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CONDITIONAL RANK TESTS FOR RANDOMLY CENSORED DATA

By A'RNOLD JANSSEN
University of Siegen

The present paper derives various survival tests and their optimality
results for randomly censored lifetime data by an extension of familiar rank
test arguments. The approach is based on local asymptotic normal models
which have a natural interpretation in terms of hazard rates. In particular,
the description of classical rank tests by hazard rates may be of separate
interest. As an application of the new methods, a justification of conditional
survival tests is given also under unequal censoring distributions. It turns
out that censoring is a nuisance phenomenon which asymptotically drops
out. Conditional tests are exact permutation tests which are shown to be
equivalent to their unconditional counterparts. They have all kinds of
optimality properties and can be recommended for applications at least in
those cases when a model with equal censorship cannot be excluded under
the null hypothesis.

1. Introduction. A standard situation in applied survival analysis can be
described as follows. Assume that X,;, i = 1,..., n, denote independent ran-
dom variables standing for survival times of individuals which are not totally
observable. Let X,; be independent censoring variables for i = 1,..., n, which
are also independent from X,;. Under random right censoring it is assumed
that only

(1.1) X; = min(X,;, X;;) and A; = Iix, < x,p

the indicator of the event {X;; < X,;}, are observable for i =1,...,n. In
practice one is interested in statistical inference for the lifetimes X,; only.
Here often generalized rank tests are used whose introduction requires the

following notation. Throughout, let the variables X; be continuously dis-
tributed for i = 1,..., n. Consider the ordered observations

Xl:n < X2:n < = Xn:n
of the sample (1.1) and let D, ; denote the antirank of the ith observation, that
is, X;., = Xp_, and define antirank vectors as
Dn = (Dni)i=1,...,n'
Introduce also
N () T

Notice that A™9 = 1if X, , is uncensored, that is, a lifetime is observed.

Received March 1989; revised June 1990.

AMS 1980 subject classifications. Primary 62G20; secondary 62G10

Key words and phrases. Conditional rank tests, censored data, survival analysis, Pitman
efficiency, hazard rates.

1434

G]

\

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Q%( )2
The Annals of Statistics. RINGRY

e

www.jstor.org



CONDITIONAL RANK TESTS 1435

The theoretical justification of generalized rank tests based on (D,, A™)
was deeply influenced by the counting process approach of Aalen (1978).
Following these lines the asymptotic theory reached a high level. The asymp-
totic behaviour of survival tests was clarified by Gill (1980), Leurgans (1984)
and further authors whose papers can be found in the survey articles of
Andersen, Borgan, Gill and Keiding (1982) and Andersen and Borgan (1985).
Two sample goodness-of-fit tests were proposed by Schumacher (1984).

By a different approach based on a local asymptotic normal approximation
(LAN), Neuhaus (1988) and Janssen (1989) showed that the antiranks and
censoring indicators (D,, A™) are asymptotically sufficient within a model
with given local alternatives. For these reasons, Neuhaus (1988) proposed rank
tests for censored data which are similar to the classical score rank tests of
Hajek and Sidék (1967) under uncensored data. Below we will pursue these
fruitful ideas. Earlier Albers and Akritas (1987) also adapted the classical rank
test procedures. They studied ordinary rank tests for the censored and uncen-
sored portion of the data separately. A comparison of their results and the
present approach is contained in Neuhaus (1988). In the sequel two main
results are obtained.

1. The standard survival tests and their optimality properties can be obtained
by an extension of the classical rank test theory of Hajek and Sidak (1967).
In addition it is explained that the commonly used local alternatives have a
natural explanation in terms of hazard rates which is extremely helpful for
a practical motivation of the results. The interpretation of classical (un-
censored) rank tests given in terms of hazard rates may be of separate
interest.

2. At finite sample size conditional tests are proposed which can improve the
familiar survival tests. It is shown that these tests approximate the desired
level also under local (contiguous) unequal censoring distributions although
they are in principle constructed for equal censoring conditions under the
null hypothesis.

Roughly speaking, the accuracy of the conditional tests has the following
reason. Within a local model including different censorship the influence of the
lifetime distributions and the censoring distributions becomes asymptotically
independent, Janssen (1989). Conditional tests are permutation tests with
exact critical values. Permutation tests with estimated variances were earlier
treated under equal censorship by Andersen, Borgan, Gill and Keiding [(1982),
Section 3.5], with their martingale methods.

What is the difference between the powerful counting process methods and
the present approach? Here the influence of the censoring distributions is
given by nonparametric nuisance parameters which asymptotically drop out,
see also Remark 3.1(b). Similarly the k-sample problem is treatable; see
Janssen (1991). In a forthcoming paper it is shown that the methods apply to
discrete observations when ties are present. Recent Monte Carlo results show
that conditional tests can be recommended in practice whenever the censoring
procedures do not differ drastically; see Janssen and Brenner (1991).
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2. Conditional survival tests. In the literature the following well-
motivated test statistics T, are frequently applied. Define

n i—1 C D,
1 =T (D , A™) = ;) AC> D) + —
(2.1) T, n( n ) i§1wn(l) CnD,; ng n+1-—1

where c¢,; denote given regression coefficients and w,(i) are certain random
weights specified later. Notice that the weights can be used to make the later
tests sensitive for certain directions of alternatives. In order to motivate the
choice of T, in (2.1), consider a two sample problem with n, individuals in the
first group (treatment group) and n, = n — n, individuals in the second group
(control group) indicated by the index set S, = {n; + 1,...,n}. If we define

(22) Crni = n—1/2(1S2(i) - n2/n)’
it is easy to see that the conditional expectation of ¢, . equals
: i-1 Cnp, .
= — B

(23) Elen,|Dus s D) = = B 227
under iid. X,,..., X, and thus (2.1) measures the deviation from the i.i.d.
hypothesis.

In the sequel we will consider the nonparametric hypothesis
(2.4) H,: X,,,...,X,, arei.id. withd.f. F,(-,0),

where F(-,0) is a completely unknown continuous distribution function (d.f.).
Throughout, the d.f. of the censoring variable X, is specified by a substochas-
tic distribution Fy(-,0) on (—,®] with lim,_,, Fy(x,0) < 1, which is an
unknown nuisance parameter. Let H(-) be the d.f. of X, under H,, namely

(2.5) 1 - H(x) = (1 - Fy(x,0))(1 - Fy(x,0)),
which is assumed to be continuous and let
(2.6) p(u) =E(AJH(X,) =u), u<(0,1),

denote the regression function of A; w.r.t. H(X,) = u. By means of the
regression function p(-) the distribution of the pivoted sample (H(X,), A,) can
be written as

(2.7) L(H(X,),A,)(AXB) = fA(la(l)P(u) + 15(0)(1 - p(u))) du

for Borel sets A and B. Notice that the consideration of pivoted samples is
motivated by invariance properties of rank tests.

Throughout, the following notation is used. Let A denote the uniform
distribution on (0,1) and 1 the indicator function. We write —, for the
convergence in L,(0,1),A) and —, for convergence in probability. Let
[x] = sup{k € Z: k <x} denote the entire function. The functions u —
w,(1 + [nu]) and so on are always denoted on (0, 1). The normal distribution
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with mean a and covariance I is denoted by N(a,T') and ® is the standard
normal d.f.

In connection with k-sample problems, more general regression coefficients
as in (2.2) are needed. Consider the following regularity conditions.

REGRESSION COEFFICIENTS. Let c,; be regression coefficients such that the
usual Noether conditions are satisfied:

n
(2.8) max |c,;| = 0, Y. c,,=0 foreachn
l<i<n i=1
and
n
(2.9) Y2 »5c>0
i=1

as n — ., Sometimes we need the condition

(2.10) n2¢,1 4 nuy L, €(%)

as n — o for some L4(0,1) function ¢(-) # 0, which is more restrictive than
(2.9). Notice that in case of (2.2) the condition (2.10) holds whenever

(2.11) n,/n—vye(0,1).

WEIGHT FUNCTIONS [Assumption (W)]. Let w,(i) denote random weights
such that w,(i) is measurable w.r.t. the o-field o(A™: j <i). For iid.
lifetimes X,,,..., X;, and ii.d. censoring variables X,,,..., X,, with d.f’s
F(-,0) and Fy(-,0) assume that there exists an L,(0,1) function w = wy, g,
which may depend on F(-,0) and F,(-,0), such that

(2.12) % Z:E((wn(i) - w(H(X;.,)))’) >0 asn— e

1=

DiscussioN. (a) The condition (2.12) is a natural extension of the classical
L,-convergence assumption for weights of Hajek and Sidak (1967) since for
nonrandom weights the condition (2.12) is equivalent to the convergence of

(2.13) uw,(1+[nu])

to w(u)in L,0,1) as n — . This result can be deduced from Lemma D of the
Appendix if one first considers w,(i) = E(w(U;.,)).

(b) Next we will discuss random weights w,(i) = w,(X;.,) which arise from
a given predictable process @,(¢). The condition (2.12) is satisfied if for
instance ,(¢) and w(H(¢)) are uniformly bounded and

(2.14) sup|,(¢) — w(H(t))| > 0
teK

in probability for each compact subset K of {s: H(s) < 1}. In practice, often
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weight functions
(2.15) W,(X;.,) = po(Fu( X, —))

are used for deterministic functions p, which are based on the Kapian—Meier
estimator

n _J. A D)
2.16 F(X,,-)=1- —
( ) n( in ) }_IQ ( n + 1 — j )
of the pooled sample. Here F (¢ —) denotes the left-sided limit at ¢. Notice
that the Kaplan—Meier estimator satisfies

(2.17) sup| F(¢) — Fy(£,0)| > 0
t<t,

in probability whenever H(¢y) < 1; see Gill [(1980), Theorem 4.1.1]. Thus
condition (2.12) holds for predictable processes w, of the form (2.15) when p,,
is uniformly bounded, continuous and uniformly convergent on compact sub-
sets of (0,1). Under these assumptions, the statistic T,(D,, A™) (2.1) is
asymptotically normal distributed. Similar results were obtained by Gill (1980)
but the present proof is an extension of the classical proof for ordinary rank
tests. Special attention is also devoted to the asymptotic normality of the
conditional statistic 7(D,,, 8) given A™ = § which is needed for conditional
tests.

THEOREM 2.1. Assume that the conditions (2.8), (2.9) and Assumption (W)
hold. Under i.i.d. survival distributions and i.i.d. censoring distributions
with common d. f.’s F|(-,0) and F,(-,0), respectively, the statistic T, has the
following properties.

(@) T, - N(0, o) in distribution as n — «, where the variance

(2.18) o? = c[olwz(u)p(u)du

is determined by the limit score function w = wy, , and the regression func-
tion p(-), see (2.6).

(b) In addition assume (2.10) and let T ,(D,, A™) be a further statistic with
T,—> T, > 0 in probability as n — . Let F, ,(t) denote the distribution
function of Z(T,(D,,?)) under uniformly distributed antiranks for fixed 6.
Then

(2.19) suﬁIFn,A(n)(w)(t) - ®(t/a)| >0
te
in probability as n — », whenever o2 > 0.

" The proofs are presented in Section 5.
In practical situations, Theorem 2.1 often holds for each reasonable pair
(Fy(+,0), Fy(+,0) of d.f’s. However, the application of T, as a test statistic
requires a consistent estimator V, for o2 in order to get a distribution-free
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statistic. Various consistent estimators V, are discussed in Gill (1980) for the
two sample case. This consideration leads to the unconditional (asymptotic
level a) tests

1, TV;V2>u_,

2.20 =
(2.20) =0, TV<u,_
where u,_, denotes the (1 — &) quantile of ®. Monte Carlo results show that
the true level of ¢, may differ from the nominal level a; see Section 4, Latta
(1981) or Janssen and Brenner (1991). In order to improve the unconditional
tests, often permutation tests based on T, are applied at finite sample size.
Notice that those permutation tests where T, is standardized by its permuta-
tion variance can be handled with the methods of Andersen, Borgan, Gill and
Keiding [(1982), Section 3.5], under equal censoring conditions. We will study
conditional tests ¢, in detail which are exact permutation tests. They are
motivated by the fact that D, and A™ are independent under i.i.d. survival
times and equal censoring distributions. For a given statistic 7,(D,, A™),
conditional tests are defined as follows.

1. In a first step we observe A™ = (§,,...,8,) = 4.
2. For fixed 5, we apply the level a test

1, T.D,,8) >c,(a,?d),
(2'21) én,S(Dn) = 'y(a,B), Tn(Dn"s) = cn(a,6), 'Y(a’s) € [0, 1]’
0, T.(D,,?8) <c,(«a,?d),

where the critical value c,(a, 8) is the (1 — @) quantile of the usual rank
statistic T,(-, §) under uniformly distributed antiranks.

Under equal censoring distributions, ¢, = ¢, A{(nXD,) is an exact level a
test and it reduces to an ordinary rank test whenever no censoring is present.
In addition, ¢, is always distribution free and no estimator V, of 0% is needed.
As it is discussed in the Introduction, point 2 and in Sections 3 and 4,
conditional tests also work under locally different censoring distributions.
Together with the finite sample results this fact now justifies its application in
practice when strongly different censoring conditions can be excluded. Condi-
tional tests of the form (2.21) were proposed by Neuhaus (1988).

Usually statistics 7, given by (2.1) will be considered in (2.21) but also
conditional tests based on T, [see Theorem 2.1(b)] or T, /V,}/2 work well. As a
direct consequence of Theorem 2.1(b), we see that conditional tests are asymp-
totically equivalent to their unconditional counterparts.

CoroLLARY 2.1.  Under the assumptions of Theorem 2.1(b), we obtain
(2‘22) én,A(n)(Dn) - l[ul_u,cn)(Tn/o') -0

in probability as n — .
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3. Conditional survival tests under local alternatives. In modern
nonparametric statistics the quality of tests is usually compared under local
alternatives arising from a fixed but arbitrary curve of d.f.’s; see Pfanzagl and
Wefelmeyer (1982) or Strasser (1985). In this spirit we will specify the survival
model, compare with Janssen (1989). For related considerations concerning
the estimation of the survival functions, see van der Vaart (1988).

At the beginning assume that ® C R is an open neighbourhood of the origin
and let (P;;);5ce be a family of distributions on R for j = 1, on (—o, ] for
J = 2, respectively, with d.f.’s F,(-,?). Below the curve P, is used to intro-
duce a model for the survival times where as an extension of the two sample
case different conditions for the individuals i are expressed by regression
coefficients c,; with (2.8) and (2.9). The second curve investigates unknown
censoring distributions. Here a further triangular array d,; of regression
coefficients is introduced which again satisfies the regularity conditions (2.8)
and (2.9). The nowadays commonly known local consideration of the asymp-
totic test theory motivates the consideration of local parameters (s,t) € R2
which are used to compensate the influence of increasing sample sizes. In view
of these principles, define the joint distribution of the survival times and
censoring distributions under (s, ¢) (sufficiently small) by

n n
(3.1) L( Xy oo Xipy Xogs 005 Xyp) = .®1P1sc,‘,- ® V®1P2td,”~’
i= i=

where sc,,; describes the survival condition of the ith individual and ¢d,; its
censoring procedure. Denote by

(3'2) Qnst :=°/(X17A1’X2’A2""7erAn)’

the distribution of our observations under s and ¢. Assume that X; has a
continuous distribution for i = 1,..., n. This model is rich enough to describe
locally unequal censorship.

Assume the following standard regularity assumptions for the underlying
curves. Let % — P,; be 2-differentiable at zero with a derivative L; € Ly(P;,)
for j = 1,2, that is,

dP,, 1/2 .
(8.3) 2( : ) -2-9L; = o(|91)
deO ’ Lo(Pjo)
and
dP;
(3.4) P, {dP” = 0}) =o(|91?) as ¥ - 0.
J%

Notice that L ; is a tangent vector in the sense of Pfanzagl and Wefelmeyer
(1982). As usual dv/du denotes the density of the p-absolutely continuous
part of v and |- ||z, indicates the usual L,-norm. From Janssen (1989), we
recall that

(3'5) (37t) i ’/(XI’ Al'PIS ® P2t)
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has the L,-derivative
(4%, 8), (%, 8))"

(3.6) oLy dP .
= |y ()8 + {"_—’Flzx—ol;’,— yo(%)8 + Ly(x)

on R X {0, 1} with

: f(x,oo)Ll dPlO
v1(x) = Ly(x) — 1 - Fy(x,0)’
(8.7) .
: [[x,oo]Lz dP20.
72(x) = Lz(x) 1 — Fz(x _ ,0) .

For practical purposes survival models are often specified by hazard rates and
not by d.f.’s. In this setting y,(-) has an interesting interpretation. If we define
the hazard rate of P,, w.r.t. P,, by

dP,,
dPIO/(l - Fl("ﬂ))’

the function vy,(-) is the derivative of the hazard rate ratio, that is,

Ay
(3.9) (A—O—l)/ﬁ-wl(')

is convergent in P,, probability as & — 0; see Janssen (1989), proof of Lemma
2. Notice that for p-dominated families, y,(-) is the derivative of the cumula-
tive hazard functions d(—log(l — Fy(+,9)))/du at zero, which was earlier
considered by Gill [(1980), page 117]. Obviously (8.8) is not restricted to
survival d.f. (Fy(0,3d) = 0) and (3.3)-(3.9) works for arbitrary distributions
on R.

In a first step a solution of the underlying test problem along a fixed curve
was given in Janssen (1989). For the test problem with nuisance (censoring)
parameter t €{t €R: ¢d,; €O fori=1,...,n} =M,

(8.10) (Q,s::8 <0,t €M,} against {Q,,:s>0,teM,)

the (upper) level o test based on the central sequence

(3.8) Ay =

n
(3.11) ZW =3 ¢, (X, A))
i=1
of the local asymptotic normal (LAN) expansion is asymptotically optimal
within the class of asymptotic level « tests, see also (5.28). Let now T, denote
the statistic (2.1) with a limit weight function w(u) = wyp_ g(u). The crucial
point for the optimality of survival tests is to show by classical rank test
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methods that
(3.12) z®O-T, =@ 05

whenever w(-) coincides with the derivative of the hazard ratio of the pivoted
sample, that is,

(3.13) wr, pu) = vi(H '(u)).

The general result is presented in Theorem 3.1 also when (3.13) is violated.
Further interesting facts should be mentioned before the results are stated. In
order to give a practical interpretation, the asymptotic moments of T, are
later expressed in terms of hazard rates. The results are given for the
conditional tests ¢, since we may not have a consistent estimator V, under
general regression coefficients. If such an estimator exists, we may replace ¢,
by ¢, and in particular we obtain the optimality results of Gill (1980) for the
two sample case. For practical purposes we remark that ¢, is an asymptotical
level a test under local unequal contiguous censorship as long as (2.18) is
positive. -

THEOREM 3.1. Let the conditions of Theorem (2.1) be fulfilled. For a
family Q,,, given in (3.2) we obtain the following assertions.

(&) L(T,IQuur) = N|es fu0(u)ya(H(w)p (), [ (w)p(u) du |

in distribution as n — ©, where vy, denotes the underlying derivative of the
hazard rates ratio (3.9) and H™! is specified in (2.5).
(b) Under the additional assumption (2.10) we obtain

M 2sfw(u)y,(H *(w))p(u) du )
(Jw(w)p(u) du)"

asn — o [u,__ is the (1 — a) quantile of ®] whenever (2.18) is positive. In
particular notice that for each nuisance parameter t,

(3.14) Eq 6,~1-@|u,_,—

(3.15) Ey  fn—a asn—o .

(c) The conditional tests ¢, are asymptotically optimal among the class of
level a test for the test problem (3.10) if and only if there exists some d > 0
such that

(3.16) (dw(u) — v,(H '(u)))p(u) =0 A almost everywhere.

Let ARE denote the asymptotic relative efficiency in the sense of Hajek and
Sidak (1967), page 267, for the composite test problem (3.10) and the condi-
tional test ¢, given by the weight function w(-), that is, compared with the
optimal test 100(1 — ARE) percent of the observations are wasted if the test
under consideration is used. Routine calculations show that whenever the
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mean of the normal distribution in Theorem 3.1(a) is nonnegative for s > 0,

ARE = (fw(u)'yl(H‘l(u))p(u) du)z
(3.17)

X[ [r(E @)p(w) du fwtw)p(u) du)

is just cos? @ of the angle 6 between the limit weight function w(-) and the
derivative of the hazard ratio y,(H '(:)) in the L%space w.r.t. p(:)A. How-
ever, for a simple test problem {Q, o} against {@,,,,} in general even better tests
as those given by (3.13) can be obtained; see Janssen (1989).

REMARK 3.1. (a) In the case of the two sample problem (2.2), Theorem
3.1(a) was earlier obtained by Gill [(1980), 5.2.14, page 106], under his assump-
tions.

(b) Within our model d@,,,/d®,,, may be different from 1 caused by the
influence of the nuisance parameter ¢. Here our model differs from the model
of Gill (1980), page 32 and page 118, who always assumed that for an i.i.d.
sample (X;;);_; ., the corresponding distributions P and P’ are equal in his
notation; see Gill [(1980), (3.18)].

(¢) Our point of view yields another look at the classical theory of rank tests
without censoring (p(u) = 1) which is completely included. Notice that for
deterministic weights w,(i) with (2.13) and under A™? = 1, the statistic (2.1)
equals

. n Lowa(J)

3.18 T, = c.p |w,(i) — ,

( ) igl D,; () J§1n+1_‘]

where
1+[nu] w ;

an(1+ [nu]) = w,(1+ () = % —ontI)

jo1 nt 1—j

(3.19)

>y, w(u) - /0” ’1”(_”3) dv = a(u).

By Lemma 5.2, the common approach via classical scores a,(i) and the
methods relying on the present weights w, (i) are equivalent. Notice also that
w(-) = a(-) is an isometry from L,(A) into {g € L,(A): [gdA = 0}; see Efron
and Johnstone (1990) and Ritov and Wellner (1988). For both representations,
optimality properties can be discussed. The related tests are optimal along a
given curve F(-,9) with tangent L, and hazard ratio derivative v, if and only
if

(3.20) da(-) = Ly(F7'(+,0))
for some d > 0 or equivalently
(3.21) dw(-) = y(Fr'(-,0)),
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and also the ARE can be expressed by hazard rates (3.17). It is our feeling that
the consideration in terms of hazard rates (3.21) gives a more natural nonpara-
metric explanation for the optimality of linear rank tests than (3.20). We argue
as follows. Common rank tests with score function a(-) (as the Wilcoxon test)
are often optimal for a location family F(-,#). But in nonparametrics F(-,0)
is unknown and a further d.f. Fy(-,0) may be the true basis point. Obviously,
there exists a curve F,(-,d) where the given test is optimal. However, F(-,9)
is in general no longer a location family and its meaning is here unclear. But a
proper interpretation can be given in terms of hazard rates (3.21): The
normalized derivative of the hazard ratio is (positive) proportional to the
weight function. The dependence of (3.21) on the unknown basis point Fy(-, 0)
has a self-normalizing effect which yields a quite natural model. A
distribution-free description can be given in the context of the pivoted sample
F(X,,0) whose derivative of the hazard ratio equals y,(F; (-, 0)) whenever X,
is distributed according to Fy(-, ).

(d) Following the ideas of Neuhaus (1987) we note that our approach
suggests a further procedure for generalized rank tests with estimated scores.
We propose to use an estimator for the optimal weights w,(i) = a(i) — a®(i)
of (5.4) and to insert this estimator in the test statistic 7),. What we are doing
here is to estimate the underlying hazard rates ratio derivative y,(H (u)).
Notice that estimators for a{’(i) and a®(i) are available from the paper of
Neuhaus (1987).

Finally, we will consider various practical examples where the model is
specified in terms of hazard rates. As mentioned in Remark 3.2(c) this ap-
proach has the advantage that hazard rate alternatives can be attached at each
basis point Fy(-, 0) which can be regarded as a nuisance parameter.

ExaMpPLE 3.1. Consider survival distributions as in (3.3)-(3.7). Then we
obtain the following optimality results under semiparametric alternatives
given by nuisance parameters Fy(-,0) and F,(-,0).

(a) For a constant derivative y,(x) = d > 0 of the ratio of the hazard rates
the conditional log-rank test with w,(i) = 1 is optimal.

(b) For w,(i)=1-E(U,.,) =(n+1-1i)/(n + 1) the conditional version
of the test of Gehan and Wilcoxon is optimal whenever

(3.22) y(H Y w))=d(1-u), d>0.

This test is a test for differences in the hazard rates for small lifetimes.
(c) Consider the derivatives

d ()t,,(x) 1)

(3.23) a9 (Ag(x) = 7i(x) = (1 - Fy(,0)) Fy(%,0)",

9=0

p=20,k>0,

where dAy(x)/dA,(x) denotes the hazard rate ratio of Fy(-,d) w.r.t. Fy(-,0).
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Then the choice of
(324) w,(i) = (1-Fy(X.,, ) Fu(Xi.n )" [see (2.14)-(2.17)]

leads to optimal conditional tests. This example includes a conditional version
of the test of Harrington and Fleming (1982) for k = 0 and of Prentice’s (1978)
version of the Wilcoxon test (p = 1, k = 0). Notice that for p > 0 and « = 0,
the function y,(x) may be understood as a model for the deviation of the
hazard rates for small lifetimes. The case p > 0 and « > 0 corresponds to a
deviation of central lifetimes and y = 0 and « > 0 stands for a deviation of the
hazard rates for long lifetimes. We see that in the parts (a) and (c), Fi(-, 0) and
Fy(-,0) are arbitrary nuisance parameters within the semiparametric model.
In the case of part (b), however, Fy(-,0) and Fy(-,0) are connected via (3.22)
and H(-), see (2.5).

4. Monte Carlo results. The recommendation of conditional tests also
under (not too extreme) unequal censorship will be supported by the subse-
quent Monte Carlo results. Earlier Monte Carlo simulations were done by
Latta (1981) and for more details see Janssen and Brenner (1991).

In the sequel let us always consider the two sample problem with regression
coefficients (2.2) at sample size n = 10 and n, = n, = 5. Later we will study
the unconditional (abbreviated by unc) and conditional (con) versions of the
tests given in Example (3.1). Let LR denote the log-rank test, GW the
Gehan-Wilcoxon test and PW the Prentice version of the Wilcoxon test. In
connection with the unconditional test ¢,, we always took the estimator
(3.3.11) of Gill (1980) as estimator V, of the variance, which is usually applied
in practice. The following results were obtained during a simulation with
50,000 Monte Carlo steps on a VAX 88 computer.

The calculations in Table 1 show that the unconditional tests are not
accurate here under i.i.d. survival times and i.i.d. censoring distributions for
the nominal level a = 0.02, 0.05, 0.1 and 0.2. Notice that under the null
hypothesis the model is completely specified by the regression function p(-),
see (2.7). The results in Table 1 motivate the investigation of conditional tests.
Next we show that conditional tests yield reasonable results (not only asymp-
totically) also under different censoring distributions for the null hypothesis.

TaBLE 1
The true level of unconditional tests under the null hypothesis and equal censorship

pu)=u p(w) = min(1, 1.522)

a LR GW PW LR GW PW
0.02 0.002 0.001 0.002 0.001 0.001 0.001
0.05 0.043 0.036 0.043 0.039 0.033 0.040
0.10 0.115 0.115 0.115 0.113 0.112 0.114

0.20 0.262 0.263 0.251 0.310 0.304 0.296
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TABLE 2
True level of the tests ¢, and ¢, at the nominal level a = 0.1 (under different censoring
distributions)

Censoring distribution LR GW PW

Group 1 Group 2 unc con unc con unc con
F, F, 0.168 0.092 0.007 0.086 0.017 0.089
F,; F, 0.193 0.076 0.008 0.094 0.030 0.087
F, Fy 0.239 0.102 0.006 0.105 0.025 0.101
Ff F, 0.219 0.091 0.002 0.092 0.013 0.094
F, F, 0.104 0.074 0.004 0.068 0.008 0.070
F, F, 0.138 0.052 0.004 0.082 0.023 0.072

Assume throughout that the lifetime distributions (X,,),_, ., are ii.d.
uniformly distributed on (0, 1). The censoring distribution will be taken i.i.d.
within the first group (X,;); s and iid. in the second group (Xj);.s,
respectively, but their distributions differ in both groups. We used the follow-

ing kind of censoring distributions. Choose the Koziol-Green model
(4.1) 1 — Fy(x,0) = (1 —x)"Po !
1 1

and denote by F,, F, and F, the distributions (4.1) with p, = %, 3 and %,
respectively. Define

Fy(x) =x%2, F(x)=x% 0<x<1,

and let F; be the distribution function on (0,1) such that the density is
proportional to (x — 3)2. Later we consider tests at level & = 0.1. Table 2 gives
by a Monte Carlo simulation the true level of the tests under different
censoring distributions. The Monte Carlo study shows that in most of all cases
the conditional tests are up to a few exceptional cases (where the conditional
tests are too conservative) closer to the desired level a = 0.1 as their uncondi-
tional counterparts.

5. The proofs. In the sequel we will reduce the test statistic 7, to a form
which can be handled by classical rank test arguments. Rewrite (2.1) as

n ' n wn(j)A("’j)
(5.1) T, =Y c.p |w,(i)amd+ ¥ =nllZ )
=y P joi+1 Rt 1—J

The survival statistic T, will be compared with

o n B,(j) P
cnpni(wn(i)ww > —(’)p'”.)
1 jmier Pt 1—yJ

§q.
™

13

(5.2) ()
“ : L l‘bn J)Pnj

=Y c,p |w,()AD — ¥ 22

El D'”( () J§1n+1—1)
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where by definition
(5.3) pn;=E(p(U;.,)) and @,(j) = E(w(U;.,))

arise from uniformly distributed order statistics U;., and the limit weight
function w(-). If we now define scorés a'/)(i) for j = 1,2 by

i o). .

(54) o)) ~aP(i) = B,(5) and aP(i) = — & D

we see that
n
(5.5) Tn = Z an,.,'(a(rP(i)A(n’i) + a(,f)(i)(l _ A(n,i))).
i=1

Rank statistics given by (5.5) were carefully studied by Neuhaus (1988) and
Janssen (1989) whenever limit score functions a¥’(-) € L,(0, 1) exist, that is,
(5.6) (1 + [nu]) -, a¥(u) asn-—>wo forj=1,2.

The reduction of T, requires the following:

LemMa 5.1. (a) Consider nonrandom weights w,(i) such that (2.13) con-
verges in Ly(0,1) to w(-). Then

L+lnul gy (7)) uw(v)
—

(5.7) B onri-i lyi =
In particular
. 2 2
12 (24 w()) 1 pew(v)
(5.8) ;i=1(1§1n+—1—j) —)j;(ol—vdv du asn - o
and the scores (5.4) satisfy (5.6) with
ww(v)p(v)

(5.9) a®P(u) —a®(u) =w(u) and a®(u) = —j;) dv.

(b) Define

1-v

f(H—l(u),oo)Ll dP1o
1- Fl(H‘l(u),O)

with ¢, (H Y(u),8) = 8b(u) + by(u), where ¢, is as in (3.6). Whenever
y(H=X(-)p(-) € Ly(0,1), the function by(+) is square integrable too and

(5.10) by(w) = - [ “ YI(H_II(_Ul)p ) 4.

by(u) =vi(H Y(u)) and by(u) =

ProOF. (a) In the sequel we use the abbreviation w,(u) == w,(1 + [nu]).
Then Lemma C of the Appendix implies

uwn(v) u w(v)

dv -, dv.

(5.11)

o 1—v 2Jo1—-v
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Uniform integrability shows that

u wn(v) [nul/n n( v)
Ol_vdv [0 T dv =1, 0.
Thus it remains to show that
[nul/n n(v) [n] wn(l)
N e

since w,(v)/(n — [nv]) —, 0. Notice that the absolute value of (5.12) equals

[nul . 1 1
. i/n
Elw"(‘){f(i_n/n T ¥ T ur1 —i}
[nu] 1
(5.13) < w7 - 7577

_ o lw, (i) Sflw(v)l
0

S E (n=i(n+1-1) 1-v
For fixed u < 1, we obtain
(o) Jw, (i)

(5.14) Y

L —in+i-d) "

if we apply (5.11) to the scores |w, (i)l /(n — i)1;; (,,1(Z). Since the convergence
is dominated by an L, convergent sequence, we see that (5.13) converges to
zero in L,(0,1).

(b) Note that it is enough to prove the result for the pivoted samples
(H(X)),A;). Thus we may suppose that P, and P,, are distributions on
(0,1) and (0, 1], respectively, such that H(x) =x for 0 <x <1 and y,(u) is
the derivative of the hazard rates ratio of P,, for u € (0, 1). Differentiation of
(2.5) then leads to

(5.15) 1=fy(u)(1 - Fy(u,0)) + fo(u)(1 - Fy(x,0)), 0<u<1,

where f; denotes the density of the absolutely continuous part of F.(-, 0). Next
we prove that F(-, 0) is absolutely continuous with density f;. If not we see by
taking integrals on both sides of (5.15) and using integration by parts that

1< [01(1 — Fy(u,0)) dPyo(u) + [01(1 — Fy(u,0)) dPy(u)

=2- Fl(l’O)FZ(l’O) =1,

since Fy(u,0) <1 on (0,1). This is the desired contradiction. Consequently,
the definition of b, and (3.6) yield

(5.17) (d/du)by(u) = —yy(u) f1(u)/(1 — Fy(u,0)).

(5.16)
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Using the joint distribution of (X, A,), it is easy to see that
(5.18) (d/du)by(u) = —yy(w)p(u)/(1 —u)
A-almost everywhere, which implies ,
wy(u)p(u)
ba(w) =~ [T
On the other hand, b,(x) — 0 holds as u | 0 since

(5.19) du +c.

(5.20) JLidPy,=0. u)

In the special situation H(x) = Fy(x, 0), that is, p(-) = 1, Lemma 5.1(b) is a
consequence of Efron and Johnstone [(1990), Lemma 1] and Ritov and Wellner
[(1988), Proposition 2.1].

LEmMA 5.2.
T, — T Qoo 0.

ProoF. In a first step the lemma is proved for w,(i) = w,(i); see (5.3).
Since D, and A™ are independent, the classical variance formula of Hajek and
Sidak [(1967) page 61], yields for n > 1 and some K > 0,

Var(T, - T,)
n n A(ﬂ»j)_p .
YL E||l L ()
-1,5, 7o j=i+1 n+l-j
. 2
A(n,J)_p .
-— Z Y ()
M p=1j=k+1 n+1l-j
. . 2
K n i A(n,J)_p . 1 » k A(n,J)_p .
<—) E w,(Jj —_— = w,(Jj S
nEl ng (‘I)n+1—j nkgljgl (‘I)n+1—J
. 2
(621 K » i A —p
<—) E W,(j)—————
nigl J§1 (‘])n+1—J
K n i A D
=YV 7
nE’l ar(gw"(‘])n+1—j)
K n i oo Var(A("’j))
=—Y X ( ()3
nZ1j-1 (n+1-))
K Z": Z‘ i,(7)i0,(k)Cov(A™ B A
+ni=1 (n+1-j)(n+1-k)
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Next we will prove that the first term of the upper bound of (5.21) vanishes as
n — o, Notice that
B,()° 12 @)

—ZE—————————Z >0 asn > .
n,1j-1(n+1 J) n11n+1 —-J
The last assertion can be proved as follows. For § < 1,
. 1 - N2 1
lim — Y @,i) =fw2(u)du,
B

n=e o ns]+1

which becomes arbitrarily small for & 1 1. Moreover observe that

181 i (i)? 1 1 n
: Y @,(i)" = 0

— ‘S_
n,-yn+l1-i~ nn+1-[né] /=

as a consequence of the L, convergence of u — w,(1 + [nu]). The covariance
terms in the upper bound of (5.21) can be treated as follows. Lemma B of the
Appendix implies

|Cov(A™0, &%) | < (Var(p(Uy..,))(Var(p(U}.,))

for & # j. Consequently,

1 L W,(J)W,(k)Cov(A™R), A D)
ZE:I ) (n+1-j)(n+1-k)

ey

j=
k=
k+j

~.

i Var(p(U;.,))"2)
| E )] (o)

-0 asn—o

:‘»Ii—l

by (5.8) and Lemma D since u — [i@(1 + [nuDIVar(p(U, ,,,;.,))"/? converges
in L0, 1) to zero which completes the proof of the first step. In the second
step we assume that w, (i) satisfies the condition (2.12). Define

n ) n wn i) A )
Wn = Z C”Dni wn(i)A(n,t) + Z —(J—)_— ’
i=1 jeis1 PH1-J

) X %)
Sn - i§1an""(w(H(Xi:n))A(n’i) + j=¥+1 w(H"f‘fjan)JA )
Since Var(W, — T) — 0, it suffices to prove that
(5:22) Var(T, - S,) » 0
and
(5.23) Var(S, — W.) 0.
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Later we will repeatedly make use of the independence of D, and
(A", (X;.,)i=1.....»)- The proof of (5.22) splits into two steps. If we set w,(i) =

.....

n

Var(z (i) A" e, ) ‘

i=1

1 n n ) 1 n ) 2
(5.24) e — Z cfn.E Z (wn(i)A("") _ - Z wn(j)A(n,J))
n—1;2 i=1 n;-y
K n
< —E( )y 'u‘»n(i)z) -
no\i=1
if we take (2.12) into account. Similar as in (5.21), we see that
) ) 9
n n wn(j)A(n,J) K n i A(n i)
Var Cnp,, — | < — E R(J
igl D"‘j=¥+1 n+1l-j Z g ( )n+1 —j
.g11/2 2
Ko (4 (E@0 )
5.25 <2 :
( : n i§1 J§1 n+1-j

<

S| >y
s

> (E(wm))“f.

n+1-j

i=1\/=1

Notice that the condition (2.12) is equivalent to the convergence of u —
(E(@,(1 + [nuD?)'/? to zero in L,(0,1). Thus (5.25) converges to zero by
assertion (5.8) and (5.22) follows from (5.24) and (5.25). In order to give the
proof of (5.23), we substitute @, (i) by

wp(i) =w(H(X;.,)) — @,(7).
As in (5.24), we see that

n

(5.26) Var( Y w;(i)A("’i)anni) < K Z Var(w( iin)) 0

i=1 i=1
which was proved in Lemma D. Similar to (5.25) we conclude as before that
n ()

Var( i Cnb,, >

i=1 joiv1 ntl—j
(5.27) _ ey 2
Ef l (Var(w(v}:").)) ) - 0. o
n21\ ;s n+l—j

REMARK. The proof of Lemma 5.2 only uses (2.12) and the assumption that
w,(i) is a function of (X, ,, A™7); _,.
Now we are in the position to put everything together.
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Proor oF THEOREM 3.1. The present proof uses the language of local
asymptotic normality (LAN) of Strasser [(1985), Chapter 13]. Notice that (3.5)
and (3.6) yield LAN for Q,,, [see Janssen (1989), page 124 and Theorem 1],
that is, .

(528) IOg(dQnst/dQnOO) = (8, t)(Zr(Ll)’ Zl(lz))T - (01232 + 022t2)/2 + Rnst’

where in addition to (3.1),

(5.29) ZP =Y d,¥y(X;,A,)
i=1

and
(5.30) ‘712 = C['/&dewo, 0'22 = lim Z d?u‘f'/fzdeloo-
Moreover,

g 0
(5.31) L(Z0.Z22)Qu) = N0, |

g2

in distribution and sup ;e x@,00(R s/ > &) > 0 for each &> 0 and all
compact subsets K of R

Next consider the limit score function w(:) and define h(x, §) ==
a{(H(x))é + a,(H(x)X1 — 8) via (5.9). Then [hd@Q,, = 0 and

n
(5.32) W, = E cih(X;,4;)
i=1

is a central sequence at the basis point @,,, in direction of the tangent vector
(h,0) w.r.t. the local parameter space R2. Theorem 3 of Janssen (1989) shows
that W, — T, »o 0 and by Lemma 5.2 the underlying statistic 7, is a
central sequence in direction (4, 0) also, that is,

(5.33) W, - T, >q. 0.

Since [hy dQo = O [see Janssen (1989), page 120], arguments based on the
third lemma of Le Cam prove that

(5.34) L(T,|Quse) = N(k,5%)

in distribution given by the moments (5.35) and (5.36), see Janssen (1989).
With the notation of Lemma 5.1(b), we obtain

(5.35) = Scfh% d@100 = scf(alblp + agby(1 - p)) du,

(5.36) 5% = cfh2 dQ1g0 = c/(a%p +a%(1 - p)) du;

see Janssen [(1989), pages 113 and 118]. An application of Lemma E yields the
result of part (a). The test 1, . (T,/0) satisfies the assertions of Theorem
3.1(b) and (c). The same assertions also hold by Corollary 2.1 for the condi
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tional tests &, if Theorem 2.1(b) is proved. However, Lemma 1 of Janssen
(1989) shows that (2.19) is valid for T, = T.,.
The proof of Theorem 2.1(b) now follows from our final lemma.

LeEMMA 5.3. Assume that (2.19) h«_olds for T! and let T(D,, A™) denote a
further sequence of statistics with T, — T, —» 0 in Q,,, probability. Then
(2.19) remains true for T,.

Proor. Since D, and A™ are independent, we may choose in addition to
A™: (Q, , P) - {0 1}* a new probability space (Q, o, P) and uniformly
distributed random variables D, from € into the set of permutations of
{1,...,n}. Let us abbreviate T (w @) = T (D (&), A(")(w)) and introduce simi-
larly T "(w, @). By our assumptions,

(5.37) T (w,®) — n(w,d')) —pep 0.

Passing to subsequences we may assume that (5.37) is almost everywhere
convergent. By a proper choice of further subsequences we may again assume
that

(5.38) & - Ti(w,d)

is asymptotically N(0,o?) distributed for « € N with P(N) = 1. Set A =
{(w,®): T)(w,®) — T (w,d) > 0} and M = {w: P({&: (w, ®) € A} = 1}. Thus
P(M)=1 and & - T,(&, ) is asymptotically N(0, o?) distributed for w €
M N N. The subsequence criterion for convergence in probability finishes the
proof. O

APPENDIX

In the sequel we will deduce certain results for the ordered values
(X;.,, A™9);_; ., of the sample (1.1) which are needed as technical tools.
The proofs are closely related to the approach of Hajek and éldak (1967) and
are mostly left to the reader. Assume throughout that (X;,),_; . are iid.
for each j = 1,2 such that (X;, A,) has a density
(A1) (x,6) = f(x,0)
on R X {0,1} with respect to the product of the Lebesgue and counting
measure.

Lemma A. () (X;,,,A™D)._, . has the joint density

.....

n'l—_[f(xz? l)]‘(y1<y2<--~ <y")(x1,-..,xn).

(i) Let t: (R X {0,1)™ — R denote an integrable function. Then for each
permutation r = (ry,...,r,) of {1,...,n}, we obtain

E(t((X;,4,),)|R,=r) = E(t((Xri:n’ A(n'ri))i))'
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Moreover it is easy to see that R, and (X, .,,..., X,.,, A™D, ..., A=™)
are independent (also in the case when no densities exist). Consider now as in
(2.7) the pivoted standard model (H(X;), A;) with the density

(A2) (u,8) = 8p(ir) + (1 - 8)(1 - p(u))

for (u,8) € (0,1) X {0,1}. Let Uy,,..., U, denote i.i.d. random variables with a
uniform distribution on (0, 1).

Lemma B. (i) E(A™P) = E(p(U.. ).
(ii) For each pair 1 <i <j < n, we obtain

E(A™DA™) = E(p(U;,,) p(Uj.,)).-

Proor. (i) Set x = (xy,...,x,). Then (X;.,,..., X,.,, A™D, A™)) has
the density

(x,6;,8;) = n!(8;p(x;) + (1 -8,)(1 - p(x,)))
X (8;p(x;) + (1 = 8;)(1 = P(%;))) Ly, << - <y %)

For the proof use Lemma A(i) and carry out integration over the free compo-
nents. Thus

E(Am05mD) = [ [ (%, %) p(x,)p(x;) dx; da;,

where

fixo %) =nl 1y .. <yn)(x)]£[i dx,

k+j

is the joint density of (U, ,, U;.,). The proof of formula (i) is similar. O
Lemma C.  Assume that ¢, =1, ¢q in Ly(0,1). Then
w,(u): = [ u(v)/(1 - v)dv
0
belongs to Ly(0,1) and w, -, wy.

Lemma C was proved by Khmaladze (1981); see also Efron and Johnstone
(1990) and Ritov and Wellner (1988).

LEMMA D.  Assume that w € Ly(0, 1). Then we obtain

(43) ¥ Var (w(U;.,)) = 0.

i=1

We see that u - (Var(w(U, . ,,,.,))"/? converges to zero in L,(0, 1).
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PrOOF. Set a,(i) = E(w(U,,,)). From H4jek and Sidék [(1967), page 157],
we obtain

n 9 1 n 9
—E gl(w(ljtn) - an(l)) ) = ;;E( gl(w(ljt) - an(Rni))

= E((w(Uy) - a,(R,))’) - 0. 0

For the reformulation of the moments of T,, we need the following result.
Again there is for p(:) =1 some overlap with the papers of Efron and
Johnstone (1990) and Ritov and Wellner (1988) who calculated the Fisher
information in terms of the derivative of the hazard function.

LemMA E. Assume that w, and w, are two functions on (0,1) such that
w,;(-)p(-)'/? is square integrable for a regression function p(-). Define

af(u) - a(u) = wy(n),  af(u) = -

uw;(v)p(v)
/;) 1-v d

forj=1,2.

(A4)
Then
fa(ll)(u)a(lz)(u)p(u) du + fa(zl)(u)a(zz)(u)(l —p(u)) du

= [wi(w)wy(u)p(w) du.

Proor. (a) First we prove that (1 — u)aP(u)a@(u) > 0 as u [0 or u 11.
Since Lebesgue’s theorem can be used for the first limit we may restrict
ourselves to the case u 71. Notice that

1-v

sl e(v)
/(/ e )ds—>0

u

(1-waP(u)’ < (1-u (fM )

by Lemma C of the Appendix. A similar result holds for a(u). Now integra-
tion by parts of —a{Pw,p(-) shows the result. O
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