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In the additive effects outliers (A.O.) model considered here one ob-
serves Y; , = X; + v; ,, 0 <j < n, where {X} is the first order autoregres-
sive [AR(1)] process with the autoregressive parameter |p| < 1. The A.O.’s
{v; n, 0 <j < n} are iid. with distribution function (d.f) (1 - v,)I[x = 0]
+ y,L(x), x €R, 0 <y, <1, where the d.f’s {L,,n = 0} are not neces-
sarily known. This paper discusses the existence, the asymptotic normality
and biases of the class of minimum distance estimators of p, defined by
Koul, under the A.O. model. Their influence functions are computed and
are shown to be directly proportional to the asymptotic biases. Thus, this
class of estimators of p is shown to be robust against A.O. model.

1. Introduction. Let F and L,, n > 0, be symmetric d.f.’s on the real
line R, symmetric about 0. Throughout this paper, F is assumed to have a
density f. Let {y,, n > 0} be a sequence of numbers in [0, 1] converging to 0 as
n — o, Define

(1.1 Ba(x) = (1 = y,)I[x20] +,L,(x), «x€&R,

where I[ A] denotes the indicator function of the event A. Let {¢;, j = 0, £1,
+2,...} and {v; ,, 0 <j < n} be independent and identically distributed (i.i.d.)
F and B, random variables (r.v.’s), respectively.

We consider the model in which one observes, at stage n, r.v.’s Y, ,,
0 <Jj < n, satisfying

(1.2) Y, =X, 40, J=01,..,n,
with
(1.3) X, =pX;_, +¢, Ipl < 1, j=0,£1,+2 ...,

where {X} is stationary and Ee2 < ». Moreover, {X;, j < n} is assumed to be
independent of {v; ,, 0 <j <n}, n > 0. This paper studies the problem of
estimating p..

Denby and Martin (1979) called the model in (1.2) and (1.3) the additive
effects outliers (A.O.) model. The assumptions on {v; ,, 0 <j < n} reflect the
situation in which the outliers are isolated in nature. Isolated outliers are
defined by Martin and Yohai (1986) as the outliers, any pair of which are
separated in time by a nonoutlier. Martin and Yohai [(1986), page 796,
Theorem 5.2 and Comment 5.1] also made the assumption of independence of
the process {X;, j < n} and {v; ,, 0 <j <n}, n > 0.
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206 S. K. DHAR

In practice, an appropriate model for time series data with outliers may be
difficult to specify. Fox (1972) and Martin and Zeh (1977) point out the
importance of finding the difference between various types of outliers in order
to effectively deal with them. The two types of outliers in time series analysis
that have received considerable attention are A.O. and innovations outliers
(1.0.). In the I1.0. model one observes {X;, 0 <j < n} of (1.3) and large data
points are consistent with the future and perhaps the past values. On the
other hand, in the A.O. model outliers are generally not consistent with the
past or future values of the unobservable process {X;}. The additive effects
outliers may occur due to measurement errors like keypunch errors [Denby
and Martin (1979)] or roundoff errors in which case L, is taken to be uniform
d.f. on the interval [ — 0.5, 0.5] [Machak and Rose (1984)].

Denby and Martin (1979) studied the least squares estimator, M-estimators
and a class of generalized M-estimators (GM-estimators) of p under the above
models; they took F and L, to be .#7(0, 02) and .#(0, o2), respectively. Under
their A.O. model, all of these estimators have nonvanishing asymptotic biases
with a possible reduction in biases for GM-estimators.

This paper discusses the existence and the asymptotic behavior of the class
of minimum distance (m.d.) estimators of Koul (1986) under the A.O. model
(1.2) and (1.3). To define this class of estimators, let 2 be a Borel measurable
function from R to R and H be a nondecreasing function on R. Let, for x, ¢ in
R,

Sh(x’t) = n—1/2 Z h(Yj—l,n){I[Y},n =x+ tY:j—l,n]
(1.4) J=1

—I[-Y;, <x =Y, ,]},
(1.5) M(¢) =fo(x,t) dH(x).

Denote p,(H) to be a measurable minimizer of M, if it exists. Then 5,(H)
satisfies

(1.6) infM(t) = M[p,(HD].

A motivation for considering these estimators is as follows. In the one
sample, the multiple linear regression and I.0. models, analogous Cramér—von
Mises type m.d. estimators are shown to be asymptotically normal, locally
asymptotically minimax and qualitatively robust against certain departures
from model assumptions [see Millar (1981, 1984) and Koul (1985, 1986)]. One
reason for these properties to hold is the smoothness of these m.d. estimators
as functionals of d.f.’s.

This paper proves the existence of 5,(H). A set of sufficient conditions is
given that ensures the asymptotic normality of vn[3,(H) — p] and the bound-
edness of its asymptotic bias under the A.O. model. Consequently, for a large
class of functions 2 and H, §,(H) is shown to be qualitatively robust against a
sequence of A.O.’s. Again, this is true mainly because these estimators are
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smooth functionals in a sense made clear in Remark 4.3. Finally, just as in
Koul (1986), the estimators with A(x) = x are observed to be asymptotically
efficient among a certain class of estlmators p,(H) under the A.O. model.

All the assumptions on {Y}, 0 <j <n), {X;}, (v ,, 0 <j < n}and {g;}, given
in (1.1)-(1.3) will be referred to as the model assumptions. From these
assumptlons we see that the process { X} is ergodlc and X; -1 is independent
of ¢;, j = 1. Further, for each n, the process {(X;,v; ,), 0 < J < n} is station-
ary ergodlc and hence so is {Y, ,, 0 <Jj <n}. These observatlons will be used in
the sequel repeatedly.

Throughout this paper, 0,(1) [0,(1)] denotes a sequence of r.v.’s that
converges to zero in probability (is tight or bounded in probability) and | |4
denotes the L?(H)-norm. Also, Z, is taken to be a r.v. with d.f. L, n > 0.
Note that the asymptotic bias of §,(H) is defined as the mean of the asymp-
totic distribution of Vn [6,(H) — pl.

2. Assumptions and existence. This section states the assumptions
that will be used subsequently. Some sufficient conditions that imply these
assumptions are discussed. It also contains a proof of the existence of ,(H).
We begin by stating the assumptions.

Al. ny?=0Q), where y, € [0, 1].

A2. H is a nondecreasing continuous function such that
|H(x) - H(y)|=|H(-x) —H(-y)| Vax,y€eR

Note that H generates a unique Lebesgue-Stieltjes measure. Hence H will
also be used to represent a measure in the sequel.

A3. (a) 0 < EX} < .
(b) For some & > 0, 0 < E[h(X,)** <

A4. EXZh*(X,) < w.
A5. For some 6 > 0,

supE/Ih(X0 +2)P*? dL,(2) < .

A6. xh(x)=0Vx of xh(x) <0V x.
A7. 0< [f¥*dH < «, where k = 1, 2.

A8.
(a) sup[Ef(x—Zn) dH(x) < o,

(b) lim sup fEfz(x —Z,)dH(x) < =.
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A9. There exists C, > 0 such that
JIf(x = u) = f(2)ldx < Colul, Vuek.

Al0.
(@) lim [EIXR*(X,)[ f(x + sX,) — f(x)] dH(x) = 0,
(b) lim [EX3h?(Xo)[ f(x + sXo) - f(x)]* dH(x) = 0.

In all the assumptions to follow, 0 < C,, € R are such that C, — 0.
All.
. 1 c, 2
(a) hmnsup Ef_cnfE[leolh (X)) f(x+sX,—2) dL,,(z)] dH(x)ds < w.

1
2C,

(b) limsup [C; fE[Xghz(Xo)ffz(x +5X,—2) dLn(z)] dH(x) ds < .

Al2.
supr[fIXo + 2| |k (X, + 2)|Ef (x + pz — jZ,) dLn(z)] dH(x) < o,
holdsnwith (@) j=0and () j=1
A13.
limsupr[f(Xo +2)°h%( X, + 2) Ef*(x + pz — jZ,,) dLn(z)] dH(x) < =,
hold,; with (a) j = 0 and (b) j = 1.

Al4.
. 1 e,
hmnsup 2_Cnf—cnfE[f|Xo + 2R3 (X, + 2)
X{ff(x +pz+s[ X, +2z] —ju) dLn(u)} dLn(z)] dH(x)ds < o,
holds with (a) j = 0 and (b) j = 1.
Als.
1
li@nsup 2_C',,f_C;n/E[[(X° +2)°h%( X, + 2)
X [/f2(x +pz + s[ X, + 2] — ju) dLn(u)] dLn(z)] dH(x) ds < o,
holds with (a) j = 0 and (b) j = 1.
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Al6.
lim Suprhz(YO,n)Gn(x + va,n)[l - Gn(x + va,n)] dH(x) < o,

)

where
G,(x)=(1-v,)F(x) +v,EF(x-Z2,), «x€R.

Al7.
limsup[E[[hZ(Xo +2)[E{(F(x + pz — jZ,)

—F(x - pz = jZ,)}]"dL,(2) | dH(x) < ,
holds with (a) j = 0 and (b) j = 1.

NoTE. Most of the above assumptions are finite moment assumptions. In
Remarks 2.1-2.4, various sets of sufficient conditions that imply the above
assumptions are given. Remark 2.4 gives an example in which all of the above
assumptions are satisfied. ‘

REMARK 2.1. Consider the following assumptions:

S1: The function defined by q,(z) = [[f(x + u) — f(x)PdH(x), u € R, is
bounded and continuous at 0.

S2: The function defined by ¢,(u) = [f(x + u)dH(x), u € R, is bounded
and continuous at 0.

S3: sup, Ef(1X,| + [2D?h* (X, + 2) dL (2) < .
S4: limsup, EZ? < .

Under S1, S2, S3 and S4, the assumptions A1-A17 reduce to A1-A7, A9 and
A16. This follows from the inequality

(2.1) [f2(x +u)dH(x) < 2[[ f(x+u) - f(x)]>dH(x) + 2[f2 dH,

the moment inequality, the Fubini theorem and the dominated convergence
theorem (D.C.T.). For example, consider A17(b). The expression inside the
lim sup of A17(b) is bounded above by

] dL,(z) dH(x),

JE[h2(X, + z)[E’ijlf(x +u-2,)du
which in turn is
(22) <2[E[R(X,+2)l2lE[" |f2(x +u~Z2,)dudL(2) dH(x),

_Iz

usiné the moment inequality. From S1, A7 and (2.1), [f%(x + u — Z,) dH(x) is
bounded in u — Z,,. That the lim sup of the r.h.s. of (2.2) is finite now follows
from the Fubini theorem and S3.
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REMARK 2.2. In the case when H(x) = x, all the assumptions A1-A17
reduce to Al, S3, S4, A3-A6, A7 with £ = 2 and A9. The reduction of A1-A17
given in Remark 2.1 and the translation invariance of the Lebesgue measure is
used throughout in its proof.

Note that A2 and S2 are trivially satisfied. In view of A7, to prove S1 we
need only to prove that as a function of «, [f(x)f(x + u) dx is bounded and
continuous at 0. Boundedness follows easily by the Holder inequality. From
A7, f€ L%(H). Hence from Rudin [(1974), Theorem 3.14], we have for any
1 > 0, there exists a continuous function ¢, vanishing outside a compact set
such that

(2.3) lp, — fla <m.
Moreover, from the Hélder inequality it follows that

J(2) f(x+ ) dx = [£(x) f(x + 1) dx

<2flulep, = fla +fluld,(-+s) — ¢d,(- + t)lu.

The continuity of [f(x) f(x + u) dx as a function of u now follows from (2.3),
(2.4), A7 and the uniform continuity of the function ¢, .

We shall now show that A16 holds. First note that for an H as in A2, A*16
implies A16 because L, and F are symmetric about 0.

(2.4)

A*16.
(a) JF)[1 - F(x)] dH(x) <,

(b) limsuprF(x —-jZ){1 - EF(x —Z,)}dH(x) <», j=0,1,

limsupr’[fhz(X0 + 2)F(x + pz)
(c) "
X[l - EF(x +pz—Z2,)] dLn(z)] dH(x) < =,

1imsup[E[/h2(Xo +2)EF(x + pz — jZ,)
(d) g ,
X[1 - EF(x + pz —jZn)]dLn(z)] dH(x) <o, j=0,1.

Since F is continuous and Ele,| < , we have

(2.5) fw[l—F(x)]dx<oo and fo F(x) dx < .
0 —e

Thus A*16(a) holds a priori when H(x) = x. Using the Fubini theorem and
A5, we see that A*16(d) with j = 0 follows from A*16(a) and also to prove
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A*16(b) with j = 1 is the same as to prove A*16(d) with j = 1. A*16(b) with
i = 1 can be rewritten as

J[[E®)[1 - F(x - 2 + )] dxdL ,(2) dL,(u)
(2.6) = [f[:F(x)[l ~F(x —z+u)] dxdL,(z) dL,(u)

[ [[° FG)[L - F(x — 2 + w)] ddL (2) dL (u).

The second term on the r.h.s. of (2.6) is bounded by the second term in (2.5).
Rewrite the first term on the r.h.s. of (2.6) as

ff/:F(x)[l — F(x -z +u)[I[u > 2] dxdL(2) dL (u)
2.7
+ff/:°F(x)[1 —F(x —z+u)]I[u <2]dxdL,(2) dL,(u).

The first term in (2.7) is bounded by the first term in (2.5). Rewrite the second
term in (2.7), using change of variable and splitting the range of integration, as

//fo F(x+z—-u)[1—-F(x)|I[u <z]dxdL,(z)dL,(u)
(2.8) “oE
+fff:F(x +z—-u)[1 - F(x)]I[u <z]dxdL,(2) dL,(u).

The first term in (2.8) is bounded by 2E|Z,,|. Hence S4 implies that the lim sup
of the first term in (2.8) is finite. The second term in (2.8) is bounded by the
first term in (2.5); consequently A*16(b) and A*16(d) with j = 1 hold. By the
Fubini theorem, the symmetry of L,’s about 0, A*16(c), can be written as

limsupE{fh2(X0 +2) dLn(z)}fF(x)[l — EF(x - ,)] dH (%),

which is the same as proving A*16(b) with j = 0, in view of A5. Proceeding
exactly as in (2.6)—(2.8) and using (2.5), S4 and A5, we get that A*16(c) holds.

REMARK 2.3. In the case H generates a finite measure, all the assumptions
A1-A17 reduce to A1-A7, A9, A10(b), A11(b) and A15, A8(b) and A13 with
lim sups replaced by sups. Proof of this remark follows from the Hélder and
the moment inequalities. Moreover, in the case of finite H and bounded
continuous f, A1-A17 reduce to A1-A6, A9 and

limsup E [{( X, + 2) k(X + 2)}? dL,(2) < .

REMARK 2.4. For H given by dH = dF/(F(1 — F)), where f(x) =
2 'exp{—|x[}, x € R, we shall show, via Remark 2.1, that the assumptions
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A1-A17 reduce to Al, A3(b), S3, A4-A6 and
S5: lim sup, E exp|Z,| < o,
S6: limsup,, Efh*(X, + 2)exp{lpzl} L (2) < .

To see this, note that F(x)[1 — F(x)] = 4~ exp{—|x {2 — exp{—|x}}]. Hence,
for x,u in R,

exp{ —klx| — jlx + ul}
F(x)[1 - F(x)]

where (%, j) = (2,0),(3,0), (2, 1). Since the r.h.s. of (2.9) is Lebesgue integrable
over R, applying the D.C.T. to the functions in (2.9), we get that S1 and A7
hold. Since the range of the function 2 — exp{—|x} is [1, 2), from the extended
D.C.T. we now see that the Lebesgue integral of the Lh.s. of (2.9) with & = 1,
J =1, is continuous at 0. These arguments show that S3 holds. From the
inequality
le™#= — e~ < |ullexp{ —|x — ul} + exp{—Ixl}]], «x,ueR,

and the translation invariance of the Lebesgue measure, we see [|f(x — u) —
f(®)ldx < |ul, u € R, Since A*16 implies A16, we shall verify that A*16 holds.
A2 and A*16(a) are trivially satisfied from definition of H. A3(a) follows
trivially from the a.s. representation of X, as E°J‘~’=0pje _;- S5 implies that S4
holds. Using A5, S5 and S6, lengthy but simple calculations show that
A*16(b)-(d) hold.

If in addition to the restrictions of this remark we assume h(x) = x, Z, to
be .#1(0, o) and vy, = n~'/2 for all n. Then all the assumptions A1-A17 are
satisfied. Finally, the above discussion goes through when £ is taken to be the
A0, 7%), 7 > 0. We shall now discuss the existence of ,(H).

(2.9) < dexp{—(k — 1)|x[}[2 — exp{—Iz}] ",

LEmMMA 2.1.  Assume that A2 and A6 hold. Then either (i) H(R) = » or (ii)
H(R) < ® and h(0) = 0, implies the existence of p,(H).

Proor. The proof will be given only for the case xh(x) > 0 V x € R; the
proof in the case xh(x) <0 V x € R is exactly the same, with % replaced
by —h. Define

o(x) =n"V2h(0) ¥ I[¥,_y, = O{I[¥,, <2] —I[~Y,, <x]}, =x<cR,
i=1

di=n"12 Y [h(Y,y MI[Yor0 # 0],
(2.10) J=1
b = ma_X 'YJ nl.
l<j<n 7

Observe that c(x) = 0 for |x| > b and hence ¢ is H-integrable. Now rewrite

Sh(xyt) = n_1/2 Z h(Y;j—l,n)I[Y;—l,n * 0]
Jj-1
X{IY;, <t¥;_; , +x]

—I[—Y}’n < -tY;_;, +x]} +c(x), x,¢tinR.

(2.11)
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The first term on the r.h.s. of (2.11) is bounded by d. Hence

(2.12) c(x) —d <S,(x,t) <d +c(x), t,x €R.
Further, xhA(x) > 0 implies .
(2.13) Sp(x,t) > c(x) +d ast— too.

Moreover, under A2, H is continuous and by calculations similar to those in
Koul [(1986), equations (2.1)-(2.3)], for all ¢t € R,

M(¢)=n""t Z Z h(Y,_1 ) h(Y 1 ,)
i

(214) X[ H(Y,n = Y1) —H(=Y, , + 2%, )|
_IH(YvL,n - tYi—l,n) - H(Yj,n - tY;'—l,n)” .
Hence M is continuous on R. Now consider

CastE 1. HR) = ». If d = 0, then from (2.12), M = [c? dH. Hence a trivial
measurable minimizer exists. Now let d > 0. Since ¢ and c? are H-integrable,
J(c(x) + d)®> dH(x) = . Therefore from (2.13) and the Fatou lemma, M(¢) —
© as ¢t —» +o. This and the continuity of M ensure the existence of a
measurable minimizer of M.

CasE 2. H(R) < ». From (2.10), A(0) = 0 implies that ¢ = 0. Thus (2.12),
(2.13) and the D.C.T. give M(¢) » d?H(R) as t —» +o. This with (2.12) and
the continuity of M ensure the existence of a measurable minimizer of M.
Note that in both cases measurability of the minimizers is established from
Brown and Purves [(1973), Corollary 2.1]. O

Lemma 2.1 continues to hold true even if, from A2, the condition |H(x) —
H(y)| =|H(—x) — H(—y)| for all x,y € R is removed. Also, its proof does not
require most of the model assumptions, e.g., |p| < 1.

3. Asymptotic approximation of $,(H). For stating the main results
of this section we need some more notation. From the model assumptions and
Al6, G, is the d.f. of v, , + £,. A density of G, is

(3.1) g.(%) = (L= 7,) f(x) + v, Ef(x - Z,), x€R.
Define

(82) Q) = [[Si(x.,p) + Xt — p){an(x) +an())]*dH(zx), teR,

where a,(x) = EY,h(Y)g,(x + pvy) and g ,(x) = a,(—x), x € R.

We, shall first uniformly approximate M by @, uniformity taken over
shrinking neighborhoods of p. Using this approximation we obtain the asymp-
totic approximation of §,(H) in terms of the minimizer of Q.

From here on we shall suppress n inther.v.’s v; ,, a, and Y, ,, etc., for the
sake of convenience.



214 S. K. DHAR

THEOREM 3.1. Let all the model assumptions (1.1)-(1.3) hold. Further, let
Al1-A4,A7,A8 and A10-Al7 hold. Then for any 0 < b < x,

(3.3) E[ sup .IM(2) — Q(8)l] = o(1).

nl/2t—pl<b
Proor. The techniques used in here are as in Koul (1986). Define,
Vx,teR,
n
W(x,t) = {n'1/2 y h(Y}_l)I[vj —pv_;te <x+ n‘l/ztl/}_l]} - U(x,t)
j=1

j-

(3.4) n

with U(x,8) = n™2 ¥ h(Y;_,)G,(x + n 26Y;_; + pv;_;).
j=1

Note that the jth summand in W(x,¢) is conditionally centered, given
(v;_1,Y;_). From (1.4) and (3.4), for all x,¢ € R,

Su(x,n" % + p) = W(x,t) + W(—x,t) + U(x,t)

+U(-x,t) —n7 2 ) h(Y;_,).
j=1

(3.5)

From (1.5) and (3.5),
M(n='%t + p)

= [[W(x,t) - W(x,0) + W(—x,¢) — W(—x,0) + S,(x,p)
+t[a(x) + a(—x)] + U(—x,¢) — U(-x,0) — ta(—x)

+U(x,t) — U(x,0) — ta(x)]* dH(x).
From the above representation of M(n~/%t + p), using (8.2), the inequality
(a + b)? < 2a% + 2b2, a,b € R, the Holder and the Minkowski inequalities,
the transformation theorem for integrals and A2,
|M(n=1%t + p) = Q(n™'/% + p)|
< 8|W(t) — W(0)I% + 8lU(¢) — U(0) — talk
+4|S,(p) + tla + allu
X [IW(¢) — W(0)|g + [U(¢) — U(0) — talx],
where W(¢), S,(p) and U(¢) are functions W(x, t), S,(x,t) and U(x,t) with
their integrating variables suppressed. The proof of the theorem follows from
(3.6) and from the statements:

(3.6)

(i) Esup|U(t) — U(0) — tal%} = o(1).
ltl<b
(ii) Esup|W(t) — W(0)I% = o(1).
ltl<b
(iii) lim sup E sup|S,(p) + tla + a][% < .
n lt|<b

For the proof of (i), (ii) and (iii) above, see the Appendix. O
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In order to prove Theorem 3.2, define §,(H) as a measurable minimizer of
Q. Then

(3.7) Vn(Gu(H) -p) = - [

The first equality in (3.7) follows from the definition of 5,(H) and (3.2); the
second from (1.4) and the fact that S,(-, p) is even and A2.

Su(p)le + a]ldH _ f Su(p)a
|

|a+g|§1 a+a|H

THEOREM 3.2. In addition to the assumptions of Theorem 3.1, assume that
A6 holds. Then

(3.8) n2[ 3,(H) — p] = 0% ,(H) — p] + 0,(1).

Proor. The line of proof is as follows:

(i) For any n > 0 and 0 < z < , there exists an N and b, 0 < b < o,
depending on n and z such that

(me(n l/2t+p)>z)>1—— Vnx>N.
[t|>b

(i) Ve [p(H) — p] = 0,(1) and Vr [3,(H) — p] = O,(1).
(i) M[4,(H)] = QL4,(H)I + 0,(1) and M[p,(H)] = QLp,(H)] + 0,(1).

Proof of (i) follows exactly as in Koul and de Wet [(1983), Corollary 5.1] or
Koul [(1985), Lemma 3.1]. Proof of (ii) follows from (i), (5.16) and the reason-
ing given in Koul [(1985), Theorem 3.1]. Proof of (iii) follows from (ii) and
Theorem 3.1. From (i), Q[4,(H)] — Q[4,(H)] = 0,(1), which in turn, using
(3.2) and (8.7) simplifies to give

(3.9) n[pu(H) = pu(H)]la + alf = 0,(1).

From (8.1), the definition of a, @ in (3.2) and the symmetry of the function g,
w.r.t. the y-axis, we get

la + alf = 4(1 = 7,)*[EX,h(X,)]* [g3 dH
+ yff[Ef(Xo +2)h(X, + 2)
X[g.(x +p2) + 8.~ + p)] dL(2)| dH(x)

X/gn(x)E[/(Xo +2)h (X, + 2)

(3.10)

X[8.(x + p2) + g(=x + p2)] dL,(2) | dH ().

From Al, A2, A4, A7, A8(b), A13, the moment and the Hélder inequalities, the
second and third terms on the r.h.s. of (3.10) go to zero and the first term
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converges to

(3.11) 2q = 4IEXOh(X0)]2ff2 dH.

From A3, A6 and A7, q > 0. Hence from (3.9) the proof is complete. O

Note. In order to study the limiting distribution of Vn [p,(H) — p], we
need to appropriately center (3.8). In view of the Theorem 3.2, for fixed » and
H, the asymptotic behavior of §,(H) will not be affected if for each n > 0,
py(H) is replaced by any convex combination of the measurable minimizers
of (1.5).

4. Asymptotic normality and influence function of $,(H). In this
section we show that p,(H) is asymptotically normally distributed when
appropriately centered. We also discuss the sufficient conditions under which
the asymptotic bias of §,(H) is vanishing or nonvanishing. Finally, we com-
pute the influence function and show that it is directly proportional to the
asymptotic bias of 5,(H).

To study the limiting distribution of Vn [5,(H) — p] when centered, from
(3.7), (3.10), (3.11) and Theorem 3.2, it suffices to study the limiting distribu-
tion of —¢~YS,(p)adH, i.e., that of

n

(4.1) ~aT L (Y, - Y, ),
j=

when centered, where

(4.2) ¥, (x) = /jwa dH - f__:a dH.

Let

tn = ER(Yo)y, (Y, — pY,) and
§j,n=h(Yj—1)d/n(Yi_ij—1)_/'Ln’ ].San.

From the model assumptions, (4.2) and with a as in (3.2), one can rewrite

0 = (1= 7) EX (X | [ gy at -~ [ g, aH]

(4.3)

(4.4) + y,,[/y E[(X,+2)h(X, +2)g,(x + pz) dL,(2) dH(x)

— [ TE[(Xy + 2)h(X, + 2)g,(x + pz) dL,(2) dH(x)|.

From (4.4), A2, A4, A7, A8(a), A12 and v, € [0, 1], we see that ¢ is uniformly
bounded. Hence under additional assumptions A3(b) and A5, ¢ i 1<j<mn,
are real valued r.v.’s and sup{|u,| < ©, n > 0}.
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THEOREM 4.1. Let A1-Al7 and all the model assumptions (1.1) to (1.3)
hold. Then

(4.5) Vn [B(H) = p + n,q~ '] = #(0,02) in distribution,
where

(4.6) of = q %[ EX,h(X,)]*ER3(X,) Ep*(s,),

(4.7) W) = [ fdH - [faH, vyer,
q is asin (3.11) and u, asin (4.3).

Proor. In Dhar [(1990), Lemma 3.2] take 6(x,y) = h(x),(y — px),
%,y €R,Y,, X; and v; as in the model assumptions (1.1)-(1.3) with o(x, y) =
x + y. We see that the set process {£,, n > 1}, where ¢, = {¢;,,1<j<n}and
&j,n @sin (4.3), is a,-mixing provided the sequence {X ;) is ay-mixing. But X,
can be a.s. represented as X5 _,p*e i—#> hence, using A3(a), A9 and Pham and
Tran [(1985), Theorem 2.1] with 6 = 2, A(k) = p*, we get that {X '} is strongly
ax-mixing with ax(n) < C,|p|*** V n > 1.

Also note from Al, A7, A8(a) and (3.1) that

(4.8) fx g, dH — fx fdH uniformly in x.

Thus the r.h.s. of (4.4) converges to EX,h(X,)¥(y), uniformly in y, by (4.8),
Al, A3 and Al12. By A7, ¢ is bounded and hence ¢, is uniformly bounded.
Since F is symmetric about 0 and ¢ is an odd function, E¢(e;) = 0. Thus

letting 6, o, Y;, X, v; and §; , be as above and

0(x,y) = h(x)¥(y — px) EX,h(X,), =x,y€R,
in Dhar [(1990), Lemma 3.3], we see 72 = 022 From (4.6), (4.7), A3, A6 and
A7, 079® > 0. We now see that all the conditions of Dhar [(1990), Theorem 3.4]
are satisfied. Hence the central limit theorem holds for ¢ defined by (4.3). Thus
from (3.7), (3.10), (3.11) and Thecrem 3.2, (4.5) holds. O

Theorem 4.2 discusses the asymptotic bias of 5,(H).

THEOREM 4.2. Let all the model assumptions (1.1)-(1.3) and Al, A2, A4,
A5, A7, A8(b), A13 and A16-A17 hold. Then
(@) h_continuous on R, Z, — Z in distribution and Vn y, — Ver 0 <y, <
imply Vn ., - w, with
1= v.[ EX,h(X,)]

(4.9)
x[f(x)E[h(Xo +2){F(x — pz) — F(x + pz)} dL(z) dH(x),

where L is the d. f. of the r.v. Z.
(b) Either Z, — 0 in probability or Vn'y, — 0 imply Va u, — 0.
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Proor. From (3.7) and (4.1)-(4.3), Vn i, = E[S,(p)a dH. For large enough

n, we shall justify the interchange of expectation and integral above using the
Fubini theorem. Accordingly,

1/2

(4.10) JEIS(p)llal dH < [[Es,f(p) dH]l/z[fa2 dH]

Inequality (4.10) follows from the Holder and the moment inequalities. That
the lim sup of the r.h.s. of (4.10) is finite follows from (5.16) and the same
reasoning as in (3.10) to (3.11). Thus, by the stationarity of the process
w;_y, Yj_l), the independence of (vj_l, Yj_l) and v; + ¢;, 1 <j <n, and (1.1),
for large enough n, we get

Vnu, = Vny, [a(x)E[h(X, +2)[G,(x - p2)
(4.11)
-G, (x + pz)] dL,(z) dH(x).
Using the definition of G, and (3.1), (4.11) can be rewritten as
Vi ya(1 = v,)  EXoh(X,) [ f(2) E [R(X, + 2)
X[F(x — pz) — F(x + pz)] dL,(2) dH(x)

+Vn3(1 = v,) [ EXoh(X,)] [EF(x ~ Z,) E [R(X, + 2)

(4.12) X[F(x — pz) — F(x + pz)] dL,(2) dH(x)
VYL = 7) [| B (X + 2)A(Xo + 2)g,(x + p2) dL,(2)]

X [th(Xo +2)[F(x — pz) — F(x + p2)] dLn(z)] dH(x)

Vi [a()E[R(X, + 2)

XE[F(x —pz—Z2,) — F(x + pz — Z,)] dL,(z) dH(x).

The fourth term in (4.12) converges to zero by Al and Al7(b), the same
reasoning as in (3.10) to (3.11) and the Hélder inequality. The third term in
(4.12) converges to zero by Al, Al13, A17(a), the Holder and the moment
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inequalities. That the second term in (4.12) converges to zero follows from Al,
A4, A8(b), A17(a), the Hélder and the moment inequalities. For each x € R,

E[h(X, +2)[F(x - pz) — F(x + pz)] dL(2)
(4.13)

- th(XO +2)[F(x — pz) — F(x + pz)]| dL(z),

we get that (4.13) holds from A5, Z, — Z in distribution the continuity of F
and the D.C.T.

The proof of (a) and (b) now follows from the convergence of the first term
in (4.12) to the appropriate quantity, which itself follows from Al, A4, A5, A7,
(4.13) and the D.C.T. O

REMARK 4.1. From Theorems 4.1 and 4.2(a) or (b), we see that
Vrlp,(H) — pl » #(—uq~ 1, a?) or 40, g?) in distribution.

REMARK 4.2. Koul (1986) has shown that the function h(x) a x, x € R,
minimizes o2. Let ,(H) be the estimator corresponding to A(x) = x and
measure H. Then, the asymptotic bias of §,(H) under Theorem 4.2(a) looks
like

-1
28X [ 1 @B | [ £(x) B2 F(x + 02) - Pz - p2)] dH (),
which has the same sign as the sign of p.

ReEMARK 4.3 (Influence function). We shall define a functional T on a
subset, say P,, of the set of all stationary ergodic measures on (R™>*, &),
where R~ is a collection of all sequences of the type y =
G s ¥Y-1,Y0, Y1 Y25 - - -) and & is the Borel o-field on R™>>. Proceeding as in
Martin and Yohai [(1986), equations 3.1-3.3], the functional T, v € P, is
defined as T'(v) satisfying the equation

d
-d—t][fh(yo){llyl <x +ty]
(4.14)
2
—I[-y, <x —ty,]} dv(y)| dH(x) =0,
where P, is the set of all stationary ergodic measures on (R~ %, &), such that

the integral in (4.14) exists and is differentiable. Further, 7(v) minimizes the
double integral in (4.14) as a function of ¢ and, of all the minimizers, it is
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defined as the one with the smallest magnitude. Under the assumptions A2
and A6 and following the same argument as in Lemma 2.1, we see that (4.14)
has at least one solution which minimizes the double integral in (4.14), as a
function of ¢. For the sake of completeness, let us repeat the definition of the
time-series influence functional as in Martin and Yohai [(1986), Definition 4.2].
For T as a solution of (4.14) and for the measure v generated by the process
(1.2) with y, = y and L, = L V n, the influence functional (IF) of T is defined

as
T(v?) — T(v°
IF = lim () (Vy),
v—0 Y

provided the limit exists.

In (4.14), taking v = ») and then computing the innermost integral and
differentiating within the integral sign w.r.t. # under some regularity condi-
tions, we get that T” = T'(v)) satisfies

J|a = BRENGGE + (77 - p1%) - 6l - [T7 - p1X)))
+yE [R(X, + 2){G(x + [T7 = p](X, + 2) + p2)
Gz~ [T7 - p1(X, +2) - p2)) dL(2)]

(4.15)
X [(1 — Y)E(Xoh(Xo){g(x + [T” — p]X,) + g(x — [T - pl1X,)})

+7th(Xo +2)( X, + 2){g(x + [T” — pl(X, + 2) + p2)

+g(x — [T" = pl(X, + 2) + p2)} dL(z)] dH(x) = 0.

Note that in (4.15), G and g both depend on y. Setting y = 0 in (4.15) we see
that T° = T'(v)) satisfies

JE(R(X){F(x + [T° - p] X,) — F(x = [T° - ] X,)})
(4.16) X E(Xoh(Xo){f(x + [T° - p] X,)

#f(x — [T° - p] X,)}) dH(x) = 0.

Assuming that the derivative of F exists and equals f we see from A6 that
T = p is the only solution to (4.16), which makes the double integral in (4.14)
with v = v minimum. Thus, differentiating the Lh.s. of (4.15) under the
integral sign w.r.t. y, then setting y = 0 and solving for dT'” /dvyl|, -, we get

IF = q‘lEXoh(Xo)ff(x)th(XO +2)

X{F(x + pz) — F(x — pz)} dL(z) dH(x).

Note that IF = —v, ! (asymptotic bias of Vn[5,(H) — p]), where the bias is
computed under the assumptions of Theorem 4.2(a).
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APPENDIX

Proor oF THEOREM 3.1(1). Define h*(x) = h(x)I[xh(x) > 0] and A (x) =
h(x) — h*(x), x € R. Replacing h with A* in each of the functions ¢ and U
gives new functions, say a* and U *.

From the inequality, (a + b)? < 242 + 2b2, a,b € R,

U £(t) — U%(0) — a*(x)l%

nilY}hi(Y})gn(x + pvj)] dH(x)
i=0

S|~

< 2f[Ui(t,x) - U*(0,x) —
(5.1)

n—1

+2t2f[ Z Y;h*(Y;)g,(x + pu;) —ai(x):l dH(x)

= 2I(t) + 2t211,

|t| < b, where I(#) and II represent the first and the second integral on the
r.h.s. of (5.1), respectively. From G, as in A16, (3.1), (3.4) and the integral
representation of F in terms of f, we get

10 = [ [/ T vhe(y)

j=0

{13 [7 £+ Y, 4 pvy) = £ + pup)] ds
+vnff0"_mt[ f(x + sY; + pv; — 2)

~f(x +pv; - 2)] dden(z)}] dH ()

.2 n—1
(5.2) <4(1- Yn)zfn_l/% y szhz(Yj)
j=0

x[ _lz[f(x+sY+pv) f(x+pv)] dsdH(x)

+ 4y [n1/2 T vy
Jj=0
[ Zi%f[f(x+sY +pu; — 2)
—f(x + pv; — z)]2 dL,(z) dsdH(x).

Inequality (5.2) follows from the Cauchy-Schwarz inequality for the finite sum
of real numbers and the moment inequality. Use (5.2), the Fubini theorem, the
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stationarity of {(v;, ¥;), 0 <j < n}, (1.1) and (1.2) to get
Esupl(t) <4vn(1-+y,)%

ltl<b .
.[ —1/2beXgh2(X0)[f(x +5X,) — f(x)] dH(x) ds
+ 4Vny,(1 - y,)%

xf"nl/i;fE[[(XO +2)2h3(X, + 2)

X[ f(x + s[ X, + 2] + pz) — f(x + pz)]2dLn(z)] dH(x) ds
(5.9) + 4V (1 - v,)b
xj_";_‘ji;j[zxghz(xo)j[ f(x + sX, — 2)
—f(x - z)]zdLn(z)] dH (x) ds
+ 4¢’y3bj" v fE[[(XO +2)%h%( X, + 2)
x[[[f(x+s(xo+z) +pz—u)

—f(x + pz — u)]zdLn(u)] dLn(z)] dH(x) ds.

Al and the continuity property in A10(b) show that the first term on the
r.h.s. of (5.3) converges to zero. The remaining terms of (5.3) go to zero by Al,
A4, A8(b), A11(b), A13 and A15. Thus

(5.4) EsupI(?) =o(1).
lt<d
Now consider

EIl = fE[ Z:; £(Y;)g.(x + pv;) — ai(x)} dH(x)

<2(1-7v,)"[E [

(5.5) ~EY,h*(Y,) f(x + pvo)} dH (x)

+2'yffE[

§||—ﬂ

;_ H(Y) £ + pu)

1n-1

z Yhi(Y)ff(x+pv —2)dL,(2)

~EY,h*(Y,) [f(x + pvo — 2) dLn(z)} dH(x).
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The inequality (5.5) follows from (3.1) and the inequality (a + b)? < 2a? + 2b%,
a,b € R. From Al, A4, A8(b), A13(b), the stationarity of (v;,Y,),0 <j <n — 1,
and the Cauchy—Schwarz inequality for the finite sum of real numbers, the
second term on the r.h.s. of (5.5),goes to zero as n — «. The first term on the
r.h.s. of (5.5) can be written as

271 - v,)* [Var{Yoh *(Y,) f(x + pvo)} dH()

n—1
(5.6) +4n72(1 - 7,)* ¥ (n —j) [Cov(Yoh*(¥,) F(x + pvy),
j=1
Y;h*(Y;) f(x + pv;)} dH(x),
which follows from the stationarity of (v;,Y;), 0 < j<n-1 The first integral
in (5.6) can be written as

(1 - 7,) EX3{h*( X)) [£2 dH — (1 — v,)*[ EXoh*(Xo)]” [ 2 dH

J’J

+ ynfE[f(Xo + 2)Y (% (X, + 2)) f2(x + p2) dLn(z)] dH(x)
- 27n(1 - ‘Yn)EXOhi(XO) ,
xff(x)E[[(XO +2)hE (X, + 2) f(x + p2) dLn(z)] dH(x)

~ 92| B[ (X + bRy +2) 5+ p2) dL,,(z)]de(x),

which converges to Var] X,k *(X,)]/f? dH. This in turn follows from Al, A4,
A7, A13(a), the moment inequality and the Holder inequality. Hence, the first
term in (5.6) converges to zero. The second term in (5.6) can be written as

421 - y)*'Y (n - J)Cov{Xoh*(X,), X;h*(X,)} [£? dH

Jj=1
n—1
+4n (1= 7" T (n ) [Cov| Xoh*(X0) (),
Jj=1
j(Xj +2)hE(X; + 2) f(x + p2) dLn(z)] dH(x)
n—1
+ 40,1 )" T (0 —d) [Cov| Xh2(X) F(3),
(5.7) j=1
[(XO +2)hE (X, + 2) f(x + p2) dLn(z)] dH(x)
n—1
+4n"2yX (1 -v,)* L (n—J)
=1
xfCov[f(Xo +2)h* (X, + 2) f(x + pz) dL,(2),

J(X; +2)h*(X; +2) f(x + p2) dLn(z)] dH(x).
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By assumptions Al, A4, A7, A13(a), the Holder inequality and the stationarity
of the X process, the second, third and the fourth terms in (5.7) go to zero.
Since

Var{n—l 5 xjhi(xj)}
j=1
(5.8) = n~Var[ Xoh*(X,)]

n—-1
+2n72 Y (n—j)Cov{X,h*(X,), X;h*(X;)},
j=1
to prove that the first term in (5.7) goes to zero, from Al, A4, A7 and (5.8) it
suffices to prove that

(5.9) Var{n‘1 Y X;h*(X;)} >0 asn > .
j=1
But from A4 and the stationary ergodic theorem,
(5.10) n~ty thi(Xj) - EX,h*(X,) as.
j=1

Also, from A4, the sequence {X;h*(X;)} is uniformly integrable of order 2;
hence, so is the sequence {n 'L7_;X;h*(X,)}, which follows clearly from
Chung [(1974), exercise 9, page 100]. Thus, from (5.10), (5.9) follows, which in
turn gives

(5.11) EI1 -0 asn — .
Thus (5.4) and (5.11) applied to (5.1) prove (i). O

Proor oF THEOREM 3.1(ii). Replace the A in W by A* and call the new r.v.
W <. Fix t<[-b,b]. Using (3.4) write (W *(¢) — W *(0))® as the sum of
squares of terms and the cross product terms, we see that the conditional
mean of any of its ijth (i <j) cross product term given {(v,,Y)), 0 <! <j — 1}
is zero follows from the model assumptions and the fact that W * is condition-
ally centered given (v;_,, Yj_l). Using these facts and the Fubini theorem, we
get

EIW£(t) - W*(0)l%
- f zn: E[{hi(Yf‘l)}zE{(I[vj +e;<x+n Y+ ij—l]
j=1

(5.12)
' —I[v; +¢; <x +pv;_;] —Gn(x+n‘1/2t1/}_1+pvj_1)

+G,(x + pvj_l))z‘(vj_l, Yj_l)}] dH(x),
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which can be dominated by
2 [E{h*(¥,)Y|G,(x + n V2%, + pvy) — Gy(x + pvg) | dH (),

which follows by applying the inequality that the variance is less than or equal
to the second moment, to the conditional variance in (5.12). Using G, as in
A16, the Fubini theorem and representation of F' in terms of its density, this
term can be dominated by

n-1/2b
2(1 - yn)zf_n_l/%[ElXolhz(Xo) f(x + X,s) dH(x) ds
n-1/2b
+ 2y,(1 - ‘yn)f _I/beE[[Ixo +2|h3( X, + 2)

Xf(x + pz + s[ X, + 2]) dLn(z)] dH(x) ds

(5.18) 19y (1 - yn)[_"_:i:be[leOIM(XO)
Xf(x —z + X,s) dLn(z)J dH(x) ds

fE[fIXO + 2|h2( X, + 2)

n-1/2b

+ 2'y3f

n—1/2b

Xff(x —u+[X,+2z]s +pz)dL,(u) dLn(z)] dH(x) ds.

From A1, A3(a), A4 and A10(a) the first term in (5.13) converges to zero. That
the remaining terms also converge to zero follows from Al, Al1(a) and Al4,

giving
(5.14) E|W*(t) - W*(0)| >0, teR

Thus to complete the proof of (ii), use the monotone structure of W * and
U *, the compactness of [—b, b], limsup, Ela|% < « and (i), just as in Koul

and de Wet [(1983), page 929, Theorem 5.1, proof of (ii)]. The details are
similar, hence deleted. O

Proor oF THEOREM 3.1(iii). Taking ¢ = 0 in (3.5) gives
S(x’ p) = W(x’ 0) + W( —-X, 0)

(5.15) +p-l/2 i h(Yj_l){Gn(x + pvj_l) -G, (x — PUj—1)}'

Jj=1

We shall now proceed to prove that

(5.16) limsup E|S (p)|% < .

n

Using the same reasoning as in the proof of (5.12) and the stationarity of the



226 S. K. DHAR
process (v;,Y;), 0 <j <n — 1, we get
1 n
EfW(O)2 dH = fE; Y (Y ){Ilv; = pvj_y +¢; < x]
j=1

(5.17) ~G,(x +pv;_y)} dH(x)

= [ER*(Y,)(I[v, ~ pvg + &, <]

~G,(x + pvo)}* dH(x).
The lim sup of the r.h.s. of (5.17) is equal to the expression in A16 and hence
finite. Next, using the stationarity of (v;,Y;),0 <j <n — 1,

2

Ef{n_l/2 nilh(Yj)[Gn(x +pv;) = G (x - pvj)]} dH(x)
j=0

(5.18)" JER (Y)[G,(x + pvg) = Go(x — pvy)]” dH ()

n—1
+207 ¥ (n =) [E[R(Y0)[Gu(x + pvo) = G(x = po)| (V)
Jj=1

X[Gn(x +pv;) — G,(x — pvj)” dH(x).

The lim sup of the first term on the r.h.s. of (5.18) is finite by (1.1), A1 and
Al7. The expression inside the sum in the second term on the r.h.s. of (5.18)
can be written as

(n —j)vffE[fh(Xo +2)[Gu(x + pz) — Gu(x — p2)] dL,(2)
(5.19)
X [h(X; +2)[G(x + pz) = G,(x — p2)] dL,(2) | dH (=),

which follows from the independence of {X;, j < n} and {v;, 0 <j < n} and the
latter being ii.d. B,. Thus applying the Cauchy-Schwarz and the moment
inequalities to the integrand in (5.19) and using the stationarity of {X;}, the
second term on the r.h.s. of (5.18) can be dominated by

(n- 1)73/E[jh2(x0 +2)[G,(x + p2)
(5.20)
—G,(x - p2)]*dL,(2)| dH(x).

From Al and A17(a), the lim sup of (5.20) is finite. Hence (5.16) holds. The
proof of (iii) now follows from lim sup,, E|al%} < «, which in turn follows from
(3.1), A4, A7, A8(b) and Al13. O
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Note. The proof of Theorem 3.1 only needs 0 < Eh%(X,) < », instead of
A3(b); hence, the proof of (5.9) gives an alternate way to prove Koul [(1986),
equation (14), page 1211].

REMARK 5.1. One of the assumptions under which we have studied the
asymptotic behavior of §,(H) as an estimator of p is that F and L,’s are
symmetric about 0. One could generalize the results by making an attempt to
discard this assumption. A careful study of the results shows that due to this
change, the arguments involved in the proof of (5.16) fail. The proof of
Theorem 3.2 can be easily modified without this assumption of symmetry or
any additional assumptions. In view of Dhar [(1990), Lemmas 3.2-3.3 and
Theorem 3.4] we see no additional modifications are needed to incorporate this
change. Thus it only remains to modify the arguments from (5.15)-(5.20).
Note in (5.15) and (5.18) we need to replace G,(x — pvy) by 1 — G,(—x + pvy),
since G, is not symmetric. Thus in view of (5.18), we will now need

limsuprh2(Y0)[Gn(x +pug) + G,(—x + pvy) — 1]*dH(x) < .
n

In the case when F is symmetric about 0 but L,’s are not symmetric about 0,
(5.19) can be replaced by

(n = )%((1 = %) BR(K) (X))
x/[E{F(x ~Z,) +F(-x—2,) - 1}]*dH(x)
+(1 - v,) [[E{F(x - 2,) + F(-x - Z,) - 1}]
xE{h(Xo)fEh(Xj +2)[G,(x + p2)
+G,(~x + pz) — 1] dLn(z)} dH(x)
+(1 - v,) [[E(F(x - Z,) + F(—x - Z,) - 1}]
xE{h(Xj)fEh(Xo +2)[Gy(x + p2)
+G,(~x + pz) — 1] dLn(z)} dH(x)
+[E{/h(xo +2)[G,(x + p2) + G,(~x + pz) — 1] dL(2)
X [R(X; + 2)[G,(x + p2)

+G(~x +pz) — 1] dLn(z)} dH(x)).
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Thus, using the same arguments as in (5.20) and under proper finite moment
assumptions, Theorem 3.1 will hold.

Acknowledgments. This paper is a part of my thesis work at Michigan
State University. I wish to express my thanks to Professor Hira L. Koul for his
constant guidance and Professor James Hannan for his constructive criticism.

REFERENCES

Brown, L. D. and Purves, R. (1973). Measurable selection of extrema. Ann. Statist. 1 902-912.

CHUNG, K. L. (1974). A Course in Probability Theory, 2nd ed. Academic, New York.

DENBY, L. and MARTIN, D. (1979). Robust estimation of the first order autoregressive parameter.
J. Amer. Statist. Assoc. 74 140-146.

DHaR, S. K. (1990). Functional least squares estimators in an additive effects outliers model. .
Austral. Math. Soc. Ser. A 48 299-319.

Fox, A. J. (1972). Outliers in time series. J. Roy. Statist. Soc. Ser. B 34 350-363.

KouL, H. L. (1985). Minimum distance estimation in multiple linear regression. Sankhyd Ser. A
47 57-74.

Kour, H. L. (1986). Minimum distance estimation and goodness-of-fit tests in first order autore-
gression. Ann. Statist. 14 1194-1213.

Kour, H. L. and pE WET, T. (1983). Minimum distance estimation in a linear regression model.
Ann. Statist. 11 921-932.

MACHAK, J. A. and Rosk, E. L. (1984). Uniform additive outliers in ARMA models. Proc. Business
and Economic Statist. Section. Amer. Statist. Assoc., Washington, D.C.

MarTIN, D. and YoHarl, V. J. (1986). Influence functionals for time series. Ann. Statist. 14
781-818.

MarTiN, D. and ZeH, J. E. (1977). Determining the character of time series outliers. Proc.
Business and Economic Statist. Section. Amer. Statist. Assoc., Washington, D.C.

MiLLAaR, P. W. (1981). Robust estimation via minimum distance methods. Z. Wahrsch. Verw.
Gebiete 53 73-89.

MiLLAR, P. W. (1984). A general approach to the optimality of minimum distance estimators.
Trans. Amer. Math. Soc. 286 377-418.

PHam, T. D. and TraN, L. T. (1985). Some mixing properties of time series models. Stochastic
Process. Appl. 19 297-303.

RuDIN, W. (1974). Real and Complex Analysis, 2nd ed. McGraw-Hill, New York.

DEPARTMENT OF MATHEMATICS

THE UNIVERSITY OF ALABAMA

P.O. Box 870350

TuscAaLOOSA, ALABAMA 35487-0350



