to the allocation problem with
the approximate solution to the stopping problem that arises when F is
degenerate at 0 is given in Woodroofe (1979). For the purpose of this article,
we wish to highlight the following two features:

1. The myopic and the optimal procedures are in very close agreement with
each other in the covariate problem. Thus the myopic procedure does, in
fact, fulfill the utilitarian goal in addition to the individualistic one.

2. While we have assumed F to be known, the myopic rule which is asymptoti-
cally optimal does not require the knowledge of F for its implementation.

In contrast, when F is degenerate the myopic and the optimal procedures
have regrets of different orders of magnitude. This was established in
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TaBLE 1
Expected number of successes: w = Beta(1, 1)

Uniform covariate Noncovariate

N Optimal Mpyopic Optimal Mpyopic
3 1.89 1.89 1.67 1.68
5 3.18 3.18 2.85 2.85
10 6.43 6.43 5.80 5.82
20 13.00 12.99 11.91 11.78
25 16.30 16.29 14.89 14.77
40 26.22 26.20 24.17 23.71
50 32.84 32.83 30.32 29.68
60 39.47 39.46 36.49 35.64
80 52.75 52.73 48.87 47.57
100 66.04 66.02 61.33 59.51

Woodroofe (1976) for the Normal model and extended to the general exponen-
tial family models in Lai (1987).

3.5. Numerical illustration. Consider, as in Woodroofe (1982), a Bernoulli
response problem where the probability of success with the standard treat-
ment defines the covariate X and that with the new treatment is a parameter
6. In other words, for the standard treatment, P(Y° = 1lx,0) = x =
1 - P(Y°=0lx,0), and for the new treatment, P(Y'=1lx,0) =0=1—
P(Y! = 0lx, 0). Let the initial prior distribution of 6§ be 7 = Beta(a, b). The
goal is to maximize the total number of successes among a population of N
patients.

Notice that whereas the rest of the article is concerned with geometric
discounting with rate a, this particular example deals with uniform discount-
ing of successes from a finite number N of patients. The asymptotic worth of a
policy in the geometric discounting problem as a — 1 can be approximated
fairly well by the worth of a policy in the uniform discounting problem with a
large horizon N.

For this latter problem, it is possible to compute the optimal worth numeri-
cally by dynamic programming. We compare a uniformly distributed covariate
model [X is distributed as Uniform(0, 1)] with a noncovariate model (X is
degenerate at 1/2). Table 1 gives the expected number of successes for the
special case w = Beta(1, 1). We see that the myopic procedure is nearly optimal
in the uniform covariate model. For details see Sarkar (1990), Chapter 2.

4. Preliminary lemmas and propositions.
4.1. Preliminaries. First we need a definition.

DEFiNITION 1 (Uniform convergence in probability). A sequence of measur-
able functions {U,(8): n > 1} is said to converge to 0 in P7-probability,
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uniformly with respect to § € ¢ if for every ¢ > 0,

lim sup P7[|U,(8)| > ¢] = 0.

If 7 is degenerate at 6,, we shall write P, instead of P in the above.
For 6 € ¢, define

Cp_1(8) = {x:8, =1},

K. (%) = n6,
(13) n() kz=:1k

V,(6,0) = Y 8,4(X,,0).
k=1

Among other things we shall show that the covariate bandit problem is not
a stopping problem. That is, for any prior distribution 7 and any rule é§ € ¢,
the long-range proportion of patients assigned to the new treatment is bounded
away from 0. This is proved in Proposition 1(). To justify the data-dependent
transformation of the parameter 6 in (16), we need to prove Proposition 1(i),
equicontinuity of ¥, (5,0)/n and the strong consistency of the sequence of
MLEs.

ProposiTION 1.

1
@) lim 612f K,,(B) = lim 512f — Z F{C,_.(8)}
(14) o noe

> inf F{x:u(x,7) >0} :=gq, say,
well,

and
i) i f\If”ae li 'flf (%, 0,) dF(
= lim inf — s
(u) nl—l>1:o 812 ( 0) nowosedn k=1 Ck_1(5)¢02 x 0 x)
(15)
> inf [fq/zoz(x 0) dmw(0)| dF(x)
wEy /{x: p.(x T)>0}

= r7 say’

in P, -probability, for all 0, € ©. Furthermore, ¢ > 0 and r > 0.

Proor. The equalities in the above are obtained by specializing Lemma
P1.1 below by choosing w(x) =1 for (i) and w(x) = ¢y,(x, 0,) for (i) and
using Condition 5e. Since the indicator function of an open set is lower
semicontinuous, an adaptation of Example 17 of Pollard (1984) proves that
g>0and r>0. 0
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LemMMa P1.1. Let w be a measurable function for which [w?(x) dF(x) < .
Then

1 n
;kgl syw(Xy) — fH( )w(x)dF(x)] -0

in P7™-probability, uniformly with respect to 6 € €.

Proor. For any 6 € €,
1 n
E"|{—Y {8 w(X,) -
{nk=1 * * ‘[

1
_3

w(x) dF(x)]}

2 -1(8

2o
{akw(xk) - /C )w(x)dF(x)} ] < ;[w2(x)dF(x),

k-1

which is 1ndependent of 8. So by Chebychev’s inequality we get the result. O
4.2. Equicontinuity of ¥)(8,0)/n.
ProposiTION 2. Forall 6, € O,
lim sup sup sup —-|\I’”(6 0) — V2 (5,0,)| =0,

=0 |9_gjl<n n=15e€
a.s. (Py).

Proor. For each fixed n,

n

1 1
sup —|‘I’;{(6,0) - ‘PZ(3,00)| < n Z sup |¢‘02(Xk’9) - ¢02(Xk700)|’

19—8ol<n T k=110—6l<n
which is independent of § and converges to
f sup | Yoa(%,0) — Yoa(x, 8,) | dF (%)
10—0yl<m

a.s. (Py)) as n — o, by the strong law of large numbers. Now by Remark 3.3,

Yoo, 0) is continuous at 6, for all x. Therefore, the last integral converges to
0 as n — 0. The result follows. O

4.3. Strong consistency of the sequence of MLEs. In Remark 3.2, we noted
that for any 8, the log-likelihood function is strictly concave. Hence it attains
its maximum at a unique point 0,,, the MLE of 6 given %,.

PropPOSITION 3. There exist n, e, > 0 such that
Po['én - 9| > s] < 2exp{—ne’n},
Vn>1,V0<e<e,VO0EB®and Ve ¥
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CoroLLARY P3.1. For every € > 0,

lim sup supP,,{ sup Ién — 0] > a} = 0.
m=-®s5e£60€0 n>m

The proofs of Proposition 3 and Corollary P3.1 are given in the Appendix.
REMARK 4.1. Propositions 1(ii), 2 and 3 imply that

1 R
lim inf —‘I’;{(‘o‘,@n) >r,
nowsct€ N .

in P, -probability for all 6, € ©. So the following transformation makes sense:

(16)  Z,=4/¥(8,8,) (6 - 8,).

4.4. Asymptotic normality of posterior distributions of Z,,. From Condition
2, the log-likelihood function of 6 given %, is

17 1,(6,6)=296 Xn: 0,t(X,,Y,) — ¥,(6,0).
k=1

For a given policy 8, let 7, = 72 be the posterior distribution of 6 given %,.
Let

£ = 5(8) = [ 67,(d0)
and
oF = 02(3) = [ (6 = ¢,)*m,(d0)

be, respectively, the posterior mean and variance of 6 given %,. Let ¢,(8,2)
denote the posterior density of Z, given %,. Then

1 A
(18) 6n(8,2) = — exp{1,(8,0) — 1,(5,0,)}£0(6)
with
(19) c, = f@ exp{ln(S, 0) — 1,(8, 5n)>§0(0) dz,

where 6 and z are related by z = ‘P,'{(‘o‘, @n) (6 — 8,). Let ¢(z) denote the
density of a standard normal distribution.

ProposITION 4. Forall 6, € 9,

J(1+2%)]8,(5,2) - ¢(2)|dz > 0

as n — =, in P, -probability, uniformly with respect to 6 € €.
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The proof of Proposition 4 is presented in the Appendix. The following
corollaries are immediate.

CoroLLARY P4.1. For all 6, € O, the posterior distribution m, of ©® con-
verges to the degenerate distribution at 8, in P, -probability, uniformly with
respect to 6 € €.

COROLLARY P4.2. For all 8, € ®, Vn (8, — {,) converges to 0 in P, -prob-
ability, uniformly with respect to § € €.

4.5. Evaluation of K,(8)/n and ¥,(6, én)/n for the myopic policy §°. By
virtue of Corollary P4.1, specializing Lemma P1.1 for §° we obtain, for all
00,

K,(8° 1 _ 0
(20) = Fa (i) > 0} +op(D)
- F{x: p(x,0) > 0}
and
v(8%6,) 1.2 5
e S A CYAr SR
(21) k=1"m(x,m_)>0

- ,[ lpoz(x, 0) dF(x) = 0-—2(0)
w(x,0)>0
in Pj-probability.
PROPOSITION 5. For all § € O, lim, _,, ka(8°) = 0%(0) in P,-probability.

Proor. Notice that, for any 6 € ¢,

kof(8) = k[ (0 = 4)" dm(0)
= k{[(e - ék)2d7rg(o) - [f(e ) dqr;:(a)] }

= -\—P—’;((:T,‘){fz%ﬁk(é,z) dz — [fz¢k(8,z) dz] }
k\Y Yk

The proof is completed by (21) and Lemma A.1 (with [ = 1,2) of the Appen-
dix. O
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5. Proof of the theorems.

5.1. Evaluation of the regret for the myopic policy. For the myopic policy
89, let

B = {x: ﬁ(x,w,‘zo) > 0}.
Therefore,

U, (8°m) = i ak_lE"[fBo

a(x,my) dF(x)]
k=1 k-1

and

(22) R (8%m) = kglak‘lE""[T/(w}Zo_l) - /0

B -1

w(x,m2y) dF(x)].

5.2. Proof of Theorem 1. Since X%_,a*/k = —In(1 — a) for a € (0, 1), it
is enough to show that

|

By Lemma T1.1 below, v is twice continuously differentiable. So, for any
8 € £, we may write

{ fB x, 7)) dF(x)}—c(@))

[k{:‘z(w,f) - fB () dF(x)}] =1-1-1I+1V,

where (dropping 8" for notational simplicity)
L= k[#(m) = {v(&) + 300" (&),

==k

(R m4) — (:42) — Hroa(®2 ) ) dF(x)J,

k

III = k[[B a(x,m,) dF(x) — fAﬁ(x,wk)dF(x)],

IV = 3ka?|v" (&) — fA#oz(x’{k)dF(x)]

with

Ay = {x: n(x,8) > 0}
and

B, = {x: z(x,m,) > 0}.
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By Lemmas T1.4, T1.5 and T1.6 below, E7[|I| + |II| + [III|] — O uniformly in
8 € €. Also by Lemma T1.7, E™[|IV(8°) — ¢(®)|] - 0. This completes the
proof of Theorem 1. O

The proofs of the lemmas cited in the above discussion are given below.
LemMma T1.1. v is twice continuously differentiable.

PrOOF. We shall explicitly evaluate »'(§) and v"(6). In view of Condition 4b
and Remark 3.4, using the theorem of implicit functions [cf. Courant (1937),
page 114], for each 6 € 0, there exists a unique x(0) such that

u(x(6),6) =0
and the function x(0) is differentiable with derivative
£(8) = — roi(x(0),0) .
,u,lo(x(O) s 0)
So that

{n(x,0) <0< pu(x,0)} ={x(0) <x <x(0)}.
Next, we apply Theorem 16.8 of Billingsley (1979) successively twice to get

(23) V'(0) = f moi(x,0) dF(x)
w(x,0)>0
and
@) O = [ gl 0) AR+ (x(0) T

The analyticity of u(x, 6) implies the continuity of »"(8). O

REMARK. The explicit formula (24) for v"(8) simplifies (11) to give

F'%l(x(e)’a)

1
(25) c(0) = 502(9)f(x(9))m-

ExampLE 1 (Continued). Suppose further that F(x) =1-e¢7* x €
(0, ©). Then Conditions 5-5¢ hold and v(0) = 0 exp{—6~1}, »'(8) =
(1 + 6 YDexp{—6~1} and v"(0) = 6 2exp{— 6~ !}. One may easily check that the
formulas (23) and (24) give the same results.

LeEmma T1.2. Let 8% = (8%,6%,...)€ €,V k > 1 and write o? = o2(%).
Then {ko?; k > 1} are uniformly integrable.

Proor. Note that ko2 < E"[k(6, — 0)2|.%,_,]. So it is enough to show
that {k(6, — 6)%, k > 1} are uniformly integrable. This follows easily from
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Proposition 3 which implies that
E,[k*(b, - 0)']| < CR?R,[|d, — 0] = ] + 4[%‘/’?33130“5,2 — 6| > —‘/‘%] ds
0
< 2Ck? exp(—negk) + 8/0033 exp(—ns?)ds
0

for all k>3, where n and ¢, are as in Proposition 3 and C =
(sup @ — inf 8)* < » by Condition 1. Since these remain bounded as k —

uniformly in 6, E™[k(6, — 6)?] remains bounded as k — =, so that {k(6, — 0)%;
k > 1} are uniformly integrable. O

LeEmma T1.3. For n > 0, let
(26) Q(mim)=[ (8- &)dmi(6).
10—£l>m
Then
lim sup kE"[Q(wk,n)] =0

k—>°°5

for all n > 0.

PrOOF. It is enough to show the result for arbitrary 6* € ¢ since we can
choose 8% to be near where the supremum is attained. Then letting 6 = §*, it
suffices to show that kQ(w2, n) — 0 in P_-probability [since Q(}, ) < o, for
all £ > 1; and {ko?; k > 1}, are uniformly integrable]. Notice that

kQ(wh,m) < 4k [

16—6 w>n/2

< 4k [ 2%¢,(8,2) dz + I(Io g | > )kg (),
- ‘I'Z(&ék) 16—8,1>m /2 AR kT Sk 2

(6 - 6,) dwk(0)+I(|0k &) > )kak(S)

which approaches 0 in P, -probability as & — =, by Proposition 4, Corollary
P4.2 and the remark in Section 4.3. O
LEmMma T1.4.
llm sup E7[|I]] = 0.
Proor. Let £ > 0 be given. By Lemma T1.1, there exists an 1, > 0 such
that

sup  [v(8,) — v"(82)| <e.
16, — 85l <mg
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Then

Il =%

[, @) = w6 = ()@ - 6 dmi(o)|
< geko} + kQ(my, o) Sl;P|V"(0)|~

Therefore, Lemma T1.4 follows from Condition 1 and Lemmas T1.2 and T1.3.
O

LeEMma T1.5.

lim sup E7[|II[] = 0.
k- sef

Proor. For n > 0, let

e,(x) = sup Il‘oz(x’ol) - #02(35,0)]
|0'—6l<n
for x € R. Then

E[|I|] < %f&n(x) dF(z) X E™[ka?(8)]

+ sup | koa(%, 0) | dF (x) X E"[kQ(w, m)],

which approaches 0 uniformly in § € ¢, as £ > » and then n — 0; by
Lemmas T1.2 and T1.3, Condition 5d and the analyticity of u. O

LEMMA T1.6.
lim sup E7[|III|] = 0.
kowscg
ProoF.
==t w(x,m)dF(x) — w(x, ) dF(x
[/;(x,{,f)<o<ﬁ(x,fr£) ( k) (x) ‘/;T(x,w,f)<0<u(x,{f) ( k) (x)

= II! - 112, say.

Now observe that

| <k [E(x,7}) - , )| dF
| | '/;L(x,zf)<0<ﬁ(x,wg)[ﬂ(x Wk) u(x gk)] (x)
= k"'f(S)f sup |3u9(x, 0) | dF(x).

wlx, ) <0<m(x, 7)) oc®

By Corollary P4.1 and Condition 5a
F{x:p(x,0) <0< g(x, 7))} -0
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uniformly in 6 € ¢. Therefore, by Condition 5d and Lemma T1.2, the domi-
nated convergence theorem gives

lim sup E™[|III!|] = 0.

kowseg
Similarly,
lim sup E™[|III%|] = 0. O
kowseg
Lemma T1.7.

lim E7[|1V(8°) - c(®)]] =o.

Proor. Lemma T1.1 and Corollary P4.1 together imply that v"(¢ ,‘ZO) -
v"(6). By Proposition 5, ko2(8°) — o%(9). Finally, by Corollary P4.1 and the
dominated convergence theorem,

, L8 dF
f(x’ngolioz(x {k) (x) » '/[.J-(x,9)>

Moz(%,0) dF(x).
W 0
So, IV(6°) - c(8) a.s. (P,). Next, see that for all 6 € &,

[IV(3)| < 3sup|o7(0) - [

wlx,

Roz(x,0) dF(x)|ka?.
)>0

Therefore, by Conditions 1 and 5d, Lemmas T1.1 and T1.2 and the dominated
convergence theorem, we complete the proof. O

5.3. Lower bound on the regret for the optimal policy °. For the optimal

procedure 8% let B, = {x: m(x,7.") > 0} and recall from (13) that C, =
{x: m(x,w") + ap(x,72") > 0}. Then

R (8% 7) =), ak_lE”[ﬂ m) -
k=1 (7i-1) ‘[B

+ Y ak_lE"[f
k=1 Cr-1—B

‘

) (x,mp" ) dF(x)]

(27)
|;7,(x, w,‘za_l)ldF(x)].

k-1

Notice that all the terms on the right-hand side of (27) are nonnegative.
Therefore,

k-1

k

R (8% m) = E"

)»

ked,

where I, II, III and IV are as in the proof of Theorem 1 with § = §* and

J klz( ! ) k !
1= . < < .
“ n l-a)  ~ 1-a

(I-1II-1II+1IV)

b
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5.4. Proof of Theorem 2. By Lemmas T1.4, T1.5 and T1.6, which hold
uniformly with respect to § € ¢,

lim sup maj(E"[III + |II| + |III|] = O.

a—1 €

Therefore, the main interest centers on IV. First note that, as a = 1,

)»

k>1/(1-a)

v a:1 ~1n[1n2(;ia)] =o(lnlia).

E<In?[1/(1-a)]

ak—l

k

<1

and

Therefore, as a — 1,

ak! 1
Y ~ln( )
ked, k l-«a

By Proposition 6 kelow and arguments similar to Lemma T1.7,
lim sup maj(E"[llV(é") -¢(®)]] =o0.

a—1 k€
So that
. R (8%, m) i,
hﬂl{lf m >c(m).
This completes the proof of Theorem 2. O
PROPOSITION 6.

lim sup ma}E”[lko,f(B"‘) - a%(9)|] = 0.

a1 ke

Proor. For n ed,,
1 n R
L4 " a _ " 0
E [n{wn(a ,0,) —wi(s ,on)}]

f ‘ |glr02(x,(3n)|dF(x)

p=1"0(x,m,)<0<@(x,m) +aplx,m,)

IA
S| =
™M=

(28) s
[ supves(x,0)* dF )|

IA
——

1/2

1”2 _ _
X _r: Z F{M’(x:'n'k) <0< /"L(x177k) + apa(x"n'k)}
k=1

by the Cauchy-Schwarz inequality. It is shown below that the last sum
approaches 0 uniformly in n € J, as a — 1. Therefore, by Condition 5e, we
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have

1 . n
lim sup maxE"[—{‘l’Z@a,on) - \Pz(ao’o")}] =0.

a—1 ned, n
]= 0

An argument similar to that in the proof of Proposition 5 now completes the
proof of Proposition 6. It remains to show that the last sum in (28) approaches
0. Given ¢ > 0, choose n > 0 such that

Hence, by Corollary P3.2 and Proposition 5,

lim sup max E™ - a?(8)

a—1 kEJa

Wy (8%, 6,)

1 n
lim sup maxE'"[; Y, F{—n <pm(x,m,) <0} <e.

a—1 nEJa k=1
This is possible since there exists n > 0 such that F{—7/2 < u(x,0) <0} <&
for all 6 € ® and by Corollary P4.1, |u(x, m,) — u(x,0)| <n/2 for all suffi-
ciently large k. By (27), for a close to 1 and n € J,,,

E"[l i F(C, — By} SE#[l i F{-n <p(x,m) <0}
n n,-

k=1
1 d k—1 -
+——= X o* 1 |E(x,m)|dF(x)
nna k=1 C,—B,
0 R.(5%m) <2 4ec(m)
<2e + J(0%, 1) <2 +
nna” nin(1/(1 - a))

: |
since for a close to 1 and n € J, ;

and

R (8% m) <R (8°m) < 25(w)ln( 1 i a).
Since ¢ is arbitrary, the proof is complete. O
APPENDIX
Strong consistency of the MLEs.
PROOF OF PROPOSITION 3. Recall the definitions of ¢ and r from (14) and

(15). Also recall from Remark 3.2 that the log-likelihood function is strictly
concave. Therefore,

Py[6,> 0 +¢] = P,[1(5,6 + ) > 0]
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for all 6 € O, ¢ > 0 for which 8 + ¢ € ® and all n > 1. From (17),
S, =1,(8,0+¢)= Y 8,[t(Xy,Ys) — ¥ou( X, 0 + )]
k=1

and
w+(x’y) = t(x1y) - l1’01(x10 + 5)'
Then

€
A_,,(E,O) = A(w+, E, 0)

= [g[@em{g[t(x,y) — Yoi(x,0 + 8)]}g(y;x,0) dA(Y) dF(x)

- g[ fgexp{(o + g)«x,y)}dAx(Y)]

Xexp{— §¢01(x, 6+¢) - u(x, o)} dF(x)
= fgzexp{z//(x o+ ) ¥(x,0) — 1[/01(x,0 + s)}dF(x)

< fge@{— -;—[1,001(x,0 +e) - ¢01(x,o + %)]} dF(x).

The exponent in the last integrand is negative since ¢y,(x, 6) is monotonically
increasing in 6 (assuming 6 + ¢ € ©,). Hence 0 < A (¢,0) < 1,V £ > 0. Also

B A+(‘570)

82

v 1 — exp| (s/z)leI(xﬂ;a)-'/'01(x"’+8/2)]}dF(x).

€

Using L'Hospital’s rule the limit of the integrand on the right-hand side as
¢ — 0 can be shown to be y,(x, 6)/4. Hence

limi f‘1—A+(s,61) 1 dF

minf ——5" > 7 [ s(,0) dF(x) =

which does not depend on 6 and is positive. In fact, by the compactness of 0,
the last relation holds uniformly in 6. So there exists ¢,> 0 such that for all

0<e<e, andall 9 €0,

A 0 "2
— > — .
+(£’ ) = 88
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Therefore, for all 0 <e <¢, andall 6 € 0,
P)[6,> 6 +¢| =PJ[S, > 0] < E,[exp{18S,}]

< ‘/EO[A+(5,0)K"] < exp{—3q[1 — A, (e,0)]n}

<e {—232n>
< exp| — 7o .

The first inequality above is the Bernstein inequality, the second and the third
inequalities hold by Lemmas A2 and Al, respectively, of Woodroofe (1979).

A similar bound for P,[6, < 8 — €] can be obtained for 0 <& <e_ by
replacing w, by w_ and taking A_(¢,0) = Aw_, —¢/2,0), where w_(x,y) =
t(x,y) — ox, 0 — &)

Proposition 3 follows with ¢, = min(¢ ., ¢_) and n = gr/16. O

ProorF oF CoroLLARY P3.1. The proof follows easily by summing.

Po[ sup |§n - 0| > s] < § P0[|§n - 0| > e]

nx=m

which converges to 0, as m — «. O

Asymptotic normality of the posteriors. The proof of Proposition 4 is
presented here. The following lemma is needed. For notational simplicity ‘5"
will be dropped in the sequel.

LEmMmA A.1. For each l > 0,

12 o1, (0) - 18, ~ e - 257

in P, -probability, uniformly in & € ¢ for all 6, € (O}

dz—-0

ProoF. Given 6, and ¢ > 0, let 7 be so small that [, — 27,8, + 217] € O°
and

sup  [£(0;) ~ £(8,)] < ££(6,)

10, —051<27
and let ¥ > 0 be so small that

fjwlzll[exp{—%(l - v)2?%} —exp{—3(1 + 'y)zz}] dz <e.
I%(8)

An = 14
{ 17(8)
The integral in the statement of Lemma A.1 is the sum of three terms I, II,

Let

— 1| <y,VI6 -8l <29} N {[6, — 6,] < ).
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and III,, with

1=[ , 11=[ , III=/
* o ey G, " Gy " e onywGy’

the integrand being the same as in the statement of Lemma A.1. We shall
show that each of these tends to 0 as n — .
If A, occurs and |6, — 6,| < 7, then

7 1 5(0) n
_ .y
R AR s R OB VL
+f L lellesp{t(0) ~ 1,(0,)} - exp(-3(1 + 7)27) 2
Y
+ [ lal|exp{—3(1 + v)2?%) — exp{~—32%}| dz
16—6,l<n
<[ el exp{—3(1 - v)2?}dz
60-6,l<n

+ 2/ _ l2lexp{—3(1 — v)2?} — exp{—3(1 + v)2?}|dz
16—6,l<n

< eflzll exp{—3(1 — v)z%} dz + 2.

To show II, is arbitrarily small we argue as follows. If A, occurs and z >
n‘/\lf,’,’(én) ,then 6 > 6, + n and

1 (6) - ln(én) ln(On + 173’ - ln(ﬂn) (0 A

IA

A

sl (6%)(0 - 6,) < b,z2,

IA

where 6, < 6* <6, + n and
b,=1in| sup ()| [y¥(8,)
b,<t<b,+n

Notice that on A,, b, < —n(l — y) /4. Therefore,

1
I, < Zle {— —n(1 - z} dz,
5(00) ‘/z'>n\/‘lf,’,’(é,,) P 477( ‘Y)

where M = sup,. g £(0) < », by Conditions 1 and 3. Therefore, by Corollary
P2.2, II,, is arbitrarily small on A,, for all large n.
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Likewise, we can show that III , is arbitrarily small on A, for all large n.
Now, by Lemma 2, Proposition 3 and the compactness of O,

lim P, [4,] = 1
uniformly in 8§ € €. This completes the proof of Lemma A.1. O

ProoF oF PropoSITION 4. From (18) and (19), we get the following inequal-
ities:

|ba(2) — $(2)| < 5(000) - \/217 j((fo)) exp(,(0) — 1,(6,)}
1 | &(0) A 1,
+—2—‘/—1T— g(TO)eXp{ln(O) - ln(en)> — exp{——2-z }
and
C, ® 'f(e) A 1 2
’5(00) - \/2_17’ < f_w £060) exp{ln(o) - ln(Gn)} - exp{—gz } dz.

Proposition 4 follows easily. O
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