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The Kolmogorov distance between the empirical cdf F, and its sym-
metrization sF, with respect to an adequate estimator of the center of
symmetry of P is a natural statistic for testing symmetry. However, its
limiting distribution depends on P. Using critical values from the symmet-
rically bootstrapped statistic (where the resampling is made from sF,)
produces tests that can be easily implemented and have asymptotically the
correct levels as well as good consistency properties. This article deals with
the asymptotic theory that justifies this procedure in particular for a test
proposed by Schuster and Barker. Because of lack of smoothness (in some
cases implying non-Gaussianness of the limiting processes), these tests do
not seem to fall into existing general frameworks.

1. Introduction. Let P be a probability measure on R. P is symmetric if
there exists 8 € R such that for all A € &, P(A) = P(26 — A), where 20 —
A = {20 — x: x € A}. Then 0 is the (unique) center of symmetry of P. There
are statistical procedures which are sensitive to departures from symmetry,
therefore requiring testing for symmetry in advance [for instance testing for
symmetry of errors in linear models may be of interest in some situations—see
Boos (1982) and Carroll (1979)]. The problem of testing P for symmetry (with
or without a specified center) has received considerable attention in the
literature: There are tests based on ranks [see, e.g., Shorack and Wellner
(1986) and Hijek and Sidak (1967)], tests based on the empirical characteristic
function [e.g., Csorgd and Heathcote (1987)] and tests based on the empirical
cdf [e.g., Smirnov (1947), Rothman and Woodroofe (1972), Antille, Kersting
and Zucchini (1982), Koziol (1983), Schuster and Barker (1987), etc.]. The test
proposed by Schuster and Barker (1987) is as follows: Schuster and Narvarte
(1973) defined a location parameter 6 = (P), P € Z(R), as the center of sym-
metry of a symmetric probability measure closest to P in the Kolmogorov dis-
tance. Then this symmetric probability is s°P, defined as s°P(A) = 3(P(A) +
P20 — A), A #. If P is symmetric the empirical cdf should be close to
being symmetric, hence it makes good sense to reject symmetry for large
values of the statistic T, = n'/2||F, — sF,|l., where F, is the empirical cdf of P
and sF, is the cdf of the symmetrized empirical measure sP, = s**»P . The
limiting distribution of T, depends on P, so they propose to take as critical
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numbers the corresponding quantiles of the “symmetric bootstrap” ’f’n of T,
that is, of T, = n'?|F, ,p — sF, p |l., where F, .p, is the empirical cdf
obtained by resampling from sP,, and sF, .p 18 1ts symmetrization with
respect to 6(P, ,p ) (actually these authors consider a smoothing of F, ;p).
Schuster and Barker (1987) present ‘an extensive simulation study on thls test
but do not provide any analytical justification. We prove that T, and T ' (w) for
almost every w, all have the same limiting distribution if P is symmetric
whereas T, — « and T ' (w) still converges weakly a.s. if P is not symmetric
(this is proved in Sections 2 and 4). Moreover, the limiting distribution has a
continuous cdf strictly increasing on its convex domain. Therefore this boot-
strap test has asymptotically the correct level under the null hypothesis, the
bootstrap critical numbers converge a.s. to the asymptotically correct critical
number and the test is consistent against any alternatives (we also consider
local alternatives varying with n).

The Schuster—Narvarte location parameter can be replaced by any boot-
strap consistent location parameter in the construction of the tests (see
Definition 2.2). In particular we give, with proofs omitted, the asymptotics of
the symmetry tests for the median, the Hodges (1967) and the Hodges and
Lehmann (1963) location parameters.

The Schuster—-Barker test is a forerunner of a general class of bootstrap
tests recently proposed and studied by Romano (1988, 1989). However, the
mapping s: P — sP is far from satisfying Romano’s conditions [i.e., his
smoothness condition (2.1)], and in the cases of Schuster and Barker and
Hodges the limit of T, is not even the sup norm of a Gaussian process. So, not
only is it interesting by itself to provide analytic justification for these elegant
tests, but it is also mathematically interesting as an example of the bootstrap
in a nonsmooth non-Gaussian limit situation.

The symmetry tests we study in this article only apply to absolutely
continuous probability measures P with uniformly continuous densities. On
the other hand, no integrability assumptions on P are required. [For a
symmetry test that applies under no continuity on P, but requires some
(weak) integrability, see Csorgé and Heathcote (1987).] The assumptions can
be somewhat relaxed if “a.s.” is replaced by ‘““‘in probability’’ in the bootstrap
limit theorem of Section 2.

The main ingredients in the proofs are a general result of Giné and Zinn
(1991) on parametric and semiparametric bootstrap of the empirical process
(which in the present situation also follows from special constructions), a
result of Stute (1982) controlling the a.s. behavior of the uniform empirical
process and the usual special constructions that allow us to replace weak
convergence of empirical processes by almost sure convergence.

Next we introduce some notation. P will denote a probability measure on R,
F its cdf, f its density (if it exists) and F~(¢) := inf{x: F(x) > ¢}, ¢t € [0, 1]. If
{X;};, are iid (P), then P, , or P, will be the empirical measure

n
(11) Pn,P=Pn=n_128Xi
i=1
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and F, p or F, will indicate its cdf. If F' is continuous then, by changing the
X; at most in a set of probability 0, we may assume X; = F~ 1(§ ), where {£,)7_,
are iid uniform on [0, 1]. Then, if we let V, (¢) = n‘l/ZZ‘," (I <t) - t) we
have

(1.2) n'/*(F, = F)(t) = V,(F(2)).

We will assume X; = F~(¢,) in (1.1) throughout the paper. We will also use
another “‘special construction’’: It is well known [Shorack (1972); for example
Shorack and Wellner (1986), page 93] that as a consequence of a theorem of
Skorokhod, there exists a Brownian bridge U on [0, 1] and, for each n, iid

uniform on [0,1] random variables &,,...,&,,, such that if U,(¢) =
n~2gr_ (I(¢,; <t) —t), t €[0,1], then
(1.3) \U,-Ul,—0 as.

This construction provides an expeditive way of proving joint weak conver-
gence of the empirical process and the estimators; in more general settings it
could be replaced by Skorokhod-Dudley—Wichura type representations.

Let Z(R) be the set of probability measures on R. A location parameter 6:
Z(R) — Ris a function satisfying: (1) if P is symmetric then 6(P) is its center
of symmetry and (2) the function of n real variables 6,(x,,...,x,) =
6(n~1x?_,8, J)» %; € R, is measurable. Given a location parameter 6 we deﬁne

s*®PP (sP if no confus1on may arise) by

(1.4) s"PP(A) = LP(A) + 1P(20(P) —A), Ae B,

and s°F, s°f, denote respectively the cdf and the density (if it exists) of s"P If
no confusion is possible we will use 6 for 6(P), 6, for 6(P,) and 0 for
6(P, ,p ), where P, ., =P, .p ,, is the empirical measure of n iid random

variables X?,,.. X " with common probability law sP,(w). The variable

will often be omltted Fmally, Pr E will denote Pr, E conditional on P (o),
and — _; will mean convergence in law conditionally on P (w).

2. A symmetric bootstrap central limit theorem. The proof of the
limit theorem for {n'/*(F, — sF,)} and n'/*(F, ., — sF, p) is relatively long
and may be better understood if it is decomposed into two parts: the proof of
the limit theorem under consistency hypotheses on the location parameter,
and the proof of these properties for each individual parameter. In this section
we give the limit theorem.

Given a set D, we let /(D) denote the Banach space of bounded real
functions on D with the sup norm. As usual, we say that [*(D)-valued random
elements Z, (i.e., sample bounded processes indexed by D) converges in law in
I"(D) to a sample continuous Gaussian process Z on D if E¥XH(Z,) - EH(Z)
for all H: (D) — R bounded and continuous (E* denotes outer expectation:
H(Z,) is not necessarily measurable). The Kolmogorov theorem for empirical
processes asserts that n'/%(F, — F) »_, U~ F in I(R) or in I*(Dp), where

={x: 0 < F(x) <1} is the convex support of F. We will require the
followmg lemma, which follows from Giné and Zinn (1991), Corollary 2.7.
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Lemma 2.1. Let R,, R, n € N, by probability measures on R such that
sup, cglR,(—,t] = R(=w,t]| = 0 as n — ». Then

n1/2(Pn,Rn - Rn) '—)_/ Y
in 1(J), where J is the collection of all (finite and infinite) intervals

and Y is the centered Gaussian process on J with covariance EY(B)Y(C) =
R(B N C)—-R(B)R(C), B,Ced.

Here is a consequence of Lemma 2.1: If 6(P), P € #(R), is a location
parameter and if P has a continuous distribution, then
0(P,) > 6(P) as. = n'*(F,,p —sF,)—>_sU-(sF)
in [*(Dp) P-a.s.
The consistency requirements on 6, = 6(P,) are slightly stronger than
usual in the sense that we must impose joint convergence of the parameter

and the empirical process. Of course, this is automatic if 8(P) is differentiable
in any reasonable sense.

(2.1)

DEeFINITION 2.2. Let 8 = 6(P), P € #(R), be a location parameter and let
II be a class of probability measures such that if P € Il then s°P € 1I. 0 is
n'/2-bootstrap consistent for the class II if

(a) 6(P,) > 0(P) as.
(b) For all P € II, P symmetric, there is a random variable §(P) such that
n'/%(6, - 0) >_ 6(P)
jointly with the empirical process n'/%(F, — F).
(c) Forall P,
m/3(6(P,..p,) - 8(P,)) = 6(sP)
jointly with n'/%(F, p — sF,), P-a.s. [these processes converge by (a) and

2.D].

THEOREM 2.3. Let II be a set of probability measures P on R which are
absolutely continuous, whose distribution functions F satisfy the Holder type
condition |F(x) — F(y)| < c/|loglloglx — y|||'*® for some ¢ > 0, ¢ > 0 and all
|x — y| < 1/4, and whose densities f are uniformly continuous on Dp. Let 0 be
a n!/2-bootstrap consistent location parameter for the class Il and let Z be the
process

Zp(t) = [U(F(1) + UL~ F(t)] + 6(P)f(¢), ¢ Ds.
Then the following limits hold:
(i) For all P 11, for almost every w,
lim nl/z(Fn,sPn(w) - SFn,sP,,(w))( ) = ZsP( .)

n—o

in law in I*(D,p).
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(ii) For all symmetric P € 11,
lim nl/z(Fn - SFn)() = ZP()

in law in 1*(Dp). .

Proor. We first prove part (ii). Since P is symmetric and the variables X,

are a.s. all different we have
n'/*(F, — sF,)(t) = 3n'/*(F, — F)(t) + 3n'/*(F, — F)(26 — ¢t)
(2.2) +3n'/*((F, — F)(26, —t) — (F, - F)(20 — t))
+3n*?(F(20, —t) — F(26 —t)) + O(n"'/?) aus.
Since 6, — 0 a.s., ‘
(2.3) nl/? ?ugl(Fn —F)(26,-t)—(F,—F)(20 —t)| >0
e

in probability by Kolmogorov’s theorem [which since F is uniformly continu-

ous, implies n'/? sup,_, 5 [(P, — PXs,¢]l - 0 in probability as 5, — 0]. By
differentiability of F, since f(20 — ) = f(¢),

sn'/2(F(20, —t) — F(20 — t))
= n'2f(2)(6, — 8) + n'/2(f(£) — f(£))(8, — 0),

where |¢ — ¢| < 2|0, — 0[; therefore, since n'/%(6, — 6) converges in law and f
is uniformly continuous,

(2.4) sup |$nY%(F(20, — t) — F(20 — t)) — n'/%f(t)(6, — )| > O

teDp

in probability. Hence (2.2)-(2.4) give that the distribution of n'/%(F, — sF,) in
{*(Dp) is asymptotically the same as the distribution of

Lnl/2(F, ~ F)(t) + $n'/*(F, — F)(20 — t) + n'/*f(t)(6, - ),

which converges in law in [*(Dp) to Zp(¢) by part (b) in Definition 2.2. Hence,
part (ii) is proved.
The proof of part (i) is similar. In analogy with (2.2) we write

n'/%(F, .p, = sF, .p,)(t)
= 3n*%[(P, sp, = sP,)(I(—,¢] + I(—%,20 — t])]
(2.5) +3n?(P, ,p, — sP,)(I(—=,20, — t) — I(—,20 — ¢])|
+3nV/2sP,(I1(—,26, — t) — I(—=,26, — t))

=1+ II + III,
where 6, = 0(P, ;p )
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Obviously, Y((—x, ¢]) = U(sF(t)), ¢t € D,p, has uniformly continuous paths
a.s.; hence it follows from Lemma 2.1 that w-a.s., for all € > 0,

(2.6) hnz) lim supPr{ sup nl/zl(l?n,spn(w) - sPn(w))[u,v]l > e} =0
n—>c lu—vl<é

and likewise for (u v], [u,v) and (u,v). By parts (a) and (c¢) in Definition 2.2,

6, — 6 — 0 in Pr probability w-a.s. and therefore (2.6) gives

(2.7 sup (III]) - 0 in Pr probability w-a.s.

teD,p
As for (III) in (2.5), we write (for V, as in (1.2))
nl/z(an(Zén —t) — sF,(20, — t))
nl/2 ‘
=~ [F,(26, - t) - F,(2(6, - §,) + ) — F,(26, — t) + F,(1)]
+ 0(n~1/2)

(2.8) = %[Vn(F(zén — t)) = Vu(F(26, - )]

1 A
— 5[Vl F(2(6, - 8,) + 2)) = Vu(F(9))]

+ %/2[1?(25,, —t) - F(2(0, - §,) +t) - F(26, — t) + F(1)]

+0(n"12).

Stute (1982), Lemmas 2.4 and 2.6, proves inequalities that imply the following:
For all ¢ > 0,

(2.9) lim sup sup |V (u) — V,(v)] < 8c72 as.

n lu—vl<c/loglog n
[An easy proof of this fact follows from Inequalities 1 and 2 in Mason, Shorack
and Wellner (1983), which are based on Stute, loc. cit. Alternatively, one can
use strong approximation, i.e., KMT, as in their Section 4.] By our hypothesis
on F there exist ¢, — « such that

(2.10) sup |F(t) — F(s)| < c/(loglog n)*?,

lt—sl<c,/n1/?

for all n > 27 and some & > 0. Since {n'/%(8, — 0,)>_, is Pr-stochastically
bounded w-a.s. by Definition 2.2, it follows from (2.9) and (2.10) that the V,
terms in (2.8) converge uniformly in ¢ to 0 in Pr probability w-a.s. As for the
last term of (2.8), using a.s. convergence of 6, to 6, the w-as. stochastic
boundedness of n'/%(d, — 6,) and the uniform dlﬁ'erentlablllty of F, we have
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that w-a.s.
nl/2

[F(20, - ¢) - F(26, - t) - F(2(6, - 6,) + ) + F(t)]

L]

—nt/2(6, — 0)( f(¢) + (20 - ¢)) "m -0

in Pr probability.

Hence (III) in (2.5) is asymptotically equivalent (in Pr probability, w-a.s.) to
n'/%8, — 6,XsfX2). This and (2.7) give the asymptotic equivalence between
the I=(D P)-valued random variables n'/*(F, ,p (w) — sF, .p () and

1.1/2

31 (P, op iy — SPo(@))(I(—, 2] = I(—,20 — t])

+n'%(8, - 6,)(sf)(2).

By Lemma 2.1 and the joint convergence implied by Definition 2.2, this last
sequence of processes converges in Pr law, w-a.s. to the process Z,,. O

REMARK 2.4. Schuster and Barker (1987) suggest considering a smoothed
symmetric bootstrap. This requires proving that the limit in part (i) of
Theorem 2.3 holds also for the processes

1/2 6,
n'/ (Fn,(sP")*An —s Fn,(sP,,)*An)(t)’ t €R,

where A, is uniform over [-a,,a,], @, > 0, or any other approximate
identity. It is easy to check that, in the notation of Lemma 2.1,
supy e #/((sP,)*A, — sPXJ)| > 0 as. and therefore that n'/% (P, ,py, —
(sP,)*A,) > ;Y in_I*(R) w-as. by the same lemma. Since n1/2IIFn

F, spy)le = 0in Pr probability w-a.s., n1/2(§, — 6,) converges in condltlonal
law a.s. jointly with n'/2(F, (5P YA, (sF YA, ). These two observations allow
us to proceed just as in the proof of Theorem 2.3 and conclude that the

processes above have indeed the same limit as the original ones.

Theorem 2.2 and the fact that if F' is not symmetric then ||F — sF|l. # 0
immediately give the following corollary.

CoroLLARY 2.5. Let P €1l, let 0 be a n'/2-strongly bootstrap consistent
location parameter for 11 and suppose the cdf of II1Z,plle is continuous. Let I1,
be the set of symmetric probability measures in II. Let t,, (@) be defined by

(211) 1, (@) = inf|t: Pr{|n2(F, .5y = Fs spw)]. 2 £} = a].

Consider the test
(2.12) Hy:Pell, versus H;:Pell-1II,
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with rejection region |n'/*(F, — sF,)lls > ¢, ,. Then
Pr{||nY2(F, = sF,)|.2t, .| %} = a,
Pr{|n'/%(F, = sF,) | 2t,, | #1} > 1.

If t, is defined as P{|Z,pllo >t} =a and the cdf of |Z,pll. is strictly
increasing at t,,, then t, (0) > t, a.s.

(2.13)

Consider now the local alternatives
Q,=P+A/m*, 0<iA<1/2,

where Q,, P €Il, P is symmetric but @, is not. Under some modified
consistency hypotheses on 6(Q,), we can obtain asymptotic consistency of the
tests of symmetry described above. It is convenient to use the special construc-
tion described in Section 1 in order to give a meaning to the a.s. bootstrap.
Letting ¢,;, £; be the uniform random variables from Section 1, suppose that
we have

(2.14) n*(0(Q,) — 0(P)) = n(P,A,1), 0<A<1/2,
(2.15) n*O[0,(Fg () ---» Fg(énn)) — 0(Q,)] = (P, A1) as.

for some random variable (P, A, A) and 0 < a(A) < 1/2, with a(1/2) = 1/2,
and

w-as., n1/2[0n((an’Qn)_l(w)(§,,1) yeens (an,Qn)_l(w)(&m))

(2.16) —0,(X, (@), .., X,p(@))] = B(sP)
a.s. where X,; = F '(§;).

Then we have the following proposition.
ProPOSITION 2.6. The following holds under the assumptions of the previ-
ous paragraph:

(i) The processes n'/*(F,, ,p, o @) = SFy,sp, o @t) converge in law in I"(R)
a.s. to the limiting process of Theorem 2.2.
(i) For A = 1/2,

n'/*(F, o, = $F, 0.)(*) = 3(U(F(+)) + U(1 = F(+))) + 3d(4, ")
+(n(P,A,1/2) + 6(P,A,1/2)) (),
where d(A,t) = A(—o,t] — A[260 — t,). For 0 < A <1/2,
n'/?|F, o —sF, o || —»® as,

assuming l3d(A, ) + n(P, A, D) f(D)ll # 0 if a(A) > A, l3d(A, t) + (n(P, A, A) +
6P, A, D) fDllo # 0 a.s. if a(A) = A and 16(P, A, M| > 0 a.s. if a(A) <A.
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As a consequence, the tests described in Corollary 2.5 have asymptotic
power 1 against the local alternatives P + A/n* if A < 1/2 and asymptotic
power P{|Z,ll. >¢t,} if A =1/2, where P{l|Zpll.>t,} =a and Z, p is the
limit in part (ii), Proposition 2.6.

We omit the proof of Proposition 2.6 since it follows very closely that of
Theorem 2.2.

3. Asymptotic theory for the test of Schuster and Barker. The
location parameter of Schuster and Narvarte (1973) departs from typical
smooth statistics in that n!/2(8(P,) — 8(P)) is not even asymptotically normal.
The limiting processes of Theorem 2.3 for this parameter are not Gaussian
either. Given P € Z(R) and a € R, let

D*(a) =D*(a,P) = supP[I(—=,t] — I[2a — ¢,®)]

teR
D~ (a) =D (a,P) = supP[I[2a — t,®) — I(—x,¢]].
teR
Note that D*(—»*) =D (+x7)=0, D*(+»)=D(—x*)=1, D* is
nondecreasing and D~ is nonincreasing. D* is left continuous and D~ is
right continuous. If P has a bounded density, then both D* and D~ are
continuous. We then let

6* = 6*(P) = sup{a: D*(a) <D (a)},

(3.1)

(3.2)

6** = 6**(P) = inf{a: D*(a) > D™ (a)}
and
(3.3) = (P) = (6*(P) + 6**(P)) /2.

0 is the Schuster—-Narvarte location parameter. Obviously, a = 6(P) mini-
mizes the function

(3.4) D(a,P) =D(a) =||F - s°F|.

and therefore

(3.5) IF-sle= inf ||F~-Ql.
@ symmetric

(It is easy to show that infg om |F — Qllo = inf || F — s°F||..) In this mini-
mum distance sense, the test for symmetry based on the statistic n!/2||F, —
s°F, ||, that is, the Schuster-Barker test, is most natural. We refer to Schuster
and Barker (1987) for practical ways to compute this statistic as well as the
location parameter 6, = 6(P,).

For the Schuster—Narvarte parameter, we let IIgy be the set of probability
measures P on R satisfying the hypotheses of Theorem 2.3, and such that
D(a, P) attains its minimum at a single point [which is therefore 9(P)]. This
last condition holds even when the median is not unique, but it does not hold
in general. For example, it can be seen that if an absolutely continuous cdf F
has only one flat on its convex domain, or is symmetric with respect to some
center, then D(a) attains its minimum at a single point. We check this
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property for symmetric distributions: If P is symmetric and @ is its center of
symmetry, then D*(a) = sup,.p(F(2a — t) — F(20 — t)) is strictly positive for
a > 0 and 0 for a < 6; similarly D~ (a) is strictly positive for a < § and 0 for
a > 0, so that D*(a) = D7(a) if and only if a = 6, that is, D attains its
minimum only at 6.

To justify the test for large n, in view of Theorem 2.3 and Corollary 2.5, it
suffices to prove that the Schuster-Narvarte parameter 6 is n'/2-bootstrap
consistent and that the limit [|Z ,|l. has a continuous distribution, strictly
increasing on its convex domain. The proofs of these assertions follow.

Let P €1I, 6 = 6(P) and 6, = 6(P,). We show first that

(3.6) 6,6 as.
By the Glivenko—-Cantelli theorem, for all a > 0,
D*(a,P,) » D*(a,P), D (a,P,) >D (a,P) as.
For each £ > 0, taking a = 0 + ¢ (note 6 = 6* = 6**), it follows that
lim D*(8 + ¢, P,) = D*(0 + ¢, P) > D~(6 + ¢, P)

n—o

= lim D~(8 +¢, P,)

n—>w

so that from some n(w) (< © a.s.) on, D*(6 + ¢, P,) > D~(6 + ¢, P,); hence
0 + & > 0**(P,) = 6(P,). Similarly, taking a = 6 — ¢ gives § — ¢ < 6*(P,) <
6(P,) from some n on, and (3.6) follows.

To prove part (b) in Definition 2.2, we let P, =n"'T"_  5p- e, and
6, = 6(P,). In view of (1.3) it will suffice to prove

n'/%(9, — 6) - 6(P) a.s.
for some random variable 8(P). We define
E;(a) = sup[U,(F(2)) + U,(1 - F(2)) + 2af(2)],
teR

D g (a) - sup [~ U(F(1)) - U1~ F(0)) - 26(0)], <P,

E*(a) and E~(a) are defined by the same expressions, with U, replaced by U.
We then have

n/2P,(I(—w,t] - I[260 + 2a/n'/? — t,))
_ n1/2(1'5n — P)(I(~,t] — I[20 — t,))
+n'/%(B, - P)(1[20 — t,) — I[20 + 2a/n"/? — ¢,))

+ n'/2(F(t) - F(t — 2a/n'/?)).
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Therefore
In'/2D*(6 + a/n'/?,P,) — E; (a)
< 3n1/2|(P, = P)(#}].. +|U.(F(26 - 1)) - U(F(20 + 2a/n' - 1))].
+|[nV2(F(t) - F(t - 2a/n1/%)) = 2af (2)]...

Now, the differentiability properties of F and (1.3) together with the uniform
continuity of the sample paths of U, give

n'/?D*(0 + a/n*/?,P,) —E}(a) > 0 as.foralla €R.

Since
| B} (a) - E*(a)]

<|(U, - U)(F (1)) - (U, - U)(F26 - ).~ 0 as,
we conclude, using monotonicity and continuity of E*(a), that
(3.9) n'/?D*(6 + a/n'/?,P,) - E*(a) foralla € R,as.
Similarly,
(3.10) n'?D~(6 + a/n'/?,P,) > E~(a) foralla €R,as.

It is shown in Rao, Schuster and Littell (1975), proof of Lemma 1, that for
each a, P{E*(a) = E~(a)} = 0. Since E* and E~ are continuous, E*(a) ~,
E-(a)N, Et(+x )=E (—o*)= +o as. and E'(—o*)=E (+07) =
—oo, it follows that E*(r) # E~(r) for all r rational, w-a.s. Therefore

E*(a) =E (a)
has a.s. a unique solution 6 (which is clearly a random variable). Given & > 0,
E~(0 + &) < E*(6 + &) a.s. so that by (3.9) and (3.10), eventually a.s.

D=(0+ (6 +¢)/n'/%,B,) <D*(6 + (8§ + &) /n'/%, B,),

implying lim sup, _,,n'/%(9**(P,) — 0) < § a.s. Similarly, using @ = § — ¢, we
obtain lim inf,, _, .n'/%(6*(P,) - 0) > @ a.s. Therefore

lim n'/2(6(P,) — 6) =6 a.s.

n—ow

(3.8)

and part (b) in Definition 2.2 is proved.
Rao, Schuster and Littell (1975), Theorem 4, proved weak convergence of
n'/%(8(P,) — 6) and obtained the law of §, which is not normal:

P(6 <t} =P| sup (W(u) +2V%f(F '(u)))
(3.11) O<u<l1l/2

+ inf (W(u) + 2V2%f(F~Y(u))) = 0,

O<ux<l/

where W is Brownian motion. The above proof is somewhat similar to theirs.
The nice thing about it is that it allows bootstrapping, that is, part (c) in
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Definition 2.2, which we see next. Let 13,,,31," =n L7 18F,) e, SO that
we can apply the “‘special construction” [leading to (1.3)] to P, ,p (,, for each
w. Define

E}(a) = sup(U(sF,(1)) + Uy(1 = sE(1)) + 2a(s/()))
and likewise E_ (a). As in the proof of part (b) above, we have, with 6, = 8(P,),
|n1/2D+(0n + a/n/?, ﬁn,spn) - E,:'(a)‘
< 3n172|(P, ,p, — sP, ) (2},
+| U,(sF,(26, + 2a/n'/% — t)) — U,(sF,(26, — t))|..

+||n2(sF,(t) — sF,(t — 2a/n"?)) — 2a(sf)(¢)]., + O(n~*/?)
w-a.s.

(Note that sF, has jumps of size 1/2n a.s.) Call the terms at the right of the
inequality respectively (I),’(\II) and (III). Stute’s exponential bound by (2.9) and
(2.10) makes (III) w-a.s. (Pr)-weak convergence equivalent to

nl/2

2

(F(t) - F(t — 2a/n'?))

1/2

+ n2 (F(26, + 2a/n'/% — t) — F(26, — 1)) - 2a(sf)(t)

which, by differentiability of F' and by a.s. convergence of 6, to 6, converges to
0 w-a.s. Also, by (1.3), in (I) < 3sup,_, <1,,U(sF(8)) — U (sF(s)), U, can
be replaced by U. Hence (I) > 0 Pr a.s. for almost every w by the uniform
continuity of U, the Glivenko-Cantelli theorem for sF, and the uniform
continuity of F. The same applies to (II) with n~" replaced by n~1/2 The
w-set of probability 1, where Pr-a.s. convergence to 0 takes place, can be made
to work for all @ simultaneously. So we have: For almost every w, for all
a €R,

n1/2D+(0n + a/n'/?, Pn,spn(w)) —E(a) >0 Pras.

Using [|sF, — sF|l. — 0 and (1.3) we obtain, as in (3.9), that w-a.s., for all
a€R,

n1/2D+(0,, + a/n'/?, Pn,spn(w)) - E}(a) Pras.

The same holds for D™, and therefore proceeding as in the proof of part (b) it
follows that w-a.s.

lim n'/%(6(P, ,p,) - 0(P,)) = 6(sP) Pras,

n—so

which implies, in view of (1.3), part (c) in Definition 2.2. This finishes the proof
of bootstrap consistency of 6,,.
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Regarding (2.14)—(2.16), a similar proof (which is omitted) gives that (2.16)
holds, and moreover

(3.12) n(P,AA) =n(P,A), 0<Arx<1/2,

is the unique solution, if it exist;,, of the equation (in a)

(3.13) sup (2af(t) + d(A,t)) = sup(—2af(t) —d(A,t)),
teR teR

(3.14) a(A) =4,

6(P, A,1/2) is the unique solution of the equation
sug(( U(F(t)) + U(1 - F(t))) + 2af(t) + 29(P,A) f(t) +d(A,t))
teR -

(815) = sup(~(U(F(9) + UL - F(1))) - 2af ()

_277(P,A) f(t) - d(A’t))’
and for 0 <A <1/2, (P, A, A) is the unique solution, if it exists, of the
equation
sup (2af(¢) + 2n(P,A) f(t) + d(A,t))

teR

= sup(~2af () — 2n(P, A) f(¢) - d(A,1)).

teR

(3.16)

Finally, we check that the cdf of ||Z,,|l.. is continuous and strictly increas-
ing on the convex domain of F. By the discussion following (3.10) above, the
random variable 8(sP) is the value of a that minimizes the expression

I3U(sF(2)) + 3U(1 = sF(2)) + a(sf)(?) |-
In other words,
(3.17) 1Zpll. =llzU(2) + 2UQ - )|,

where ||| - || denotes the seminorm on CJ[0, 1] defined as the sup distance to
the one-dimensional subspace E = {A : (sf X(sF)~X(¢)): A € R}. Let H be the
cdf of |l Z,p lll .. Then H is log concave and H(x) < 1, for all x < « [see, e.g.,
Theorem 1.1 and (1.13) in Hoffmann-Jgrgensen, Shepp and Dudley (1979)].
Therefore H is strictly increasing on [0, x). C[0, 1] is separable for ||| - || so
that by Corollary 2.2, loc. cit., inf{x > 0: H(x) > 0} = 0. This, by Theorem 1.2,
loc. cit. [see also Cirel’son (1975)] implies that H is continuous except perhaps
at 0. But H(0) is 0 or 1 (Theorem 1.1,, loc. cit.), therefore it is 0, and H is
continuous on (— o, ),
In conclusion, we have shown the following theorem.

THEOREM 3.1. The Schuster-Narvarte location parameter is n'/?-bootstrap
consistent for gy, with 6(P) given as the a.s. unique solution of E*(a) =
E~(a), and it also satisfies (2.14)-(2.16) with variables as defined in
(3.12)-(3.16). Moreover, ||Z,pll. has a continuous cdf strictly increasing on
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[0, ). Therefore the conclusions of Theorem 2.3, Corollary 2.5 and Proposition
2.6 hold for n*’*(F, — sF,) and for its symmetric bootstrap.

4. Other location parameters. As long as a location parameter is nl/2.
bootstrap consistent, it can be used in the bootstrap symmetry test of Corol-
lary 2.5. Even if the Schuster-Narvarte parameter seems to be the most
natural one to use because of its optimality for the Kolmogorov distance, the
asymptotic properties (power included) of the test based on other parameters
are quite similar to those of the Schuster-Barker test (Proposition 2.6 and
Corollary 2.5). Here is a description, without proofs, of these characteristics
for three more parameters of interest. The class II of probability measures to
which these tests apply is different for each parameter, and this should play an
important part in deciding which test to use. For two of the parameters the
limiting process Z of Theorem 2.3 is Gaussian, which indicates that some
differentiability of @(P) is present—not as strong, however, as the differen-
tiability hypothesis in Romano (1988), (2.1).

4.1. The median. If 0(P) is defined to be 8(P) = m(P) the median of P,
for P 11, the set of absolutely continuous measures on R whose cdf’s
satisfy the Hélder continuity hypothesis of Theorem 2.3 and whose densities f
are uniformly continuous and positive at their median (thus making the
median unique), then (1) 8 is n'/2-bootstrap consistent for II,,, (2) the limiting
process of Theorem 2.3 is

Z,p(¢) = 5[U(sF(t)) + U(1 = sF(¢))] = [U(1/2)/f(m)](sf)(2),
t e DsP’

a Gaussian process such that the cdf of [|Z,p|l. is continuous and strictly
increasing on [0, ), and (8) the limiting process Z, p of Proposition 2.6 is

Zy,p(2) = Z(t) + 3d(A,t) — F(m) () /f(m), ¢t € Dypiasmrm,
that is, a shift of Z,(2).

4.2. The Hodges—Lehmann location parameter. Given P,let X and X’ be
iid (P). The Hodges-Lehmann (1963) location parameter 6 is defined as the
center of medians of (X + X')/2. In particular, 6(P,) is the center of medians
of the set of points {(X; + X;)/2}} ;_,. It is essentially proved in Fine (1966)
that the p.m. s°P, obtained by centering P at its Hodges—Lehmann location,
minimizes the expression

P(P,Q) = [ (Fp— Fo)'(x) dx

over all @ symmetric, assuming [|x|dP < %. A minimum distance test could
thus be based on the statistic n'/%o(P,, sP,) but it would only be applicable if
P had a finite first moment—and in this case Theorem 3.3 applies. On the
contrary, the Kolmogorov distance test of Corollary 3.5 can be used without
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moment requirements. If ITy; is the set of absolutely continuous probability
measures whose cdf’s satisfy the Holder condition of Theorem 3.3 and whose
densities f are uniformly continuous and satisfy [, f(26(P) — x) dF(x) > 0
[implying that (X + X’)/2 has a ynique median], then the Hodges-Lehmann
parameter is n'/2-bootstrap consistent for Iy, and

Z,p(2) = 3[U(sF(2)) + U1 - sF(2))]

- [folU(v) dv/fjm(Sf)z(v) dv](sf)(t),

a Gaussian process such that ||Z,|l. has a continuous distribution strictly
increasing on [0, ®). Also

Zy, p(t) = Zp(t) + 3d(A, ) + n(P,A) f(2)
with

n(P,4) = — [ Fy(20 - ) dF(x) / [ ) as.

4.3. The Hodges location parameter. The Hodges (1965) location parame-
ter 6(P) is defined as the center of medians of (F~%x) + F~1(1 — x))/2
considered as a random variable on ([0, 1], &, A). In particular, 8(P,) is the
center of medians of the set of points {(X,, ; + X, ,,1-;)/2}_,, where X, | <

© <X, , is the order statistic of X,..., X,,. It is not difficult to prove that
s°P minimizes, if it exists, the Wasserstein’s distance

w(P,Q) = [ |Fp(x) - Fo(x)|dx

over all @ symmetric. If II, is the set of probability measures on R with
densities f bounded, uniformly continuous and strictly positive on Djp, then
6(P) is n'/2-bootstrap consistent for I1;. Then, for P symmetric,

8(P) = infla: A{t € [0,1/2]): U(¢) + UL — ) /f(F~Y(2)) < a} = 1/4]
and the process
Z,p(t) = 5[U(sF(t)) + U(1 — sF(2))] + 8(sP)(s)(2)

is not Gaussian. We do not know if ||Z||.- has a continuous cdf. The process
Z\(t) is

Zy, p(2) = Z(2) + 3d(A, 1) + n(P, A)(sf)(2),

where n(P, A) is the center of medians with respect to Lebesgue measure on
[0, 1] of

—A(=, F7X())/2f(F7(8)) = A(=, F~(1 = 1)) /2 f(F~(1 - 1)).
'V(Acknowledgments. We are grateful to D. Alemayehu and to V. de la
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