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ASYMPTOTIC EFFICIENT ESTIMATION OF THE CHANGE
POINT WITH UNKNOWN DISTRIBUTIONS!

By Y. Ritov

The Hebrew University of Jerusalem

Suppose Xj,..., X, are distributed according to a probability measure
under which X,..., X, are independent, X; ~ Fy,for i = 1,...,[6,n] and
X, ~F®™ for i =[0,n] + 1,...,n, where [x] denotes the integer part of x.
In this paper we consider the asymptotic efficient estimation of 6, when
the distributions are not known. Our estimator is efficient in the sense that
if F™ = F, ., mn,— 0 and {F,} is a regular one-dimensional parametric
family of distributions, then the estimator is asymptotically equivalent to
the best regular estimator.

1. Introduction. Suppose X,,..., X, are distributed according to the
probability measure P, , under which X,,..., X, are independent, X; ~ F,,
j=1,...,[0,n], and X;~F, , i=[6,n]+1,...,n, where [x] denotes the
integer part of x.

To make the problem sensible, we assume that & = {Fn: ne(-11)}isa
regular parametric model, F, has density f,, n, = 0 but n,n'/? - «. Thus,
the change point can be estimated consistently, while the number of observa-
tions between 6, and its estimator converges to infinity as n — «. The family
Z may be known or unknown.

The nonparametric estimation of the change point was considered recently
by Carlstein (1988). His estimators were based on the maximization of a
distance between the empirical distribution functions of the observations
X,,..., X, and the observations X,,,,..., X,, respectively. Previous work
was either based on parametric assumptions [e.g., Hinkley (1970), Hinkley and
Hinkley (1970) and Cobb (1978)] or on a given particular functional of the
distribution that distinguishes between the distributions before and after the
change point [cf. Darkhovshky (1976)].

In the next section we consider the convergence of the preceding experi-
ment, as n — o, to a particular experiment. In the limit experiment, we
observe a diffusion process on (—®,») with a constant infinitesimal variance
o?, a drift 202 on (—, 7] and a drift — 302 on (r,®) (¢ is considered known
in this experiment). The efficient estimator of 7 in the limit experiment is
described in Section 3. This estimator suggests an asymptotically efficient
estimator for the original model. It is assumed in these two sections that the
model % as well as {n,} are known. This assumption is dropped in the fourth
section, where an adaptive estimator is constructed.
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1830 Y. RITOV

2. The limit experiment. We call a family of distributions &= {F,},
n € (—c, ¢), regular if the following hold:
1. & is dominated by a o-finite measure u.
2. Let s, = (dF,/du)"? Then s,: (—c,¢) = Ly(u) is Frechet differentiable
with derivative s,.

3. [(5,(x)? du(x) < e
4. The map n — §, is continuous from (—c, ¢) to Ly(u).

We assume the following:
AssumPTION 1. &= {F,} is regular.
ASsUMPTION 2. n, = 0, n2n —> © as n > .
AssumpPTION 3. 6, = 0, + O(n,;2n"1!) and 6, € (0, 1).

The sample size needed for testing between F, and F, with the sum of

errors bounded away from 0 and 1 is of order 7, 2. For a given {n,}, the error
in the estimation of 6, is expected, therefore, to be of order 1, 2/n. To avoid
the degeneration of the estimation problem as n increases, we consider a local
parametrization, 8, = 8, + 7,n " 'n, %, with 8, known. In this section as well
as in the next, the sequence 7,,7,, - is known, so that =, is the only
unknown parameter of the n-th problem.

Let L () be the log-likelihood that the change point is 8, + 7n " 17, %

L,(7) = —sgn(7) L ¥.(X),

ied, (1)
where ¢, = log dF, /dF,,
J(r) = {i:[n6,] <i<[n8y+7n;%]} forr>0,
o {i:[n8o+ ™02 <i<[ng]} forr<0

and sgn(r)=1if 7> 0,0if 7 = 0 and —1 if 7 < 0. Note that the cardinality
of J (c)is (1 + o(1))lc|n,; 2 for any finite c. Let ¢ be a fixed value, 0 < ¢ < . It
follows from the regularity of % that for any 7, |7 < ¢,

™ (X,) - 1

{ dF,
max

dF,
[see Roussas (1972), Lemma 3.5.2, page 56]. A Taylor expansion yields

ie J,,(T)} -, 0

dF,
L,(7) = —sgn(f){ )y [dTO"(X,.) - 1]

ied,(r)

1 ' dF. 2
-=(1+¢,) X [——”—"(Xi) -1}}
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uniformly in 7 € (—c¢, ¢), where

lc,| < max

dFO"(Xi)) -1

e J,,(T)} -, 0.

( dF,

Note that 7 governs only the number of terms in the partial sum that defines
L, while the terms themselves are only functions of the observations and the
nonstochastic sequence {7n,}. Hence, here and hereafter, uniformity in = is
relatively simple. Since all the approximations in the proofs in Roussas [(1972),
pages 54-66] hold uniformly for partial sums, we can conclude that

$o 1 .
L,(7) = sgn(f){%,, L (X)) = S (140, (1))nilu(nI(Fo; &)

ied (1) 0

$o 1
sgn(f){%n L (X)) = omlu(I(Fo; F) +0,(1)

ied,(r) °0

uniformly on (—c, ¢), where I(F,; %) = 4[s2(x) du(x).

By the Donsker theorem [cf. Billingsley (1968), pages 137 and 138) the
distribution of the process L,(7), —¢ <7 <c, under P, . 2,1, ,7, > T,
converges weakly to the distribution of the process L,(-) where L, (-) is a
diffusion process on (—c, ¢) whose infinitesimal variance equals I(F,; %) and
its drift in 1I(Fy; &) on (—c¢, 7o), — 3I(Fy; F) on (7, ¢).

The process L,O(') is the log-likelihood function of the experiment
{Q.: 7 € (—»,®)}, where, under @, the law of the observation X(-) is the same
as the law of L_(-). A uniform convergence of the log-likelihood functions
implies the convergence of the experiments in the sense of Le Cam. That is, for
any bounded loss function, the estimation of 7, is, in the limit, as difficult as
the estimation of 7, in the limit experiment (see next section).

3. Regular estimators. Let the loss function for the estimation of 6, by
d be p(B,(6, — d)), where vy, = 8, /(nn?2) - y and p is a bowl-shaped bounded
loss function. Since 6, is not known, it makes sense to restrict the discussion
to “regular’ estimators—estimators that behave uniformly in a neighborhood
of 6,. Using the local parametrization, we call a sequence of estimators {7,}
regular, if the limit distribution of 7, — 7, is independent of the particular
sequence {r,} of true parameter values, as long as limsup|r,| < . This
restricts the discussion of the limit experiment to estimators which are
invariant under the shift group [§ is invariant if §(g,X) = 6(X) — a, where
2.XNt) = X(¢ — a)].

The invariant measure of the shift group is, of course, the Lebesgue
measure. Thus 7, the best invariant estimator is defined implicitly by

Jo(y(r = #))eX dr

= inf!.
fex(") dr
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The preceding section shows that the estimator defined by

—2))eln g
Jel"M dr

is asymptotically efficient in the following sense. The distribution of any
regular estimator is asymptotically equal to the convolution of #, with some
distribution [Le Cam (1986), page 128]. A standard large deviation argument
implies that the estimator

Jrel™ dr

" el dr

<[

(2)
is asymptotically efficient for p(¢) = ¢2.

4. Unknown %. We are going to describe next an estimator which is
asymptotically equivalent to the estimators defined by (1) and (2), but is not
based on an a-priori knowledge of %. For the sake of simplicity, we need,
however, a slightly stronger version of Assumption 3:

AssuMPTION 4. For some & > 0 and for some 6, € (—2¢,1 — 2¢), 6, =
0, + O(n; 2n~h).

Moreover, we assume that 6, (i.e., the approximate location of the change)
is known. In practice, this does not introduce much difficulty. In some cases, 6,
is known a-priori, as indeed it is in the example that brought this problem to
our attention. In this example, the change is a short delayed reaction to a
stimulus given to a monkey at a known time. In other cases, 6, can be taken to
be any naive estimator. Formally, 6, can be one of the estimators suggested by
Carlstein (1988) truncated to the grid {i[n'/?7,17% i = 1,2,...}, where 7, is
the Kolmogorov distance between the empirical distribution functions of
Xy, .-+, X{, /5) and the empirical distribution function of X, 5,1,..., X,,.

Let F,, and F,; be the empirical distribution functions of the two sample
tails

L [n(8y—e)]
Fao(+) = [n(8, — €)] Y o x(X, <)
1
and
[Fnl(')=[n(1_90_5)]_1 Y x(X; <),

[n(1-6y—8)]

where x(-) is the indicator function.
Let2>a >0,

kn = min{[nl/zllu:nl - n0”°°]2_a’ [“[Fnl - ﬂ:n0'|;2+a]}
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and define x{, ..., x{® by
‘ ™ =inf{x: Fo(x) >jk;}, J=0,...,k,.
Let p{» = F,(x™) — F,((x{™), j = 1,..., k,. Define now

k,
Jo(x) = X x(x) < x < x)log(k, 52)x (57 > 0)
Jj=1
and
L(6) = —sgn(6 - 6,) ¥ (X)),
ied ()
where

{i:[n6,] <i<[n6]} fore>a,,

(0) = {{ . [n8] <i <[n6,]) for6 <6,

Note that since we do not know the sequence {n,}, the argument of L is 6
and not the local parameter 7 (recall that 7 is the argument of L,). Since all
p{Y > 0 with probability converging to 1 and to simplify notatlon we ignore
hereafter the possibility that the p(’” = 0.

The following proposition shows that we can replace L, in (1) and (2) by L,
and obtain an efficient estimator. That is, we define the estlmator implicitly by

1 p(B(6 = 8,))el® do

s = inf!.
[ Y e B do

(3)
for an appropriate sequence M, — .

PRrROPOSITION 1. Suppose Assumptions 1, 2 and 4 hold. Then for any
sequence {M,} such that M, k,*/*~29 - 0,

sup IL 8 + 7(nZn)” ) Ln(r)l -, 0.
Irl<M,

ProoF. Let py = Fo(x(™) — Fo(x(?)), p{P = Fn,(x{”) — Fn,(x{,) and
L(1) = —sgn(7) L ¥.(X)),

ied, (1)

where

b piy |

U= X x(xf) <x < x{™)log =

Jj=1 Poj

Since \

k (n)

< bi; fo

1y X(xj("l)l <X< xj(-”))log( p(’J‘)) —(X)
i1 0j



1834 Y. RITOV
In L,(F,), it is enough to prove that

sup |L,(8, + 7/(n2n)) — L (7)| -, 0.
|l7I<M,,

Next note that & regular implies that lim,_ o7 'IF, — Fyl. = d, for
some d, > 0. Since 7,,n!/? — », we obtain that, for any v > 0, there is m < o,
such that with probability of at least 1 — v,

k, € {[nl/znnd0]2_a -—m,..., [nl/znndo]z_a + m}

U{[nndO]_2+a —m,..., [nndO]_z-Hx + m}

In particular, this implies that we may consider {k,} in the proof as a
nonrandom sequence such that

(4) k; Y@~ Omin{n'/?n,d,, (n,de) "} - 1.

Next, note that given F,, and F,;, {£ (8, + 7/(n2n)) — L (7): I7| <M, }is a
simple partial sum process with independent terms, log(«//n(X )/ (X)) Smce
the number of the terms for |7| < M, is O(M,n, ?), the result follows from
Kolmogorov inequality [cf. Shorack and Wellner (1986), page 843] if each term
has, given F,, and F,;, conditional first and second moments which are equal
to 0,(M;, 'n2). We will prove that these are indeed O,(n;~*/*n —a/4),

We belng Wlth some preliminaries. Clearly,

(5) mJaXIﬁ‘{;’ - p{®| = 0,(n'?), mjax|p<"> — k31 = 0,(n}?).
Hence,
(6) maxlk, p§) ~ 11 = 0,(1).

By a standard quantile theory,

Ik, Ep§? — 1| < k,[n(8, —€)] 7,

(7) -1
Ink, Var(p§?) — 11 < 2k,[n(6, — )] .

Combining equations (6) and (7), we obtain

k, k,
Y (kap? = 1)°p8 = (1 + 0,(D)kz* ¥ (kapl? - 1)°
(8 j=1 ‘ j=1

=0,(k,n7").
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We develop now some bounds on the distance between the discretized
probabilities function. We begin with

D, = sup max f(x) dx—f fo(x)dx‘
l<ln,l 7 |72
= sup max 77/ f(x)dx
Inl<In,l

IA

sup maxlnl
Iml<In,l

= 0,(Imal(k7* + D )1/2)
Solving this relation for D, yields D, = 0,(1)|n,[(n2 + k,"). Hence,

f

x

1/2 12
(x) dx} [[ﬁ:)fn(x) dx]

w f(x) dx
sup max /x u o) 1| =0,(1).
Iml<inal I |52 Poj

The distance between the discrete probability measures (p{?, ..., p§ k)) and
(p{?, ..., p{#)) can be bounded now by

ky, (p].j) - p(n))

n.2

Jj=1 pgj)
(n) 2
©) b (R na(x) ~ fol)) ds)
n j=1 fx(}n))fo(x) dx
= 0,(1).

A useful bound of the difference of p{¥ and p{"¥ is given by

k, (n) _ p(n)
E{Z (le p ) IFnO}

j=1 gy
kn (n)
-1 pl
Jj= 1 Poj

(10) b pgy —pm}

=[n (1—90—3)]_1{’*’ + Z Py

k, _ () 172 k, 1/2) -
oo £ 202 5

= 0,(n" k(1 + 7))
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by (6) and (9). Note that (4), (5) and (9) imply that
minp{} 2 minp§) — (1 + o, 1))O,(n,) nrlJaX(p%'}’)l/2

= Op(k;l - nnk;l/z)

= 0,(k;").
Hence, (5) implies that max ;| p{?/p{"? — 1| = 0,(1), and therefore,
An x A(n)
(11) Ilz) = max| 2 _ 4| 0.
Pn(x) i |p%;

We begin with the first moment. We obtain from (11) that

(12) 0> 1og—:%(x) - {%—:—(x) - 1} > %(1 + op(l)){%—:—(x) - 1} .

Let X ~ Fn,,. Then,

{

;
b}

~(X) -

;&I! <>

nOyanl} = (knﬁ(lz)pg;) _ﬁ(lfjl))
Jj=1

;
b}

= ﬁ (knp0j)_ 1)
1

a.‘&.
o

- % (85 k7 (karty - 1)
(13)

= X (8% - pP)(kapt? - 1)

_;
b}

<.
I
-

k,

+ 2 (P - p§Y)(knply — 1)
Jj=1

+ % (o8~ ") (karp ~ ).

We can bound the first term on the RHS of (13) by the Cauchy-Schwartz
inequality, (8) and (10),

1/2

1/2
k, ) — k,
) M} {Z (kap§? - 1P} = O,(kan™?).
= J

J Jj=1

The second term on the RHS of (13) can be bounded again by the
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Cauchy-Schwartz inequality, (8) and (9),
1/2

1/2
k, n) _ p(n) kn
¥ L‘?U_f_)} {Z (k,,pg'}) _ 1)2178})} =0 ( k/%n —1/2)

(n)
Jj=1 Poj Jj=1

Finally, the last term on the RHS of (13) is equal to

kn

kit Y (kap§? — 1) = 0,(k,nY)
j=1

[compare to (8)]. We conclude that

(14) Ean{ i (X) - 1jF n0» nl} o (nnkl/zn_1/2 .
Having (12) and (14) being established, we may consider
A 2 2
&, bn [k, BPPEY .
(15) EF‘nn (T(X) - 1) 205 T, } Zl —pjlj'-‘)_J -1 p(lj);
n = J
but,
k () 2 3
~ "p1 p n v n n
E{Z L -1 B [Fno} (k.p§Y — 1) p{?
j=1 Pij j=1
(16)

b (k,0$0) PE(1 - p)
2 P [n(1-6p-¢)]”

By (6) and (9), for some C > 0,
maxp{? < maxp{? + Cc(1+ op(l))nn = OP(k;I).
Jj J

Hence, (7) implies that the first term on the RHS of (16) is O,(k,n~"). The
second term is clearly OP(knn‘l) by (6). Hence,

k knpl p(n) z
(17) E{Z (——p{n) — 1| p{PF,op = O,(k,n7Y).
Jj=1 1j

Finally, combining (4), (12), (14) and (17) enables us to conclude that

A

¥ _ L ~ B
(18) Ep,, logE—(X) = Op(k}t/znnn 12 4k, n1) =0p(n a/tp2-a/2),
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Similarly, we can prove that

A

(19) Eg, log%ﬁ(X) = 0,(n~a/4n2"2/2),

To establish the proper order of the second moment, note that

A

(20) 1—T(X) <1ogZ(X) <¢—(X) ~ 1

but it follows from (11) that
1-§(x)/0(x) _ (=)
d(x)/0(x) =1 §(x)

uniformly in x, x{®; < x < x{". Therefore, (20) implies that
E [FnO’ For
(21)

Together with (18) and (19) this establishes the moments conditions. The
proposition follows. O

=1+0,(1),

2

A

b, b,
ngn( ) l/,n( )

[F,,O,[F,,l} <(1+ op(l))E<

=0,(k,n7").

Since % is unknown, one may ask about the ‘“uniformity’’ of the estimator.
In view of the results in Ritov and Bickel (1990), it is clear that no estimator
can be uniformly adaptive. Assume, however, that the following hold.

AssumptioN 5. lim, o0 'IF, — Foll = ¢ > 0.

AssuMPTION 6. There is a sequence a, — 0, such that if

Q) &, <2tV (n'/20,)27°
(i) —oo —x‘") <z < e <x(") = o,
(iii) lim,, . max |k {Fo(x{) — Fo(x(" -1 =0,
then

f f"(x) 1 i x(2§) <x < x)
fo Mn j=1
Fn,(x(™) — Fn,(x{%,) :

) R | ) <o

Xlog
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The proof of Proposition 1 establishes the following.

ProprosITION 2. The conclusion of Proposition 1 holds uniformly for all &,
{n,} and {6,} satisfying Assumptions 1-6 for a given c and {a,}.
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