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ESTIMATED CONFIDENCE UNDER THE
VALIDITY CONSTRAINT -2

By Jiunn T. HWANG AND LAWRENCE D. BROWN

Cornell University

We examine the decision theoretic estimated confidence approach pro-
posed by Kiefer, Robinson and Berger, and focus on results under the
frequentist validity constraint previously described by Brown and by Berger.

" Our main result is that the usual constant coverage probability estimator
for the usual confidence set of a linear model is admissible under the
frequentist validity constraint. Note that it is inadmissible without the
frequentist validity constraint when the dimension is at least 5. The
criterion of admissibility under the frequentist validity constraint is shown
to be quite a reasonable one. Therefore the constant coverage probability
estimator which has been widely used is justifiable from the post-data point
of view.

1. Introduction. Let Cy denote a confidence set for a parameter 6 based
on observation of the random variable X. In such a problem, interest centers
on the coverage function I(6 € Cy), where

1, if0eCy,
0, otherwise.

(1.1) I(0 €Cy) = {

To report a confidence for Cy, often a frequentist considers just the coverage
probability, which is E,I(§ € Cyx) = P( € Cx). One saysthat y=1—-«a isa
valid confidence for Cy if

(1.2) E,J(0€Cx) >y, Vo.

In place of the constant value v, it is potentially more informative to provide
a data dependent estimate y(X) of the value of the coverage function, an
approach formulated in Kiefer (1977b) and called the estimated confidence
approach by Berger (1988). The estimator y(X) is also considered to be a
post-data report, since it depends on the outcome of the data. The frequentist
promise (1.2) should then be translated into

(1.3) E,J(6 € Cy) > E,y(X), V.

This guarantees that the estimator y(X ) is conservative in the long run since
on the average it will not overestimate the coverage probability. Condition
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(1.3) will be referred to as the (frequentist) validity constraint. Imposition of
this constraint in closely related settings has been proposed in Brown (1978)
(who called it guaranteed confidence) and in Berger (1985).

Many statisticians have pointed out the danger of reporting only the
unconditional coverage probability and ignoring totally the conditional issue.
The best known example is perhaps that of Cox (1958). The confidence set
version is precisely described in Bondar (1988). Similar behavior in a less
artificial setting is discussed in Casella, Hwang and Robert (1989); see also
Berger [(1985), Example 1, page 17].

Perhaps for some statisticians, the examples of Cox, Bondar and Berger
point out a need for conditioning on the ancillary statistics or some other
suitable partition of the sample space. There are situations, however, in which
no ancillary statistics exist and yet a conditional inference is definitely needed.
Fieller’s confidence interval (1954) is one such example. However, in general, it
is not clear how to choose the partition to condition on, although some theory
has been developed in Kiefer (1976, 1977a, b), Brownie and Kiefer (1977) and
Brown (1978). [Results in Brown (1990) describe the danger of conditioning on
an ancillary in point estimation problems. However, such conditioning, if
properly performed, is highly appropriate when making confidence statements,
see Brown (1990), page 490, 535-536.]

To choose an estimator y(X) with good conditional properties, it appears
reasonable to require y(X) to mimic I(6 € Cy) as much as possible. Therefore
one sets up a loss function such as the squared error loss

(1.4) L(I(8 € Cx),v(X)) = (v(X) —1(6 € Cx))’,

and one requires y(X) to minimize (in the sense of decision theory) its risk
function

R(6,y(X)) = E,L(I(8 € Cx),y(X)).

Terminologies such as “as good as,” “betterness’ (equivalently ‘“‘domination”),
“admissibility” and ‘“inadmissibility” can be defined similarly to those in
decision theory. Additionally, we propose that reasonable estimators should
satisfy the validity condition (1.3). The resulting criterion is calied validity
admissibility (V-admissibility): An estimator is V-admissible if it is (frequen-
tist) valid [i.e., it satisfies (1.3)] and it is admissible among the class of
(frequentist) valid estimators. Obviously, admissibility implies V-admissibility,
but the converse need not hold true.

The aforementioned paradoxical examples can be resolved under this frame-
work. In particular, in the examples of Bondar (1988) and Berger [(1985), page
17], it can be shown that each of the unconditional coverage probabilities is an
unreasonable estimate of confidence in that it is V-inadmissible and is domi-
nated by the coverage probability conditioning on the ancillary statistics.

Alternative frequentist criteria are based on nonexistence of relevant, or
semirelevant subsets. For a survey of relevant subset literature, see Casella
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(1988a, b). Technically, the admissibility (respectively, V-admissibility) crite-
rion is stronger than the nonexistence of relevant (negatively biased relevant)
subsets; see Robinson (1979a).

Ordinary admissibility as well as existence of relevant subsets were studied
in Robinson (1979a, b). Among other results he proves, under (1.4), inadmissi-
bility of y as an estimator for I(|X — 0| < ¢), where X is a p-dimensional
N@, I), p =5 and c is the cutoff point for which P(|X — 6| < ¢) = v; see
Proposition 4.1 of Robinson [(1979b), page 766]. Lu and Berger (1989) ex-
tended this inadmissibility result to p > 5. Robinson’s improved estimator
violates the frequentist validity criterion and hence it remains open as to
whether y is V-admissible. .

In this paper, under the normal setting, we prove in Theorem 1 that vy is
V-admissible for any dimension p for the squared error loss function (1.4).
When y > ;, we also prove the same result in Theorem 2 with respect to the
absolute error loss function

(1.5) L(I(8 € Cx),y(X)) =|v(X) —1(6 € Cx)|.

In either case, for p large enough, the estimator vy is inadmissible without the
frequentist validity constraint.

The squared error loss function (1.4) appears to be an attractive criterion
especially from the Bayesian’s point of view. The Bayes rule against this loss is
exactly the posterior coverage probability. Loss functions satisfying such a
property are said to be proper; see, for example, Schervish (1989). It is
anticipated that the admissibility results of this paper will remain unchanged
for all proper loss functions. A result of this nature is verified in testing
problems by Hwang and Pemantle (1990).

In addition, under the squared error loss, there is the following connection.
It can be shown that an admissible estimator under (1.4), where Cy is an
arbitrary confidence set, is also admissible for estimating E_(I(6 € Cx)|X)
under the loss

(1.6) (v(X) - E(I(6 € Cx)|X))".

(The converse is also true.) Here the ‘“parameter” is the prior distribution 7,
which is assumed to be unknown. From a Bayesian’s point of view, E_(I(6
Cy)IX) is the “answer,” where E_(-|X) denotes the expectation with respect
to the conditional distribution of 6 given X. However, 7 is unknown and
hence the “answer” is unobtainable and has to be estimated. The connection
between (1.4) and (1.6) can be established easily by noting that for any
estimator y(X),

E.(v(X) - I(8 € Cx))* = E,(v(X) - E,(I(6 € Cx)|X))*
+ E,((E,1(0 € Cx)|X) - I(6 € Cy))".

Here E_ denotes the expectation averaging out both X and 6 ~ 7.
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Our results are proven within a canonical normal framework. However,
they all apply to the linear model

Y=XB +¢,

where X is n X p and has full rank p and & ~ N(0, 02I). Assuming o? is
known, the usual y confidence set is

{B: (B - B)(X'X)(B - B) < ™)),

where B is the least squared estimator and Xﬁ(y) is the upper y-quantile of a
chi-squared distribution with p degrees of freedom. After a direct transforma-
tion and an easy argument that allows us to discard the data other than 8, we
can reduce the problem to the canonical form. Hence the conclusion is that v
is V-admissible.

One of Casella’s (1988b) objections to the estimated confidence approach is
that ‘“the mathematical statistics problems can be much harder, perhaps
insoluble.” We hope that by solving the problem here, we can open up a
possible outlet for the frequentists’ fundamental problem.

2. Admissibility under the frequentist validity constraint. Assume
that X is a p-dimensional N(6, I) random vector. A standard v, 0 <y < 1,
confidence set is

CX= {0: |0 _X' SC},
where c is the cutoff point such that P(§ € Cyx) = v, V 6.

THEOREM 1. Under the squared error loss (1.4), the constant estimator vy is
V-admissible for all p. Also, y is admissible for p < 3.

Previously the admissibility of y has only been demonstrated for p = 1 in
Robinson (1979b). He also attempted to prove the inadmissibility for p = 3
without success; see Robinson [(1979b), page 766]. Of course, there is a good
reason that such an attempt has to fail since, as will be demonstrated, vy is
admissible for p = 3. It is also true that y is admissible even for p = 4, which,
together with other admissibility results for general Bayes estimators, were
proved in Brown and Hwang (1989). Previously it was established in Lu and
Berger (1989) as well as Robert and.Casella (1989) that y is inadmissible
(without the validity constraint) for p > 5 and for p = 5 in Robinson (1979b).

THEOREM 2. Under the absolute error loss (1.5), y > % is V-admissible.

The proofs of both theorems are based on the following lemma. This lemma
actually considers a more general context. The goal is to estimate the function
G(X — 0) under the loss function

L(G(X - 9),v(X)),

where L is a function convex with respect to the second coordinate. For
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application to the case of Theorems 1 and 2, we will take G(X — 6) = [ x_g .,
and L(a,b) = (a — b)? or L(a, b) = |la — bl, respectively.
The validity constraint in this more general context is

(2.1) E;y(X)<B, Vo,

where B is a certain fixed constant bound which is assumed to be independent
of 0. We can similarly define the pointwise validity constraint as

(2.2) y(x) <B, Vux.

In the context of Theorems 1 and 2, B = y.

Pointwise frequentist validity obviously implies frequentist validity. Conse-
quently, V-admissibility implies PV-admissibility, that is, admissibility under
the pointwise frequentist validity constraint. The converse is not always true.
However, under the assumption of the following lemma, the converse does
hold.

LeEmMMA 3. Assume that Z = X — 0 has a distribution independent of 6. Let
v = B, a constant. Assume that there exists a frequentist valid estimator y(X)
as good as vy. Let y*(8) denote E,y(X). Then y*(X) is pointwise valid and is
as good as y.

Further, if the support of Z is the whole Euclidean space and the risk of any
(bounded) estimator is continuous in 0, then (i) y*(X) is better than vy and (ii)
V-admissibility of vy is equivalent to its PV-admissibility.

Proor. Obviously, y*(X) is pointwise frequentist valid. To finish the proof
for the first part, it suffices to prove that y*(X) is as good as y.

Note that the risk function of vy is a constant and will be denoted by R°.
Hence

R > E,L(g(X - 0),7(X)) [V6]
= EL(g(Z),v(Z + 0)).

Let Z, be another random vector independently identically distributed as Z.
The last expression implies that

R°>E[L(g(Z),y(Z + 6 + Z,))|Z,], Ve.

(2.3)

Taking expectation with respect to Z;, we have

R° > E[L(2(2),v(Z + 0 + Z,))]
(24)
> E[L(g(2), E[y(Z + 6 + Z))|Z])],

by Jensen’s inequality. The lower bound is
EL(8(Z),y*(Z +9)) = EL(g(X - 6),7*(X)).
Hence y*(X) is as good as y.
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For (ii) in the second part, obviously V-admissibility implies PV-admissibil-
ity. Hence what is left to show is that V-inadmissibility of y implies PV-inad-
missibility of y. This obviously follows from (i), which is established below.

By continuity assumption of the risk function, strict inequality in (2.3)
holds for 6 in at least an open set. This and the assumption that Z has a
whole support implies the first inequality in (2.4) is strict, completing the
proof. O

Lemma 3 applies to Theorem 1 and 2 with B =1v. In particular, the
continuity assumption of the risk functiorr holds due to the following reason.
Note that one can assume without loss of generality that y(-) is bounded
above by one. This, together with the dominated convergence theorem and the
fact that I,,_, .. is continuous in 6 for almost every x implies that the risk
function is continuous in 6.

Lemma 3 implies that in proving V-admissibility of 1y, it suffices to prove
PV-admissibility. In order to prove PV-admissibility, we adapt Blyth’s method,
taking into account the constraint (2.2), which reduces now to

(2.5) y(x) <y, Vux.

To apply Blyth’s method, we turn to a discussion of Bayes estimators. For a
prior measure with density function 7(0), let

m(0lx) = p(x — B)W(B)/fqo(x - 0)w(0)de

be the formal posterior probability density of 6 given X = x. Here ¢(x — 6)
denotes the p.d.f. of the p-variate N(0, I) distribution.

SQUARED ERROR. We will deal with the squared error loss function (1.4)
first. The unrestricted Bayes rule y™ chooses a to minimize

E[(a - Lo_x<.)X]
and hence
y7(X) = E(I|0—X|sc|X) = P(]6 — X| <c|X).

However, under the constraint (2.5), the Bayes rule is y"(X) A y. This follows
from the fact that E(a — I,,_x _)%X is a convex function of a.
We will specifically consider a prior measure with the density

1 d
(2.6) £(0) = (bTTéT) ,

where b will be taken to be a very large number and d > 0 is some constant to
be specified in Lemma 6. In deriving the generalized Bayes estimator we need
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the following two lemmas. Below, we let
v(©)=[ ¢(0)do and p(c)= [ 6}(6)do/y.
8l<c 8l<c

Note that here and later vy is also denoted as y(c) whenever there is a need to
emphasize the dependence of y on c. It follows from this notation that
(o) = 1.

Lemma 4. Let 0 < ¢ < w and Q(0) = s + V'8 + 0'M0, where s is a scalar, v

a vector and M is a p X p matrix; and these are all constants independent of 6.
Then

(2.7) [,,..Q(0)e(8)d6 = (s + p(c)tr M)¥(c),

where tr M denotes the trace of M. Furthermore p(c) strictly increases to one
as ¢ > © and hence 0 < p(c) <1 forc < =,

Proor. The only statement which is not obvious is the integration of the
third term of Q(6). Now

[(oMo)p(6) do = tr M f|o|< 00'0(6) db = p(c)y(c)tr M. O

Using this lemma and a Taylor expansion, we can establish the following
formula in Lemma 5. Below, o and O are little 0 and big O terms uniform in
lx| as b — . As an example, o(1/(d + |x|)?) satisfies

1
li b+ |xl? - 0.
im [sup( || )o(b " |x|2)]

b x|
LEMMA 5. For ¢ < » and g as in (2.6),

[ &(®)¢(6 ~x)do

0—x|<c
(2.8)
1+ dp(c)

=7v(c)g(x)

x1*(2d — 2 — p) — bp . 0( 1 )
(b + Ix?)* b+l

Proor. Let z = 6 — x and hence the left-hand side of (2.8) is

f g(z +x)p(z)dz.

lzl<c

Note that

lz + x| = |x|2 + A,
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where A = 2zx + |2|%. By a one-dimensional Taylor expansion,

dA N d(d +1) A? d(d +1)(d +2) A3
b+ |x|? (b + Ix|2)2 2 (r)?*® 3!’

g(z+x)=g(x)|1 -

where 7 is between b + |x|® and b + |x|2 + A = b + |z + x|%. Lemma 4 then
implies
[ . Ae(2) dz = pp(c)v(e)
and
A%p(z) dz = 4lx[%0(c)y(c) + O(1).

lzl<e
We will also establish in the Appendix that
A]®
'EQD(Z) dz = g(x)o

(2.9) [

|zl <o

)
b+ x*)
Putting this together and rearranging terms, we obtain (2.8). O

It follows directly from this lemma that the unrestricted generalized Bayes
estimator with respect to g(6) has the following representation

/|0—x|5cg(9)‘P(0 —x)do
f|a—x|<oog(0)‘P(9 —x)do

Ix|2(2d +2-p)-bp ])
) + o0
(b + 1xI?)

yé(x) =

(2.10)

1
=y(c)(1+d(l)(c) —1)[ b+ lez).

Hence we come to the following technically important conclusion:

LEMMA 6. Assume p > 3 and hence there exists an ¢ > 0 such that d =
(p — 2 —¢)/2 > 0. Then there exists b large enough such that

(211) v4(x) > ¥(e) =¥

for all x.

Proor. With such a choice of d, note that the leading term on the
right-hand side of (2.10) is greater than y. Furthermore,

lim inf(5 + IxI*)(#(x) = ¥) > yd(1 = p(e))min(e, p) > 0,

establishing the lemma. O
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REMARKS. Note that if g were a proper prior, then the unrestricted Bayes
estimator could not satisfy (2.11) for all x. This is due to the identity

Ey8(X) = EE(I|0—X|sc|X) = EE(I|0—X|5c,B) =7

Coming back to the situation where (2.11) holds, we note that the Bayes
estimator under the restriction (2.5) is y& A y = y. Therefore, unlike in many
problems, there are many priors (including the Lebesgue prior) that lead to y
as a generalized Bayes estimator under the validity constraint. To prove
V-admissibility of y, we can work with any such prior g instead of the
Lebesgue prior. It turns out that Blyth’s method can be successfully applied to
such a g, as shown below whereas it cannot conveniently be worked out with
the Lebesgue prior under the restriction (2.5) except when p < 3.

As a side track remark, (2.11) actually holds for e =0 and & = 0. To
establish the assertion, one can use the correlation inequality, that is, the
correlation of two increasing functions of a random variable is positive and
Poisson’s Law which asserts that

mypr- (L a2
D r ’

where Y is a random vector uniformly distributed over the (surface of the)
sphere in R? of radius r centered at a point a distance D from the origin.
However, we do not pursue this direction for two reasons: (i) Lemma 6
provides us flexibility in choosing b which leads to a simpler Blyth’s type
argument below, (ii) the present approach may more readily be generalized to
other situations where Poisson’s Law does not apply.

Proor or THEOREM 1. We will apply Blyth’s method to the case p > 3.
Consider a sequence of finite prior measures with the following densities

8,(0) = h,(0)g(6),

where g(6) is as in Lemma 6 and

o ( n )3/2
n( ) - n+ |0|2 :
Note that g,(6) is integrable.

Suppose that y is V-inadmissible. By Lemma 3, there exists y*(x) < y such
that :

2 2
E('Y*(X) _I|0—X|sc) <E(y—Io_x<c)> Ve.

[We can assume without loss of generality that strict inequality holds for every
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0, since otherwise replacing y*(X) by (y*(X) + y)/2 and Jensen’s inequality
will do.] Since h, is increasing in n, there exists a positive number &
independent of n such that

6 < [|E(r ~Tyuze) ~ E(r*(2) ~ Ty_uz.)’] €n(0) 48
(212) ; =< f[E(y - I|0—Jc|sc)2 - E(ygn(x) ANy — I|0—x|sc)2]gn(6) de

= f[(vg"(x) Ay) = v]%e(6 — x)g,(0) do dx.

To lead to a contradiction, we will show that the last expression approaches
zero, as n — ». To accomplish this, all we have to do is to show:

(2.13) the limit can be passed inside the integral (2.12).

This approach is similar to that in Brown and Hwang (1982). It is based on
the fact that the limit of the integrand is zero, since

yén > yf 2y

by the monotone convergence theorem and consequently (y4= A y) —y — 0.
To justify (2.13), it suffices to find an integrable upper bound of the

integrand and use the dominated convergence theorem. We first follow a

(lengthy) calculation similar to those leading to (2.8) and conclude that

v =y =0((b+ ) ),

where the big O is uniform in both n and b, n > b. Now the last integrand of
(2.12) is bounded above by

(2.14) O((b + ) )e(x — 6)2(6).

Let int denote the integral of the last expression against x and 6. To show that
int is finite, we first integrate (2.14) with respect to x and apply Lemma 5 to
get

int = [O((b + 161%)*)(5 + 1617) " do.

Using the usual spherical transformation and the fact d = (p — 2 — ¢)/2, it
can be shown that int is finite, establishing the theorem for p > 3.,

For p <3, we show below that y is admissible (without the validity
constraint), which, of course, implies V-admissibility.

Proceed as before except that g(8) = 1 and there is no validity constraint.
Use the same h,(6). Note that to apply Blyth’s method, it suffices now to
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prove that the following quantity approaches zero:

J (¥ = v)*e(x - 0)2,(8) db dx
= [O((n + 1x1%) *)e(x - 6) dxg,(8) db
= Jo((n + 161%) ")en(6) db

< fo((n + I0I2)_2)-d0.

The monotone convergence theorem can be applied to show that the upper
bound converges to zero if

Ja+ 162) " d6 < .
Equivalently,
J(1+ 161%) 0P~ dlfl < .
The last inequality holds if and only if p < 4, completing the proof. O

ABsOLUTE ERrROR. Now we turn to the problem of the absolute error loss.
We first note that the Bayes rule corresponding to a prior g is

y4(x) = {1, if P10 - X| <c|X=2x)> 1,

0, otherwise,
where P(-|X) is the posterior probability of 8 given X. Similarly the (gener-
alized) Bayes rule under (2.5) is y4(X) A y.
We will consider a (proper) prior

n d
6)=C,| ——| ,
£(0) n(n+|0|2)

where n is an integer, d is such that g,(0) has a finite integral and C,, is the
normalizing constant. In Theorem 7 we will show that y is Bayes under the
constraint (2.5) with respect to g, for n large enough. Due to the continuity of
the risk function of an arbitrary estimator, this obviously implies PV-admissi-
bility and hence V-admissibility.

THEOREM 7. With respect to g, where n is large enough, v is the Bayes
estimator under the constraint (2.5).

Proor. Since the Bayes estimate under the constraint (2.5) is y&» A v, it
suffices to prove that for n large enough,

P9 -X <c|X=x)>% Vx.
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By (2.10),
d(d +1)

P16 —X| <c|X=x) > 7(1 - 21X1*(1 - p(c)) 2
(n + Ix%)

+o0

1
n+ x?)
where o is uniform in n > 1. The lower bound is greater than ; if
(vy-32)(n+ |x|2) >2yd(d+1) + (n+ |x|2)o(1/(n + Ix|2)).

The last inequality holds for n large enough. O

The proof of the last theorem also implies that without the validity con-
straint, 1 is a Bayes estimator with respect to the proper prior g, for n large
enough. Hence it is admissible, even though it does not convey the correct
picture as a confidence estimator. This striking example may be viewed either

as providing justification for the validity constraint or as a criticism of the
absolute error loss, or both.
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APPENDIX

Proor or (2.9). Assume that Z is a standard normal random vector. Write
the left-hand side of (2.9) as
EI(Z € R)IAIP/(7%%3) + EI(Z € R$)IAI?/(7%%3) = A + B,

where R, ={Z: |A| > %(b + |x[)?} and R is its complement. We will show
that A has an order smaller than the right-hand side of (2.9) by resorting to
the normal exponential tail. For B, r%*3 provides the same order.

We deal with A first. The inequality defining R, implies

1Z1? + 20xl1Z] > 2(b + Ixl?),
which implies
121 > [(b + 1x1%) /2 + 1212]7* = Izl = [(b + x[?)/24] 7*.

Let R, denote the region consisting of Z such that |Z] > [(b + ‘|x|2)/24]1/ 2,
Then R, c R,. Noting that 7 > min(d + lx1%, b + |Z + x|*) > b, we have

1
A< 5El(Z e R,)IAP.
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Consequently for some positive constants K, K, and Kj,

A K+ K,) (b + )’
g(x) b+d

O(e—(b+|x|2)K3) _ 0((b + lxlz)—l),
uniformly in |x|2.
For the B term, note that in R, |Al < (b + |x|?®) and hence
7l = min(b + |xI%, & + |xI* + A) > 2(b + IxI?).
This implies that for some constant K, > 0,

g(x)

d+3 c 3
B<2 1y EI(Z € RS)\A|

= g(x)0((b + 1) ) (l® + K,)

= g(x)o((b + 1)),

which completes the proof. O

Note added in proof. Eaton (1991) provides a different route to establish
Theorem 1 which could replace the present argument subsequent to Lemma 6.
A minor modification of Eaton’s result establishes that Theorem 1 is valid so
long as the Markov chain with transition kernel

o(n —x)g(n)
R(dni) = [f( To(p — 2)&(p) dp )“’(" =9 dx] dn

is recurrent. Further results in Eaton’s paper provide a mechanism with which
it is possible, after some calculation, to establish recurrence of this Markov
chain when g is as in Lemma 6.
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