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REJOINDER

JEROME H. FRIEDMAN
Stanford University

I thank the editors for inviting such a distinguished group of researchers to
discuss this paper and the discussants for their valuable contributions. The
discussants are among the leaders in the field of function approximation and
estimation; it is therefore no surprise that their comments are so perceptive
and stimulating. Many important suggestions are made for improving the
MARS procedure. These discussions provide a clearer and deeper understand-
ing of both the strengths and limitations of the MARS approach. Each of them
raises many very important issues, some of which I respond to here. Space
limitations preclude a more thorough discussion of all of the cogent points and
innovative ideas presented.

Schumaker. I thank Professor Schumaker for providing the additional
references, especially the recent ones that were not available in 1987 when I
performed the main body of this work. Of the five that relate to multivariate
adaptive approximation, only one [de Boor and Rice (1979)] presents a proce-
dure that could possibly lead to a practical method in high dimensions. Their
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procedure is essentially recursive partitioning (15) using polynomials for the
parametric functions g,,(xla;}{) in each subregion. The limitations of recur-
sive partitioning methods are discussed in Section 2.4.2. It is perhaps interest-
ing to note that in none of these papers was the method proposed therein ever
actually applied to any (real or synthesized) multivariate problems.

In the asymptotic limit with no noise it may be true that only the continuity
properties of the function to be estimated and the degree of the polynomials in
each subregion limit the accuracy of a recursive partitioning scheme. As
discussed in Section 2.2, all practical sample sizes are far from being asymp-
totic in high dimensional problems. In such cases there is a trade-off between
the number of subregions and the maximum degree of the approximating
polynomial in each one. A g-degree polynomial in n dimension is characterized

by more than (q o I 1) parameters. Thus, even globally, there is a severe

n—
restriction on the degree of a polynomial fit. One can use the available degrees
of freedom to fit moderate degree polynomials in a few regions or very low
degree ones in many regions. Which is the best strategy in a particular
application will depend upon the true underlying function f(x) (1), but a great
body of experience indicates that the latter approach gives the best results in
general. In fact, the most popular choice with recursive partitioning methods is
zero degree [AID, Morgan and Sonquist (1963) and CART, Breiman, Friedman,
Olshen and Stone (1984)]. With this rather strong limitation on the allowable
(and desirable) polynomial degree in each subregion, the lack of continuity of
approximations derived from recursive partitioning methods does have an
adverse effect on their accuracy, especially when compared to similar methods
that produce continuous approximations. This is provided, of course, that the
function to be approximated is relatively smooth.

The discussion concerning end effects in Section 3.7 centers on the bias-
variance trade-off of estimates near the edges. In the mathematical approxima-
tion literature, the value of the function is generally assumed to be measured
without error [¢ = 0 (1)]; that is, all relevant variables that contribute to the
variation of the response are available to help construct the approximation. In
this case, there is no variance and only bias considerations are relevant. When
there is error, the variance of the function estimate near the edges is a
dominant concern. Having the estimate smoothly match a linear function near
the edges removes only the first-order bias there, but has a strong moderating
influence on the variance. In fact, even this precaution is sometimes inade-
quate and additional measures are required (see Section 3.8). As discovered by
both Breiman (1989a) and Stone and Koo (1985), restricting the dependence of
the approximation near the edges to be (at most) linear is an essential
ingredient for controlling variance.

I agree that if one does not need C! functions, it is often better to use the
approximation based on linear splines (see second paragraph of Section 3.7).
The continuous derivative approximation often does better, but the effects is
seldom dramatic, whereas the converse is not true. (See the example in Section
4.7 and the comments of Buja, Duffy, Hastie and Tibshirani.) When the
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piecewise-linear approximation is doing dramatically better, this is evident
from the estimated lack-of-fit (relative GCV scores). Again the converse is not
necessarily true. Since the model optimization is based on the linear spline
basis, the piecewise-cubic fit to the data is generally slightly (to moderately)
worse than the corresponding piecewise-linear fit for comparable (future pre-
diction) accuracy. I generally use the piecewise-cubic model if its optimized
GCV score is no more than 10-20% worse than that for the linear spline fit.
Otherwise, I prefer the piecewise-linear model. Of course one could use
cross-validation to more directly judge the relative quality of the two models.

I also agree that the approximation properties of the modified (piecewise-
cubic) basis functions are not yet well-understood. Whether they approximate
as well as linear, quadratic or other splines will depend on the particular
application. It seems reasonably clear that they will perform better than
quadratic or higher order splines in noisy situations (with a smooth underlying
function) owing to the end effects discussed earlier [Breiman (1989a) and
Stone and Koo (1985)].

The reason for using the truncated power spline basis is given in Section
3.9; there is a one-to-one correspondence between knots and basis functions.
This was the central ingredient in the (univariate) adaptive regression spline
strategy originally proposed by Smith (1982). Lyche and Mgrken (1988) pro-
pose essentially the same idea but use a B-spline implementation. As described
in their paper, severe computational complexities are involved with the B-spline
approach, as compared to the simple and elegant method proposed by Smith
(1982). In the multivariate case, the analog of these increased computational
complexities are likely to lead to insurmountable problems.

Owen. I am grateful to Professor Owen for contributing his valuable piece
of research to the discussion of this paper. He has set down a theoretical
framework that explains many of the results that I obtained empirically
through Monte Carlo studies. More importantly, his work provides the under-
standing and insight necessary to suggest improvements to the simple model
selection approach that I implemented.

The results contained in his last paragraph concerning the relative insensi-
tivity of the fit to the precise locations of the placed knots are surprising and
encouraging. I observed this phenomenon during empirical studies on varying
the minimum span (43). The quality of the fit appeared to be remarkably
insensitive to the value used provided it was not too small (in high-noise
situations). Also, I implemented an algorithm for post knot optimization
(model polish) given the topology of the model (23) derived form the
forward /backward stepwise strategy. This algorithm minimized the lack-of-fit
criterion simultaneously with respect to all the knot parameters {¢,,,} in (23).
This can be done surprisingly rapidly using a minor variation of an algorithm
originally proposed by Breiman (private communication) in the context of
recursive partitioning. Given the suboptimal way in which the knots are placed
with the stepwise strategy, the expectation was that this model polish would
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provide distinctly superior fits. This was not the case. In all situations in which
I tried model polish, the resulting fits were changed very little from that
provided originally by the stepwise algorithm. It should be noted; however,
that the examples that I used in both studies (minimum span variation and
model polish) involved very smooth functions with no really sharp local
structure. For functions with such (sharp) structure, model polish may provide
substantial improvement. Routinely applying model polish would then provide
insurance against this possibility.

Owen’s suggestion is to deliberately use a very coarse grid during the initial
stepwise knot placement and then to rely on model polish to produce the final
refined model. This will not improve speed for least-squares fitting since the
updating formulae (52), in conjunction with suggestions in Stone’s discussion,
allow all possible (data point) knot locations to be evaluated with nearly the
same computation as any subset of them. As Owen points out, however, for
lack-of-fit criteria that do not admit fast updating, this strategy will produce
dramatic computational savings, perhaps enough to make their routine appli-
cation feasible.

I agree with Owen that MARS may have potential as a method for modeling
noiseless data such as that produced by computer simulation experiments.
Although it may produce adequate results in its present formulation, it is quite
likely that its performance can be improved for this purpose by changing
aspects of the implementation to take advantage of the knowledge that there is
no noise (as noted by Owen). For example, the strong concern about end effect
variance that motivated several important design decisions, could be relaxed
and different strategies may be more appropriate in this case. Also, different
model selection strategies are likely to help improve performance in these
settings.

Stone. Stone’s suggestions in the second and third paragraphs of his
discussion turn out to be quite useful. The principal idea in the ‘¢ to enter”
algorithm is to orthogonalize both the response and the yet to be entered
(predictor) variables with respect to each predictor as it is entered into the
regression equation. In the context of MARS, the corresponding predictors are
the basis functions derived during the forward stepwise procedure (Algorithm
2). Of course, during the execution of the forward stepwise algorithm all of the
yet to be entered basis functions are not known. However, one can orthogonal-
ize each basis function as it is entered with respect to all of those already
selected, thereby keeping all currently entered basis functions orthonormal to
each other. Let B,/ (x) be one of two (centered) next basis functions selected as
a result of executing the outer loop of Algorithm 2. Then B, (x) and c,, are
saved, where

M-1
Bu(x) = | Bu(x) - ¥ meém<x>]/bMa,

m=1
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with
N o~
(75) bum = ¥ By(x)B,(x;), l<m<M-1,
- Y
N M-1 B 2
bym = Z By(x;) - Z barm Br(X;)
i=1 m=1
and

N
Cm= E ¥; Bu(x;).
i=1

The denominator b,,,, in (75) is zero if and only if B,,(x) has an exact linear
dependence on the previously entered basis functions { B LG 1 In this case
B,,x) and c,, need not be saved. B,,(x) must still be retained however to
serve as a candidate parent for future basis functions.

Consider now the search for the next basis function B, ,(x). The (least-
squares) lack-of-fit criterion to be evaluated in the innermost loop of Algorithm
2 (line 7) at each potential knot location ¢ is proportional to —I(¢), where

[CM+1(t) - Zﬁlci‘/i,M+1(t)]2
VM+1,M+1(t) - Z:fu=1Vi,2M+1(t)

with {c;} given in (75) and the other quantities given by the updating
formulae (52) with the orthonormal basis functions {B;}M replacing the
{B, — B,} appearing there. The quantity I(¢) (76) is the improvement in the
residual sum-of-squares resulting from adding the corresponding basis func-
tion with knot location #. This must be computed at every eligible knot
location.

A computational advantage results from the fact that I(#) (76) can be
computed rapidly in O(M) time. The strategy described in Section 3.9 required
a partial Cholesky decomposition [O(M?2)] and a full back-substitution [also
O(M?)] at each eligible knot location. Since the computation associated with
the updating (52) is O(M) (as it was before), the total computation for the new
approach is

(76) I(¢) =

C ~nNM3,,

in general and C ~ nNM2,, for additive modeling (mi = 1). Here M, is the
maximum number of basis functions. Basically the second term in the sum of
(53) has been eliminated by this approach reducing the computation by a
factor of roughly M, for (very) large values. This will enable the MARS
procedure to be applied to much larger and more complex problems than with
the initial implementation described in Section 3.9.

:1 have implemented this new approach into the latest version of the MARS
software. In order to get an idea of the computational savings involved, I reran
the example of Table 1 (this time on a DECstation 3100) contrasting the
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TaBLE 18
Ratio of running times (sec.) for the new versus old (new/old) implementations of the least-
squares updating algorithm on the example of Table 1. Computations were performed on a
DECstation 3100
L]

Mmax
mi 5 10 20 40 50
0.3 0.5 1.0 2.4 3.1
1 04 08 23 84 11
0.4 14 16.0 22.9
2 06 21 552 1073
0.5 14 16.4 24.8
4 07 23 114 1147 2282

running times of the new versus the old implementation. Table 18 shows the
ratio of running times (new/old) in the same format as Table 1.

The last two columns especially of Table 1, representing the higher M,
values, indicate that the computational savings associated with the new ap-
proach are nontrivial. For example, with mi = 4 and M, ,, = 40 or 50, one can
now do a tenfold cross-validation to access the quality-of-fit in the same time
that the old program could do just a single fit. Buja and Duffy (see discussion
of Buja, Duffy, Hastie and Tibshirani) consider very large M, values, for
which the computational savings ought to be even more dramatic.

Stone’s suggestions for extending MARS to logistic regression parallel those
made by Buja, Duffy, Hastie and Tibshirani. I think this idea has substantial
potential and that it should lead to a better method than that described in
Section 4.5. His ideas for density and conditional density (MARES) estimation
are quite clever and intriguing and hold practical promise. The computational
burden, especially in the multivariate case, is likely to be heavy unless special
tricks can be found. Perhaps the ideas mentioned by Owen in the last
paragraph of his discussion might be helpful here.

Lewis and Stevens (1990) have been studying the application of MARS to
the autoregressive modeling of time series. They report considerable success.

O’Sullivan. Professor O’Sullivan presents some valuable ideas for en-
hancing the power and interpretability of MARS-like approaches. MARS is
indeed coordinate sensitive as are most of the commonly used regression
techniques (linear regression with variable subset selection, CART, additive
modeling). The very notions of main effects and interactions are coordinate
sensitive. Coordinate sensitive procedures will outperform their affine equi-
variant counterparts in situations for which the dependence of the true
underlying function is simplest in the coordinate system chosen (usually the
original measured predictor variables). Here simplicity is defined in terms of
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the ease with which a given procedure can approximate the function. Introduc-
ing adjustable linear combinations in place of the original coordinates removes
the coordinate sensitivity and allows the approximation procedure to search
for linear combinations that provide the simplest representation. This poten-
tial reduction in bias comes at the expense of increased variance (optimizing
with respect to the linear combination coefficients) and usually substantially
increased computational complexity. Interpretation of the fitted models is most
easily achieved in terms of the original measured variables so that special
interpretation /visualization tools are necessary for affine equivariant proce-
dures. O’Sullivan presents some nice ideas along these lines in his discussion.

Experience with the linear combination split option in CART [Breiman,
Friedman, Olshen and Stone (1984)] has yielded somewhat surprising results.
Employing linear combination splitting seems to only rarely give substantially
improved performance over axis-oriented splitting and surprisingly often it
does worse. This may be a reflection of the types of problems to which CART
has been applied. It also might be a reflection of the local variable subset
selection property of axis-oriented recursive partitioning (see Section 2.4.2)
which, of course, is a coordinate sensitive concept.

As discussed in Section 3.3, recursive partitioning procedures produce basis
function sets that involve high-order interactions. This explains their poor
performance in situations where main effects and low-order interactions domi-
nate. On the other hand, in converse situations where the true underlying
function happens to predominantly involve high-order interactions, this aspect
of recursive partitioning becomes an asset. The alternating current examples
(Sections 4.4-4.4.2) were included because they involve strong interaction
effects to all orders. (Such examples involving real situations are not easy to
find.) The MARS results indicate that it does a credible, if less than perfect, job
in this case. CART with its bias toward high-order interactions ought to do
better here except that lack of smoothness limits its accuracy. A smoothed
version of CART, such as O’Sullivan’s SCART, mitigates this limitation and,
as reported in his discussion, it does somewhat better than MARS. The two
examples where he reports MARS does substantially better are ones that
involve predominantly main effects and /or only low-order interactions.

O’Sullivan suggests a clever approach based on finite element techniques
(SCART) for smoothing CART models. Another way to implement a smoothed
version of CART would be to directly follow the paradigm outlined in Section
3.2. That is, replace the CART step functions by corresponding higher order
(univariate) spline functions, without employing the strategy described in
Section 3.3, that is, the parent basis function would be removed as in CART.
Repeated factors involving the same variable would be allowed in the same
basis function product with this strategy. Also, the backward stepwise proce-
dure would follow that used in CART. A possible advantage of this approach
over one based on finite elements is that no additional global smoothing (really
smearing) parameter s (or p) need be introduced and adjusted to optimize the
fit. All (Iocal) smoothing is controlled directly by the forward /backward knot
placement algorithm as in CART.
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Breiman. I share Professor Breiman’s wonderment at this article appear-
ing in the Annals of Statistics. I was surprised when the journal solicited this
paper and astonished when I discovered that they were serious. I hope that as
a result traditional readers of the Annals will not cancel their subscriptions,
but instead swallow hard and wait for the next issue where things ought to be
back to normal.

Breiman’s remarks center on the issue of model selection and specifically on
the use of a penalized least-squares criterion for this purpose. I agree that the
(historical) name generalized cross-validation for the GCV criterion (30) is
misleading and that, especially with nonlinear fitting, it bears little resem-
blance to ordinary leave one out cross-validation. This fact, in and of itself,
does not indicate its superiority or lack thereof. Ordinary cross-validation has
its detractors and the issue of model selection is-still being hotly debated in
what has become a vast literature on the subject. I wholeheartedly agree with
Breiman that the use of model selection criteria derived for linear fitting in
nonlinear contexts (such as the use of C, or F-testing with variable subset
selection procedures) represents a long-standing abuse in our field. In fact,
Breiman has been one of the (few) leaders in pointing this out and suggesting
remedies [Breiman (1989c) and Breiman and Spector (1989)]. The modification
to the (linear) GCV criterion proposed in Section 3.6 is an (admittedly crude)
attempt to account for the nonlinear aspects of MARS fitting. As noted by
Breiman, the motivation for this approach was largely computational. The
extent of its statistical success seems remarkable given the crudeness of the
approximation. There is nothing intrinsic in the MARS approach to the use of
any particular model selection criterion. If a better criterion can be found, this
will improve the performance of MARS and so the results obtained with it so
far represent lower bounds on what may be possible with this approach in the
future. With the increased speed of the MARS algorithm obtained as a result
of Stone’s suggestion (Table 18), model selection through ordinary cross-vali-
dation is certainly computationally feasible except for large problems. (For
these an independent test set can be used.) I intend to implement this
approach and compare its performance to that of the current implementation.
To the extent that Breiman’s speculations are correct, this should lead to
improved statistical performance for MARS.

I also found the packing problem to be an important concern. This was the
motivation for the introduction of a minimum span described here in Section
3.8 and in Friedman and Silverman (1989), Section 2.3. Requiring a minimum
number of observations between successive knot locations limits the number
of candidate models in precisely the same way as Breiman’s strategy of placing
a limited number K of initial knots in his backwards stepwise method. They
both limit the number of eligible knots locations and prevent nearby models
from becoming too closely packed in the space of candidate models. The

_analogy in MARS to Breiman’s strategy of choosing K through model selec-
tion, would be to adjust the parameter L that controls the minimum number
of observations between knots, to optimize a model selection criterion such as
cross-validation. The generic default value for L given by (43) is conservative
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in the sense that it is set as small as possible consistent with some resistance
to runs in the noise. The motivation is to keep the procedure as sensitive as
possible to potential sharp structure in the function. When MARS is used in an
initial exploratory mode, this seems'like a reasonable choice. This of course has
the collateral effect of increasing the variance of the estimates (possibly
reacting to noise masquerading as sharp structure). When the true underlying
function is very smooth with no sharp structure anywhere [such as f(x) =
0.667 sin(1.3x,) — 0.465x2], then there is no bias increase in increasing L, but
there is a corresponding variance decrease. Figures 1 and 2 of Breiman’s
discussion compare MARS using its generic default value (no adjustment) to a
procedure for which the corresponding parameter has been adjusted to do best
on this particular example (through cross-validation). Such adjustment is a
good idea and I recommend it with MARS modeling, especially in the latter
stages of obtaining a final model estimate.

Restricting the minimum number of observations between knots (or the
number of initial knots K in a backward strategy like Breiman’s) is an indirect
way of trying to limit the global (absolute) second derivative of the final
estimate. In his discussion of TURBO [Friedman and Silverman (1989)],
Hastie (1989) suggested that the sometimes wild behavior of adaptive spline
estimates (seen in low signal to noise, small sample situations) could be
mitigated by directly placing a mild bound (or penalty) on the average-squared
second derivative. (As can be seen in Figures 1 and 2 of Breiman’s discussion,
the wild estimates tend to have much higher absolute second derivatives.)
Such a bound or penalty is global in nature, so that if one wanted to retain the
flexibility of adaptive regression splines to adapt the degree of smoothing
locally, the penalty should be made just large enough to inhibit possible wild
behavior. In their discussion of this paper, Buja, Duffy, Hastie and Tibshirani
show how to extend this idea to the more general context of MARS and, in
addition, suggest the possibility using this approach for general model selec-
tion in place of backward basis function deletion. Both ideas are straightfor-
ward to implement in MARS and are currently under investigation (jointly
with Hastie). We expect this approach to produce the biggest improvements in
small sample, low signal-to-noise situations where the underlying function is
very smooth.

Breiman points to some of the simulation study results as indicating a
general failure of the (modified) GCV criterion (30) when used in the context of
MARS. As noted before, the MARS procedure in no way requires the use of
this criterion and one that can be shown to work better would be enthusiasti-
cally welcomed. However, I feel an obligation to those who support GCV to
respond to some of Breiman’s concerns. Cross-validation produces an estimate
of average predicted-squared error. It can be shown to be an unbiased estimate
but it surely has variance [sometimes rather high—see Efron (1983)]. For this
reason it will not select the best model every time. I view the pure noise results
in Tables 2 and 3 to be highly encouraging. While the GCV score estimated the
MARS model as doing (slightly) better than the response mean about half the
time, the actual distribution (percent points) show that it hardly ever claims
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that the MARS model is very much better, making it unlikely that one would
be led to embarrassing conclusions. Whether ordinary cross-validation would
do better, given the high variance of its estimates, is by no means certain. In
any case, the results in Tables 2 and 3 are really more a test of the smoothing
parameter choice d = 3 (82), rather than the criterion (30), since one can
make the procedure arbitrarily conservative by increasing the value of d. The
fact that on the data of Section 4.3 (Table 7), full MARS modeling does as well
as when interactions are restricted to be bivariate (mi = 2), represents a
(fairly dramatic) success for the model selection procedure.

When the number of basis functions that can potentially enter is very large,
beginning with forward stepwise selection is the only viable option. Sample
size limitations, if nothing else, do not permit fitting with the full (astronomi-
cally large) basis set. In fact, Breiman’s (1989b) implementation of the II-
method employs a forward then backward stepwise approach (using GCV for
model selection). It is my guess that in low dimensional applications (n < 3),
the II-method will emerge as a strong competitor to other procedures intended
for those settings, especially for certain very highly structured functions.
[More detailed comments on the II-method appear in the discussion of Breiman
(1991)1.

Golubev and Hasminskii. Golubev and Hasminskii raise the important
issue of the theoretical properties of MARS when applied to various classes of
smooth functions. I appreciate their inclusion of the known general results in
this area. Gaining any theoretical understanding of the performance properties
of MARS would likely be an enormous help in improving it.

Buja, Duffy, Hastie and Tibshirani. The discussion by Buja, Duffy,
Hastie and Tibshirani describes important enhancements to MARS (and re-
lated procedures) that will likely improve both performance and interpretabil-
ity. I am especially grateful for the discussion of their experiences with MARS
on an important real problem. One tends to learn much more about a
procedure when it is applied in a setting where the actual answer is the
important thing, rather than serving simply as a test bed for the procedure.

A diagnostic tool indicating when a future covariate vector is outside the
range of the training data is important. With flexible fitting procedures like
MARS, the notion of outside needs to be broadened. Simply being inside (say)
the convex hull of the design may not be enough to be safe. If the density of
the design contains extended sparse or empty regions (holes), predictions
within those regions may be suspect, especially if they are dramatic (far from
the response mean). A diagnostic procedure that could indicate such situations
would be an invaluable companion to any flexible fitting procedure in practical
applications.

Buja and Duffy’s experiences with using MARS raised a series of questions
put forward in their discussion. I have observed some of the phenomena they
relate in my experiences with MARS. I will try to address the issues they raise
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in their points 1-5 of Section 1 of their discussion.

1. The recommendation at the end of Section 3.6 for choice of M, ,, (maxi-
mum number of basis functions) was intended to serve as a starting guide.
It will not likely be the final best choice in all situations. As was done by
Buja and Dufly, I recommend some experimentation with several values,
using cross-validated performance as a guide, before a final model is chosen.

2. The cost parameter d (32) is the primary smoothing parameter of the
MARS procedure. [Secondary less influential smoothing parameters are
M., and L(a) (43)]. Increasing its value will cause fewer basis functions
(knots) to be entered, thereby increasing smoothness. The penalty increase
(in the GCV criterion) that it regulates is intended to compensate for the
increased degree of data fitting associated with the stepwise basis function
selection. As such, its value should depend on the degree of optimization
performed. This in turn has a mild dependence on other parameters that
limit the optimization procedure such as M, ., L (43) and mi (maximum
interaction order). Its greatest dependence can be, however, on the underly-
ing function f(x) (1) when it is highly structured. The default value d = 3
[d = 2 for additive modeling (mi = 1)] was chosen (mainly through simula-
tion studies) to be appropriate for the null situation, f(x) = constant. This
is a conservative choice and is appropriate as a starting value in order to
avoid the embarrassment (discussed by Breiman) of fitting pure noise with
a structured approximation. The results shown in Tables 2 and 3 indicate
that it works reasonably well for this purpose. Theoretical results quoted in
Owen’s discussion, however, suggest that this choice might be too conserva-
tive for highly structured functions (far from null situations). The intuitive
reason is that such highly structured functions give rise to highly preferred
knot locations and the sampling functions induced by the noise are not
strong enough to cause (initial) knots to be placed far from these preferred
locations. The optimization procedure is thereby (indirectly) restricted as to
where it can place knots, reducing the variance of the estimates. In the null
case the true underlying (constant) function has no preference at all for
where knots are located and knot placement is totally driven by the noise,
inducing the most variance. The results quoted in Section 3.6 were based on
simulation studies involving very smooth weakly structured functions,
where the default values motivated by the null case seemed to work
reasonably well. The situation faced by Buja and Duffy seems to be one
involving a highly structured function with sharp threshold effects. The
default values may not be appropriate in this case.

3. In the present implementation of MARS, d (32) is not adjusted for M,
although it would be reasonable to do so. The oddities observed by Buja and
Duffy may stem from implementation details associated with the backward
stepwise strategy like those pointed out in Owen’s discussion.

4. The anomalous behavior associated with the piecewise-cubic fits observed
by Buja and Duffy is (as they concluded) due to the (apparently) highly
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structured nature of their function. The same effect was observed in the
semiconductor design example in Section 4.7. It also has sharp threshold
effects that cause problems for the derivative smoothing. (Note that Section
4.7 was added to a later version of the manuscript than was supplied to the
discussants.) This anomalous behavior is in some sense a blessing in
disguise. It stems from the ability of the piecewise-linear basis to approxi-
mate sharp thresholding with a small number of basis functions; a single
threshold can be captured with at most two knots. Imposing a higher level
of smoothness (say by using higher order splines) would require placing
more knots in the vicinity of each threshold to allow the derivative to
change very rapidly there. The piecewise-cubic approximation used in MARS
has an even greater disadvantage since it attempts derivative smoothing
using only the knot locations derived from the piecewise-linear fitting. It
therefore does not have additional knots near each threshold to help it
rapidly adjust the derivative. Thus it even more dramatically oversmooths
the derivative in such regions. Approximations that impose a higher level of
smoothness of course perform best when the underlying function is very
smooth; that is, functions that nowhere have locally high second deriva-
tives. For such functions, piecewise-linear splines will require several knots
over the data interval to adequately approximate the smoothly changing
(first) derivative. The derivative smoothing strategy (Section 3.7) can then
use these to fashion a piecewise cubic basis to remove the resulting mild
derivative discontinuities. As observed by Buja and Duffy, anomalous be-
havior of the piecewise cubic fit (when it occurs) is readily diagnosed by
simply examining the respective GCV scores of the two models. Simulation
studies on relatively smooth functions indicate that the continuous deriva-
tive approximation tends to fit the data at hand slightly worse (since the
knots are optimized for the linear basis) but has slightly better predictive
performance. Experience with sharply structured functions (such as those
involving threshold effects) indicate that the piecewise-cubic basis fits both
the data at hand and future data badly. This suggests a strategy of
accepting the cubic fit if its GCV score is at most slightly (10-20%) worse
than the piecewise-linear fit; otherwise use the linear basis fit. Considerably
worse GCV scores for piecewise cubic fits can serve as a useful diagnostic
indicating sharp structures in the response. One (but not the only) source
for such sharp structure can be single or multiple response outliers.

5. The evenness of the growth of the selected model size on M., (maximum
number of basis functions) likely depends on a variety of different charac-
teristics associated with each particular problem. These include sample size,
properties of the design and the true underlying function.

Gu and Wahba. Gu and Wahba present a lovely concise descriptive
.summary of the smoothing spline approach to fitting functions of several
variables. Researchers at the ‘“Madison spline school” led by Wahba have been
pioneers in this important area of statistics. Thin plate and interaction splines
represent important contributions that are theoretically attractive and are, in
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addition, highly competitive in practical settings involving low-to-moderate
dimensionalities and relatively small sample sizes.

In their discussion, Gu and Wahba point out some of the aspects that MARS
and interaction splines hold in common. There are also important differences.
These differences basically stem from differing motivations associated with
intended applications. Applications motivating MARS are similar to those that
motivated CART [Breiman, Friedman, Olshen and Stone (1984)], namely
(relatively) large complex data sets where little is known about the true
underlying function f(x) (1). In such settings one needs a general procedure
that requires as its only input specification the training data, from which it
produces a reasonably accurate and interpretable approximation f(x). If such
a procedure is successful in this, the user may wish to use the derived
information to further refine the model. This can be‘done by reapplying the
general procedure in various restricted modes, where the restrictions are
guided by the results of the earlier general application. For example, if a
MARS run indicates that certain variables enter additively or participate only
in limited interactions, further tuning of the model would be done in the
presence of these constraints. This refinement can also be done by applying a
different less general procedure that requires a more detailed input specifica-
tion, with these details provided by the output of the previously applied
general procedure.

Application of interaction splines requires as part of its user specified input
an ANOVA decomposition (10), (24). That is, the user must tell the procedure
what variables enter the model, which specific variables (if any) they interact
with and the levels of those interactions. Since these reflect properties of the
true underlying function f(x) (1), the quality of the approximation can depend
strongly on this input in any given situation. Statistical and computational
considerations strongly limit the number of ANOVA functions that can be
entered into an interaction spline model. In low dimensional settings this
problem is mitigated by the (relatively) small number of ANOVA functions
that can potentially enter. The user can simply enter them all or experiment
with different possible subsets. With increasing dimension of the predictor
variable space, the number of possible ANOVA functions grows very rapidly
and this is no longer a viable strategy.

MARS does not require an ANOVA decomposition as part of its input
specification. Using only the data, it provides an ANOVA decomposition as
part of its output. As noted in the discussions, this can be a valuable tool for
interpreting the approximating function and (to the extent it reflects the true
underlying function) also the system under study that generated the data. If it
turns out that MARS produces an ANOVA decomposition with a small number
of ANOVA functions each involving only a few of the variables (as is often the
case), this information can be used as input for an interaction spline model.
Whether this will result in improved accuracy will largely depend on the
smoothness properties of the underlying function.

Other differences between the two approaches also largely center on issues
of generality. In its most general application, interaction splines associate a
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single smoothing parameter with each specified ANOVA function (10), (12),
(24), that constrains its overall global smoothness. As a consequence of its
adaptive knot placement algorithm, MARS attempts to adapt its smoothness
constraint locally within each ANOVA function that it produces. Note that this
will only provide a potential benefit if there is sharp structure present, as was
the case in the semiconductor design example (Section 4.7) and in the prob-
lem encountered by Buja and Duffy (discussion of Buja, Duffy, Hastie and
Tibshirani). In cases where the (true underlying) ANOVA functions are all
globally very smooth, this local adaptability can be counterproductive in that
the associated increased variance is not offset by decreased bias. For these
cases, model refinement using an interaction spline approach might provide a
real benefit. (Applying MARS with a strong global second derivative penalty
may also help in these situations.) )

The method for incorporating categorical variables into interaction spline
models described by Gu and Wahba basically encodes them into real-valued
(0/1) dummy variables. Regularization is provided by grouping together the
coefficients associated with each original categorical variable and shrinking
them towards a common mean by penalizing the variance of their solution
estimates. This is a clever idea. Categorical variables are incorporated into
MARS using a different strategy [Friedman (1990)]. This strategy is motivated
by that of CART, which does not use dummy variables, but instead attempts to
find subgroups of categorical values within each variable over which the
response (conditioned on the rest of the model) is roughly constant (small
variance). The differences between these two approaches for categorical vari-
ables reflect the respective differences between the two methods for ordinal
variables. Interaction splines apply a global smoothness constraint on each
variable or ANOVA function, whereas adaptive spline strategies like MARS
attempt to adjust the smoothing constraint locally within each variable or
ANOVA function, to adapt to possible sharp local structure.

Barron and Xiao. Barron and Xiao suggest several clever modifications
to the MARS procedure, some of which will likely improve its performance.
Like Hastie (1989) and Buja, Duffy, Hastie and Tibshirani (discussion herein),
they propose the imposition of a global roughness penalty on the solution.
Their criterion penalizes increasing (squared) first, rather than second, deriva-
tives but it.should produce similar results. In fact, the Barron-Xiao penalty
has an especially nice intuitive appeal. As discussed in the rejoinder to Breiman,
a global roughness penalty will likely provide substantial benefit when the true
underlying function varies quite smoothly over the predictor space with no
(relatively) sharp local structure anywhere. There is, however, no free lunch.
While helping with such very gentle functions, the price paid for using a strong
(global) roughness penalty will be to inhibit the ability of MARS to capture
local structure when it is present (without degrading the fit elsewhere). At
least for (initial) exploratory applications, the penalty should be set just large
enough to inhibit only possible wild behavior (see Breiman rejoinder) and not
limit the flexibility of the procedure. Considerations are different for proce-
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dures based on global polynomials (such as MAPS). Since polynomials (unlike
splines) already have inherent difficulty dealing with local sharp variation of
the underlying function (see later), nothing (additional) is lost by imposing a
moderate to strong global roughiiess penalty on them.

Barron and Xiao also raise the issue of model selection and suggest alterna-
tives to the GCV criterion used in the present implementation of MARS. As
mentioned in the rejoinder to Breiman, MARS is in no way wedded to the GCV
criterion. More effective model selection can only help improve performance.
The BIC/MDL criterion suggested by Barron and Xiao has strong intuitive
appeal and, along with ordinary cross-validation (proposed by Breiman), will be
tested in the context of MARS. The evidence provided for its superiority in
Table 2 of their discussion, however, is only partially convincing. This is due to
the fact that the criterion was used there in conjunction with the true
underlying error variance (02 = 1, known only because this is a simulated
example) rather than trying to estimate it from the data at hand. Knowing
that the true error is homoscedastic and the value of its variance provides a
strong advantage to any model selection procedure. If an estimated value of o2
happens to be too large, the model selection criterion will tend to include too
few terms whereas conversely, too many will be entered. The variance of
estimates of o2 can be quite high, especially in conjunction with (nonlinear)
flexible fitting procedures. There may also be considerable bias unless one
knows how to correct for the (basis function) selection aspect. There is no
obvious analog here for obtaining an unbiased estimate based on the largest
possible model.

The MAPS procedure introduced by Barron and Xiao closely follows the
MARS strategy and as a consequence inherits many of its characteristics. The
only basic difference is the substitution of global polynomials in place of
(adaptive) splines. If one is constrained to produce only polynomial models this
represents an attractive approach. If not, the difficulties associated with
polynomial approximations can impose (sometimes rather strong) limitations.

Global polynomials are held in somewhat low esteem as general tools for
function approximation (or estimation) in both the mathematical approxima-
tion and statistical curve and surface estimation literatures. Nearly all the
recommended procedures that have emerged so far possess in common a
locality property; the estimate at a point is most strongly influenced by
(training) observations close to that point and observations further away have
little or no influence. This gives rise in large part to their flexibility. They can
respond to (sharp) local properties of the function without affecting the fit
everywhere else. Global polynomial fits do not share this property; the func-
tion estimate at a point can be strongly influenced by data points very far away
from it in the predictor space. As a consequence, locally sharp structure
anywhere can influence the fit everywhere. This is the likely motivation for the
quote from J. W. Tukey, “polynomials cut peoples’ throats’’ and the observa-
tion by de Boor (1978), “If the function to be approximated is badly behaved
anywhere in the interval of approximation, then the approximation is poor
everywhere. This global dependence on local properties can be avoided using



138 REJOINDER

piecewise polynomials (splines).” [See de Boor (1978), Chapter II for a nice
discussion of the limitations of polynomial approximations.]

If the true underlying function f(x) (1) is everywhere gently varying with
no sharp structure anywhere, then dpproximations based on global polynomi-
als perform very well. In fact, if f(x) happens to actually be a polynomial (or
very close to one), then they will give the best performance. However, local
methods such as splines also do quite well in these settings. Thus, if one
expects to only encounter situations such as this, there is (as noted by Barron
and Xiao) little to choose between them. If, however, one wants to maintain
the additional ability to adequately deal with more structured functions, then
local methods might be preferred.

The MARS procedure is based on (adaptive) spline functions because they
emerge naturally as a generalization of recursive partitioning. It thereby
inherits the attractive properties of the recursive partitioning approach dis-
cussed in Sections 2.4.2 and 6. These include local variable subset selection
and automatic local adjustment of the degree of smoothing within each
ANOVA function produced. Substituting polynomials for the adaptive spline
functions sacrifices the local aspects of both these properties; only global
variable subset selection and automatic adjustment of global smoothing on
each ANOVA function are retained. If in a particular situation the nature of
the underlying function happens to be such that this additional flexibility of
MARS gives rise to no advantage, then there is little to choose between MARS
and MAPS. Therefore, issues of generality will (as before) likely guide the
choice.

Using adaptive splines also causes MARS to inherit the ability to isolate
local sharp structure and deal with it separately without affecting the fit in
other regions of the predictor space. Buja and Duffy (discussion by Buja, Duffy,
Hastie and Tibshirani) report this as a crucial advantage in their application.
Also, the semiconductor component example of Section 4.7 likely benefits from
this property.

The examples of Sections 4.2 and 4.3 were chosen largely because they do
not play to the particular strengths of MARS. They are globally very smooth
quite gentle functions and (as noted by Barron and Xiao) global low-order
polynomials make up a substantial part of their definitions. One would expect
approximations based on low-order polynomials to do very well here. This is
partially verified by the results presented by Barron and Xiao (Tables 2 and 3).
Perhaps somewhat surprising is the degree of competitiveness displayed by
adaptive splines in these situations. For these examples, local variable subset
selection and adaptive local smoothing provide little or no advantage. The
MAPS procedure on the other hand has the additional benefit of a global
roughness penalty constraint (not yet incorporated into MARS) which as noted
before is a real help with very smooth functions. It also has the advantage
(Tables 2 and 3) of being supplied with the true underlying error variance. As
discussed before, this provides the model selection criterion with an important
advantage. This can be seen by comparing Tables 1 and 2 of Barron and Xiao’s
discussion.
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TABLE 19
Accuracy of MARS applied to the example of Section 4.2 (N = 200) with the smoothing parameter
d (82) selected through cross-validation

L -

mi ISE PSE d
1 0.015 (0.013) 0.15(0.01) 49Q1.2)
2 0.030 (0.015) 0.16 (0.01) 5.7(1.3)
10 0.031 (0.016) 0.16 (0.01) 5.8(1.3)

The results presented for MARS in Tables 4 and 7 were obtained using its
default smoothing parameter value d = 3 (32) without any attempt to even
estimate a best value from the data. The best value is controlled by the
underlying error variance which for the purpose of illustration was assumed
not to be known. As discussed in the rejoinder to Breiman, using this default
value may be reasonable for initial exploratory work, but one may wish to
refine the fit in the later stages of the analysis by estimating a better value
through cross-validation. To get an idea of whether this can give rise to
substantial improvements, the simulation study on the example of Section 4.2
was rerun (N = 200 only) but this time using cross-validation to estimate the
smoothing parameter rather than using the default value. Table 19 shows the
results based on 100 replications. Also shown are the average estimated
smoothing parameter values. (The quantities in parentheses are the standard
deviations over the 100 trials.)

Table 19 (column 4) shows that the cross-validation procedure was choosing
(on average) considerably larger smoothing parameter values than the default
(d = 3.0) in this case. This reflects the very smooth nature of the underlying
function. Comparing Tables 4 and 19 shows substantial improvement [24% in
VISE (58)] only for mi = 1 (additive model). However, as Table 5 indicates,
this is the one most likely to be chosen. Comparing Table 19 with Table 2 of
the discussion of Barron and Xiao shows that even without a global roughness
penalty and knowledge of the true underlying error, adaptive splines compare
favorably with global polynomials in this setting.

The motivations put forward by Barron and Xiao for substituting global
polynomials for adaptive splines in MARS are mainly computational and (to a
lesser extent) interpretability. An implementation based on polynomials did
gain a computational advantage over one based on adaptive splines when the
old implementation strategy described in Section 3.9 was used for the latter.
This is, however, no longer the case with the new implementation discussed in
the rejoinder to Stone. The computation for both global polynomials and
adaptive splines (new implementation) is proportional to nNM?2_ . The actual
relative computing speeds will depend on implementation details but are not
likely to be very much different. Adaptive splines may have a slight advantage
since fewer basis functions M, are often needed for comparable accuracy.
This is a consequence of the fact that each basis function included in a MARS
model is adapted to the data through the adjustment of its knot locations.
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Interpretability of the resulting approximation was an important design
goal motivating the MARS approach. The ANOVA decomposition (Section 3.5)
and slicing (Section 4.7) are intended as important interpretational aids. The
MAPS procedure by closely following the MARS strategy inherits these as-
pects. The most powerful interpretational aids in understanding each ANOVA
function are likely to be graphical representations (curves or surface displays).
For these, whether the approximation is internally represented by a polyno-
mial or spline function is of little consequence. If the polynomial representa-
tion involves more than a very few terms and/or high degrees, some may
argue that spline representations are more interpretable, especially since they
are likely to be more parsimonious (see discussion of Buja, Duffy, Hastie and
Tibshirani). On the other hand, if a function can be approximated by a few
low-degree polynomials, those familiar with polynomials may feel more com-
fortable interpreting them. Such interpretations can be misleading, however,
since (except for artificially constructed examples) the corresponding true
underlying function is seldom really a polynomial.

One very important aspect in interpreting these approximations is a small
number of resulting ANOVA functions. In this respect adaptive splines may
have a distinct advantage (as noted earlier). In the Portuguese olive oil
example (Section 4.5), the MARS model resulted in four ANOVA functions,
involving only three variables (Table 14), that can be represented by only two
(surface) plots (Figure 8). While achieving comparable accuracy in this case,
the polynomial approximation produced by MAPS was far more complex as
reflected in Table 4 (and 5) of the discussion by Barron and Xiao. The
underlying function for this example is also globally quite smooth as can be
seen in Figure 8. [Note that Figure 8 displays the log-odds. The underlying
function estimate 1/(1 + e ~f) ig correspondingly much more gentle.]

For those who happen to have a strong preference for approximations based
on polynomials (or other global basis functions) but would still like to retain
the flexibility of the adaptive spline approach, there are several possibilities.
One simple possibility would be to apply both to the data. If they provide
comparable estimated accuracy, then the user could interpret the one he/she
finds to be most understandable. Perhaps a more elegant approach would be to
include both global functions (such as polynomials) and adaptive splines, in a
hybrid MARS modeling strategy. To enhance interpretability, one could (op-
tionally) forbid interactions between the global and spline basis functions. An
incremental penalty might be attached for including adaptive splines to reflect
the user’s preference for the global basis functions. The global basis function
part of the resulting approximation could then be interpreted as reflecting the
very smooth aspects of the underlying function whereas the spline part (in this
case) would reflect possible local sharp structure. (Such a hybrid strategy is
easily added to the MARS program as a user option.)

2T'he feed-forward idea proposed by Barron and Xiao is quite intriguing. It
would allow the procedure (MARS or MAPS) to more rapidly build up (synthe-
size) higher order interaction terms but in a constrained manner. The result-



MULTIVARIATE ADAPTIVE REGRESSION SPLINES 141

ing models (if feed-forward inputs are selected) will be far more complex and
difficult to interpret. Whether this approach will give rise to substantially
improved prediction accuracy in some situations awaits the results of further
investigation. ’
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