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LARGE SAMPLE PROPERTIES OF TWO TESTS FOR
INDEPENDENT JOINT ACTION OF TWO DRUGS

By WHERLY P. HorFMaN! AND SUE E. LEURGANS

North Dakota State University and Ohio State University

Biological models for the independent action of two drugs imply that if
the drugs are administered in various combinations of doses, then the
corresponding probabilities of response must satisfy certain inequalities if
the drugs are acting independently. The hypothesis that the probabilities
do satisfy these inequalities can be tested using the likelihood ratio test or
using the bootstrap test proposed by Wahrendorf and Brown in 1980. In
the simplest dose design, only one dosage of each drug is used. The three
combination doses required to test the hypothesis are each drug singly and
the combination of the two drugs. The asymptotic distribution of the
bootstrap test is derived. The asymptotic distribution of the likelihood ratio
test is obtained by applying Feder’s results. The calculation of the asymp-
totic critical values and powers is presented.

1. Introduction. This paper concerns the testing of a set of inequalities
implied by a type of joint action, namely, independent joint action. Two test
statistics are studied, one is the likelihood ratio test and the other is the
bootstrap test proposed by Wahrendorf and Brown (1980).

We now review drug action and tolerances. In the study of the joint action of
drugs, various methods of modeling the action have been proposed. The papers
by Hewlett and Plackett (1952, 1959, 1964, 1979) and Plackett and Hewlett
(1948, 1967) and the papers by Ashford (1958, 1981), Ashford and Smith
(1964) and Ashford and Cobby (1974) represent the two main streams of
study. Their models are different. In Hewlett and Plackett’s classification, the
joint action of two drugs is considered biologically independent if the joint
action is dissimilar and noninteractive. A joint action is dissimilar if the
primary sites of action of the drugs are not the same, and the action is
noninteractive if the presence of one drug has no influence on the effect of the
second drug. Note that biological independence is more general than statistical
independence in that statistical independence is a special case of biological
independence. Using the concept of drugs competing for receptors, Hewlett
and Plackett (1964) gave an example of a joint action which is interactive in
the biological sense, but which induces the same response function as the
noninteractive model they derived in 1959. Therefore the biological indepen-
dence of two drugs cannot be identified from the probability of response as a
function of the dose combination. Consequently, the testing of independent
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Fic. 1. The dose-response relation of a subject to two drués of independent joint action: d,
tolerance for drug A; d,, tolerance for drug B.

action in this paper is not testing the equivalent mathematical formulations of
independent joint action, but a set of inequalities implied by the independent
joint action. In the papers of Ashford and his coauthors cited previously, the
drug actions are classified by the behavior of the probability of response as a
function of dose combination, their classifications are not equivalent to those
of Hewlett and Plackett. In this paper we are investigating biological indepen-
dence, as defined by Hewlett and Plackett.

The tolerance of a subject for a drug is the minimum effective dose required
to elicit a response. Since the tolerance for a given drug is a characteristic of a
subject, the tolerance may vary from individual to individual. Therefore, when
a population of subjects is considered, the tolerances of subjects can be thought
of as the values of a random variable associated with the probability of
response to a given drug. The modeling of the univariate tolerance distribution
is well-studied in the literature. For discussion of models for univariate
tolerance densities, see Finney (1971) and Hewlett and Plackett (1979).

When two drugs are applied to a subject, the response and nonresponse
regions can have various shapes. If the joint action of these two drugs is
biologically independent, then the nonresponse region of a subject is a rectan-
gle. The subject will respond if the dose of either one of the two drugs received
exceeds the subject’s tolerance for the corresponding drug, as in Figure 1.
Consequently, for a population of subjects and for a given dose combination
(24, 2,) of drugs A and B, all subjects whose tolerance pairs are above and to
the right of (z,, z,) will not respond. See Figure 2. If every individual has a
rectangular response region, then it is natural to refer the upper corner of the
rectangle, the pair of individual tolerances, as the subject’s bivariate tolerance.
Then the probability of response to the combination is determined by the joint
distribution of the bivariate tolerances. For joint actions that are not indepen-
dent, the nonresponse region may not be a rectangle. If the region is not
known to belong to a two-parameter family of sets, the nonresponse region
may not be determined by the univariate tolerances and a bivariate tolerance
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F16. 2. The dose-response relation of a population to two drugs of independent joint action: z,,
dose of drug A; z,, dose of drug B.

cannot be defined. See Figure 3 for an example of two different nonresponse
regions with the same univariate tolerances.

If p, and p, are the probabilities of response to doses z; and z, of drugs A
and B, respectively, if p; is the probability of response to the joint application
of both and if there are no spontaneous responses, then independent action
implies that p; is the probability that the bivariate tolerance lies in the
half-plane to the left of the vertical line through (z,, z,). Similarly, p, is the
probability that the bivariate tolerance lies in the half-plane below the horizon-
tal line through (z,, 2,) and p, is the probability that the bivariate tolerance
lies in either of these two half-planes. Elementary probability calculations
show that the following inequalities hold:

(1.1) max(p,, p;) < ps < min(p; + py,1).

These inequalities are equivalent to those of Fréchet (1951) giving bounds for
a bivariate distribution function in term of two univariate marginal distri-
butions.

dose of Drug B
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F16. 3. The dose-response relation of a subject to two drugs of nonindependent joint action: d,
tolerance for drug A; d,, tolerance for drug B.
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Wahrendorf and Brown (1980) applied the bootstrap method [Efron (1979)]
to testing the inequalities implied by the independent joint action. However,
the distribution of their statistic is not studied in their paper. The likelihood
ratio test is a competitor to the bootstrap test for testing the inequalities (1.1).
In Section 2, the test statistics of these two tests are discussed. The consis-
tency of maximum likelihood estimators, upon which both the likelihood ratio
test and the bootstrap test are based, implies that both test statistics converge
in distribution to degenerate random variables when the limit point of the
sequence of parameters considered is not on the boundary of the set defined by
(1.1). Therefore, in Section 3, the asymptotic distributions of the likelihood
ratio test statistic and the bootstrap test statistic are studied for a sequence of
parameters converging toward the boundary of the set defined by (1.1). Then
in Section 4, the asymptotic critical values and powers are formulated and
determined.

2. Two test statistics. The two test statistics considered for testing the
inequalities (1.1) are described in this section. When doses 2, and 2, of drugs
A and B are administered to each of the subjects of two random samples of
sizes n, and n, singly, and to a random sample of size n; jointly, those
subjects will either respond or fail to respond depending on their tolerances to
the drugs. Then the response of the jth subject to drug A, Y, ;, has a Bernoulli
distribution with parameter p, for j =1,...,n,, which we abbreviate as
Y,; ~ B(1, p,). Similarly, the responses to drug B and to the joint application
of drugs A and Bare Y,; ~ B(1, py), for j = 1,...,n,, and Y;; ~ B(1, py), for
Jj=1,...,n; Therefore the likelihood functlon of Y; for i=1,2,3 and
j= 1,...,ni is

L,(y,p) = ]—[ I—[pyu(]_ — ),

i=1j=

where y7 = (y],y2,¥3), ¥' = Wi, - - 2 Yin s p? = (py, ps, P3), n is the total
sample size and n = n; + ny + ng. From this point on, we say ‘“‘n is large”
when n,, n, and n, are all large. Define sets 2, Q, and Q, as follows:

o = {p € Q: p satisfies (1.1)},
= [0, 1]°

and
Q,=0Q-Q,.

Then the set Q, (see Figure 4), is the tetrahedron FGHA and its interior in
the unit cube Q. When the functions defining the boundary of a set are given
indices, 1,2,..., the index set I(-) is defined as the set of indices which
identify the boundary surfaces that contain a given point. For example, the
index set I(-) for a point on the edge AH of tetrahedron FGHA contains the
indices of the boundary functions defining surface AGH and surface AFH. Let
A, (Y) be the likelihood ratio test statistic for testing Hj: p € (1, against H;:
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Fic. 4. The tetrahedron FGHA and its interior, which represent the null space Q for the testing
of independent action,

Qg = {p € Q: max(p;, p3) < p3g < min(p; + ps,1)}.

p € Q4. Then,
sup, < q. L,(Y,
(2.1) AL(Y) = 2Ppea, LV P)
Supp e Ln(Y7 p)

Let Xi = Z;”f——-IYLJ’ i = 1, 2,3 and X = (Xl’ X2, X3)T. Then Xi ~ B(ni, pi)'
Since X is a sufficient statistic for p, the likelihood function can be rewritten as

3
Ln(xvp) = Epfl(l —pi)ni_xl'

Because the denominator of (2.1) is just L,(X,p) with p replaced by P =
P™(X) = (X,/n,, Xy/n,, X5/n3), the maximum likelihood estimator of p,
A, (Y) can be written as

Supp €Qy Ln(x7 p)
L,(X,P™)

Thus, for any observed x, the likelihood ratio test statistic requires the
maximization of L, (x,p) over {},. The maximization can be achieved either
theoretically or numerically.

It is easy to see that when the true p is in Q, and when n is large, the
numerator of (2.2) will tend to be closer to the denominator of (2.2) than when
p is away from Q,. The level a likelihood ratio test for testing H,: p € Q,
versus H;: p € Q4 rejects H, upon observing x if A,(x) is smaller than a
critical value c; ,(a), where c;, ,(a) is the largest real number that satisfies

sup Prob(A (X) < ¢ (@) <a.
PEQ,

The bootstrap test will be introduced next. Testing the hypothesis of the
inequalities implied by the independent joint action tests whether the true

(2.2) A (X) =
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parameter p is in the null set Q,. When p is in the interior of (,, by the
consistency of the maximum likelihood estimators, the probability that P™ is
in Q, increases to 1 as n increases. Hence, Wahrendorf and Brown (1980)
suggested considering

m,(p) = Prob,(P™ € Q,)

as a measure of agreement between p being in (, and P™ being in Q.

Since ,(p) is defined by the probability of P(") satisfying (1.1), 7 (p) can
only have values between 0 and 1. Smaller values of ,(p) suggest that the
joint action is not independent. Although this function is meaningful and
natural, it requires knowledge of p, which is an unknown parameter. Never-
theless, one can estimate m,(p) when data are -available. Wahrendorf and
Brown applied the bootstrap method [Efron (1979)] for estimating ,(p).

Before defining the bootstrap test statistic, a brief discussion on the boot-
strap method is given. The bootstrap method applies to the estimation of the
distribution of a function of a random variable with an unknown distribution.
The bootstrap estimate of the distribution of the function of the random
variable is obtained by replacing the unknown distribution of the random
variable by the empirical distribution based on a random sample. Then the
bootstrap estimate of any property of the function of the random variable can
be calculated. In general, it is difficult to implement the bootstrap method
without using Monte-Carlo simulations. However, the probability masses of
the binomial random vectors are tractable. Consequently, in testing the hy-
pothesis of the binomial parameter that the vector p satisfies (1.1), Monte-Carlo
simulation is not essential for estimating ,(p).

To estimate ,(p), one can enumerate all possible vectors p™ = pI(x) =
(x1/n1, %5/ Ng, %3/Ng ) of P™. Then the bootstrap estimate of ,(p) upon
observing x is

. (p) = m,(x) = Probp(n)(x)(f’(")(X) IS QO).

In other words, m,(x) is the sum of the probabilities assuming p'™ is the true
parameter. Therefore, the bootstrap test statistic for testing H,: p € (,
versus H;: p € £, is

(2.3) 7,(X) = Probpm,(P™* € Q,),

where P™* is the maximum likelihood estimator of p based on a random
sample. The smaller 7,(x) is, the less likely it is that the joint action is
independent. Therefore, the level a bootstrap test rejects the hypothesis of p
belonging to Q, for all m,(x) smaller than a critical value Cj (@), where
Cp, (@) is the largest number satisfying

sup Prob(m,(X) < Cp ,(a)) <a.

PEQ,

In contrast to calculating m,(x) directly, one can obtain a Monte-Carlo

approximation to it. That is, generate a random sample of P, called p™*,
under P first. Then the fraction of p™*’s satisfying (1.1) is the Monte-Carlo
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approximation to ,(x). This alternative method saves time when exact calcu-
lation is computationally too intensive.

3. Asymptotic distributions. The asymptotic distributions of the likeli-
hood ratio test and the bootstrap test are studied under a sequence of local
alternatives. Section 3.1 contains the results of the likelihood ratio test based
on Feder’s (1968) theorem. The asymptotic distribution of the bootstrap test
statistic is derived in Section 3.2.

3.1. Likelihood ratio test statistic. Feder (1968) gave the asymptotic distri-
bution of the log likelihood ratio test statistic when the true parameter
approaches the boundaries of the null set. Feder’s theorem is for independent
and identically distributed random variables. His results extend trivially to a
collection of n independently distributed random variables consisting of %
groups of random variables Yfori=1,...,kand j = 1,...,n, with distri-
bution function f(Y;;) when the number of such random variables in each
group, n;, converges to a fixed proportion, A;, of the total number of random
variables, where A; > 0and A; + -+ +A, = 1.

Feder’s theorem does not require that the union of the null and the
alternative sets be the entire Euclidean space. In testing the inequalities
implied by independent joint action, however, the null set is always the
complement of the alternative set. Therefore, Proposition 3.1 is specialized to
the likelihood ratio test for testing independent joint action.

The regularity conditions required for Feder’s theorem are easily satisfied
when considering the Bernoulli distribution. The logit transformation of the
Bernoulli parameters, the p;’s for i = 1,2,3, gives new parameters 6, =
log(p,/(1 — p;)) and 6, € R. Thus, Feder’s result implies that when testing
whether or not the vector of the logits of the Bernoulli parameters is in a set
S, minus twice the log likelihood ratio test statistics will converge to some
random variable determined by the limit point of the sequence of the true
parameters provided that S is the intersection of subspaces with smooth
boundaries. The transformed null set obtained from the logit transforma-
tions is

S = {0 ERagz(o) = 0’ i = 1,2,3},

where
| 1 .
8:(0) = e % +1 e %+1’ t=12,
and
1 1
80 = STt T Ter

The transformed null set S defined above is bounded by three surfaces. One
surface never touches either of the other two because g4(8) = 0 implies the
product of g,(0) and g,(0) is nonzero. The intersection of the first two surfaces
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is the line {0: 6, = 6, = 6}, which is common to surfaces {6: 6, = 6,3}, and
{0: 6, = 0,}. Therefore, when considering 0¥ on the boundary of the trans-
formed null set S, there are two cases: Either 8 is in the interior of the ith
boundary surface, where i = 1,2, 3, and in which case the index set I(8”) =
{i}, or 8 is on the common edge of the two intersecting surfaces, in which
case the index set I(6®) = {1,2}. When 0© is on the edge, the situation is
more complicated. The asymptotic distribution under local alternatives de-
pends on how the alternative sequence approaches the boundary surfaces. The
asymptotic distributions of the likelihood ratio test statistics are summarized
below.

ProprosITION 3.1 [Feder (1968)]. The likelihood ratio test statistics for
testing Hy: 0 € S versus H,: 6 € R® — S under a sequence of alternatives

k
0 =9©® 4+ ——
n

for some constant vector k independent of n and for 8 on the ith boundary of
S satisfy the following cases, provided that the derivative of g; with respect to 0
is continuous at 0¥ fori = 1,2 and 3:

CaseE 1. When I(09) = {i}, i = 1,2 or 3, then

—2log A ,(X) =4 [min(0, (Z + 7,))]%,

where Z is a univariate standard normal random variable,

)
=0

d i 0
i‘%gi( )

dTk
- (dTa(e®)d,)"

n; 1=1,2,3

and dJ is the Fisher information matrix for 0 of the entire sample,

i=1j=1 i=1j=1

' 1 d kon 9 Eon T
3O) = lim ;Ee(,[glogn {1 40,071 F 0] |

CasE 2. When I(0©) = (1, 2}, then

(AZ + 1)"(AZ + 1) if BTZ +y,<0,i=1and 2,

—2log A (X) —4{ (aTZ + m)z ifaTZ + 7, <0,bTZ + v, > 0,
i = 1lor 2,
0 otherwise,
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where
1-A,  ifi=j,
A=(ay), wherea,; = _m otherwise, Lj=123,
Z ~ N(0, I,), where I, is the unit matrix of order three,
T =AJ2(0 M)k,
J-12(g®)d,
= (07 — and ala; =1
(a7~ (00)d,)"
and b; satisfies aTb, = 0, b70® = 0 and bTb, = 1,:i = 1,2,3,
y; = bIJ/2(0M)k, i=1,2,38.

a;

For verification that this proposition is implied by Feder’s theorem, see
Hoffman [(1986), Corollary 4.5, page 59].

Proposition 3.1 shows that the asymptotic distribution of minus twice the
likelihood ratio test statistic —2log A ,(X), under a sequence of alternatives
depends strongly on the limit point. If the limit point ? is in the interior of
the boundary faces of S, then the asymptotic distribution is the distribution of
the square of a truncated normal random variable. It is truncated at a value
determined by the sequence of the alternatives.

3.2. Bootstrap test statistic. Under a sequence of parameters p™’, the
bootstrap test statistic defined in (2.3) converges in probability to a degenerate
random variable when the limit point of the sequence of parameters is not on
the boundary of Q. If the limit point is in the interior of Q,, the consistency
of the maximum likelihood estimators implies that the degenerate random
variable is equal to 1. If the limit point is in the interior of Q,, the degenerate
random variable is equal to 0. However, when the limit point is on the
boundary of (},, the bootstrap test statistic converges in distribution to a
nonlinear function of normal random variables as described in Theorem 3.2.

THEOREM 3.2. The bootstrap test statistic w,(X) for testing Hy: p € Q,
versus H,: p € Q, under a sequence of alternatives

1
™ = p® 4 g,
PP

for some constant vector ¢ independent of n and for p‘® on the boundary of
Q,, satisfies

T (X) =4 P(V) + £,V + &),

where V = (V,V,) is a bivariate normal random vector with mean 0, vari-
ances 1 and covariance p, ®, is the joint distribution function of V, and p, &,
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and &, are defined as follows:
Case 1. When I(p©®) = {j}, j = 1,2 or 3, then £, = £, = u; and p = 1;

CasE 2. When I(p©®) = (1,2}, then &; = u; forj=1,2 and

A1A2 1/2

(A1 +23) (A +243)

p=

I

where

T

(aJTE(p(O))aJ)I/Z -

Mm; =

T

1 1 1
aT= —(-1,0,1), al=—(0,—1,1), af=—=(1,1,-1
1= ( ) ) ( ) 3= 75 ( )
and the matrix 3(p®) is a diagonal matrix with p®(1 — p®)/A; as the jth
diagonal element for j = 1,2, 3.

The proof of the theorem will be stated after some lemmas are discussed.

LemMA 3.3. Given a positive integer J, for any J vectors b; in R*, define A
as the set {p € (0,1)*, b7p >0, j=1,...,J, b; € R*}. Then for p(o) on the
boundary of A,

lim S,(p©@) = S,,

where
S, (p?) = Vn (A - p©),
So={p€R*:bp=>0,i €I(p?)}.

Lemma 3.3 says that for any point p® on the boundary of A, the limit set
S, of S,(p©@) can be described in terms of the half-spaces whose intersection
defines A. The limit set S, is the intersection of the subset of those half-spaces
whose boundary planes contain p®. The following example illustrates the
application of Lemma 3.3.

ExampPLE 3.4. Let 2 = 3 and let a,, a,, a5 and Q, be as in Theorem 3.2.
Then when p@© is (0.5, 0.4, 0.5), p@ is in the interior of the boundary plane of
Q, defined by alp = 0 and the index set I(p‘®) is {1}. Lemma 3.3 implies that
lim S, (p®) is the half-space defined by

{p€R®*alp=>0}={peR3p;—p, =0}

When p@ is (0.5,0.5,0.5), then p© is on the edge of Q, defined by alp =
aZp = 0 and the index set I(p”) is {1, 2}. By Lemma 3.3,

n —»o
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lim S,(p®) = {peR*alp>0andalp>0}={pe R3: py > max(py, p,)}-
n—o

LEMMA 3.5. Let W, be a random vector in R* which converges to W in R*.
That is,
W, -, W.
Then for S, defined in Lemma 3.3,
lim Prob(W, € S,) = Prob(W € S,).

n—w

Proor. By the definition of S,, W, € S,, is equivalent to
(W, + Vnp©®)/Vn € A.
Forall j =1,...,dJ, by the definition of A,
(3.1) a?(Wn +Vnp®) = 0.
When j is not in I(p©), lim, ,.(aTW, + VnaTp®) > 0 is always true be-
cause
a’p®>0 and alW, -, alW

by the continuous mapping theorem. When j is in I(p®), then aZp© = 0.
Hence, (3.1) becomes

a’W, > 0.
Therefore,
(3.2) Prob(a?Wn >0,j€ I(p(o))) -, . Prob(afW =0, ;e I(p(o))).
By (3.2) and Lemma 3.3, this lemma follows. O

LeEMMA 3.6. Let Y,,Y,,...,Y, be a random sample of Bernoulli random
variables with parameter p,, where as n increases, p, converges to p, which is
strictly between 0 and 1. Then the maximum likelihood estimator Pn of p,
satisfies

lim sup sup|Prob \frz(ﬁn -p,) <s)- <I>[ ]
£=0 Ip,—pol <& s€R ( ) (P(1-p,))"

Proor. Define Y, * as

1Y, - E(Z1,Y)

* —

" [Var(Zy)]”
Then Y,* and p, have the following relation:
‘/’7 ﬁn ~ Fn
(3.3) Y= ( Pr)

" (b1 - )
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By the Berry—Esseen theorem [Serfling (1980), page 33], for all n,

33 pn + (1 _pn)
(3.4) tsggIProb(Y* <t) - @)l < 7z (oL = pn))l/z

Substituting (3.3) into (3.4), the lemma follows because p, converges to p,
which is strictly between 0 and 1. O

Let P™ be the maximum likelihood estimator of p™ which converges to
p® as n approaches infinity. Let P* be the maximum likelihood estimator
of p(™ obtained from the bootstrap replication of the response random variable
Y. For vectors a and b in R*, wrltea<bwhena <b, fori=12,...,k.
Now we will prove Theorem 3.2.

Proor oF THEOREM 3.2. By definition, 7,(X) can be written as
7,(X) = Prob(vVn (P™* — P™) € yn (Q, - P™))
(8.5) = Prob(vVn (P™* — P™) € yn (Q, — p©) - Vn (p™ — p©®)
- 1/;1—(13(”) - p("))).
Define W{™, W{™ and S,, as follows:
W = Vn (P* — ﬁ(n)),
W = ‘/;(f)(n) - p™),
S, = Vn (2o - p?).

Then (3.5) becomes
(3.6) m,(X) = Prob(W™ € S, — ¢ — W§™).
Define random vector W; as W; ~ N(0, 2(p®)), for j = 1,2. We will now show
that W{™ converges in distribution to W,.

Let G, be the joint cumulative distribution function of W{™. Conditioning
on P™ = p™, for any w in R3, G,(w) is the sum of

Prob(vVa (P™* — P™) < w, P™ = ™)
over all possible vectors of P, Since P™* and P are independent, G, (w) is
the sum of
(3.7) Prob(vn (P™* — P™) < wlgm)Prob(P™ = p™).
For any given ¢ > 0, define B as the open ball of radius ¢ centered at p® and
let B¢ be the complement of B. Since p™ converges to p® which is in B,
Prob(P™ € B¢) - 0 asn — o,
Therefore,
lim G,(w) = lim T (3.7).
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By Lemma 3.6, the first term of (3.7) converges to Prob(W; < w) for all
possible realizations of P™ and w. Consequently, the following holds:

lim G, (w) = Prob(W, < w) lim Y Prob(P™ = p®™) = Prob(W, < w).

n-—o p(")GB

We now have proved that

W -, W,
Lemma 3.3 implies that
(3.8) ,}i_fgosn ={peR*alp=>0,;ecI(p®)}
By Lemma 3.6,
(3.9) W™ >, W,

Note that the two random vectors W, and W, are independent because they
are functions of independent random varlables P™* and P™), respectively.
Now, consider the expression in (3.6) as a function of P, Then by (3.8) and
(3.9) and by Lemma 3.5, 7,(X) satisfies the following:

(3.10)  m,(X) >, Prob(W, € {p € R*: alp > 0,i € I(p©®)} — (c + Wy)).

1. When I(p®) = {i}, i = 1,2 or 3, then by (3.10),
m,(X) >, Prob(al W, > —(alc + aT W,)).
Dividing aT W, by its standard deviation, (a7 Z(p®)a;)'/2, (3.10) becomes
T (X) =4 O(Vy + 1y).
2. When I(p©®) = {1, 2}, then (8.10) is
m,(X) =, Prob(al’W, > —(alc + alW,),i = 1and 2).
Dividing al W, by its standard deviation for each i, this expression becomes
m(X) =4 (Dp(Vl + py, Vo + 1) g

Theorem 3.2 establishes that ,(X) converges in distribution to a random
variable which is the probability that a normal random vector is in a quadrant
determined by an independent random vector. The density function of the
limiting distribution is presented for p©® in Q, and I(p®) = {1} in the
following corollary.

CoROLLARY 3.7. Let H and h be the cumulative distribution function and
the density function, respectively, of ®(V; + u,). Then for any r in the unit
interval [0, 1],

H(r) =®(® Y(r) —p,) and h(r) =exp(—p(—207%r) + py)/2).

When p™ is identical to p©® and I(p®) = (1}, then w, is 0. Hence, h(r)
reduces to the density of the uniform density on [0, 1]. The density function of
®(V, + w,) is plotted in Figure 5 for p{® = 0.5 and A; = % fori =1,2,3. In
this case, u, = (2)'/%(c; — c,).
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Fic. 5. The asymptotic density function h of the bootstrap test statistic for ¢ =c, —cg, p =
(0.5,0.5,0.5) and A; = 3, i = 1,2,8. Each curve is labeled with the value of c.

4. Asymptotic critical values and powers. In this section a discussion
on how the critical values are determined for both tests is included. Then,
based on the specified alternative sequence of parameters, the asymptotic
powers are formulated.

4.1. Critical values. For a given target level a, the exact size and the
corresponding critical value of the likelihood ratio test are functions of n. Let
¢z (a) and C; ,(a) be the critical values of A, (X) and —2log A (X), respec-
tively, for a test of size a,. That is,

a, = supProb(A,(X) <c, ,(a)) = supProb(—-2log A (X) > C; ().
eeS 6eS

Then as n approaches infinity, «, and C; ,(a) must satisfy
a,~>a and Cy,(a) > Cyla)

for some C;(a).
To determine C;(a), consider 6 = 0©®. Then 7, =0, y, =0 and 7= 0.
First, consider cases when I(0©®) = {i}, i = 1,2 or 3,

(4.1) Prob(—2log A (X) > Cp ,(a)) =, .. Prob([min(Z,0)]* > C(a)).

Since the distribution of [min(Z,0)]? is an equal mixture of a chi-square
distribution with one degree of freedom and a distribution degenerate at zero,
(4.1 is

(4.2) Prob(x? > Cy(a))Prob(Z < 0) = 3Prob(xZ > Cr(a)).
Next, consider the case when I(6®) = {1, 2}. By Proposition 3.1,
Prob(—2log A (X) > Cy(a))

2
(4.3) >, ¥ Prob((al2)’ > C;(a))Prob(a?Z < 0,b7Z > 0)
i=1

+Prob((AZ)"(AZ) > Cy(a))Prob(blZ < 0,i = 1,2).
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The random variables (a7Z)? and (AZ)T(AZ) have chi-square distributions
with one and two degrees of freedom, respectively. The two normal random
variables aTZ and b7Z are independent because aZb; = 0. Hence, the follow-
ing holds:

Prob(a¥Z < 0,bTZ > 0) = Prob(alZ < 0)Prob(b7Z > 0) =
Thus, (4.3) is now
(4.4) %Prob(x? > Cy(a)) + Prob(x2 > C;(a))Prob(bTZ < 0,i =1,2).

Because when 0 is not on the boundary of the transformed null set,
—2log A ,(X) either converges to zero or diverges, the size of the test must be
achieved on the boundary of the transformed null set. Comparing (4.2) and
(4.4), one sees that for any given «, the corresponding ‘C;(a) is determined by
(4.4). For example, let « = 0.05 and A; = A, = A; = 3. Then the critical value
obtained for this example is C;(a) = 3.8201.

Now for a given « level test and the sample size n, let a, and Cp ,(a) be
the size and the corresponding critical value of the bootstrap test. Then «,
and Cp ,(a) must satisfy
(4.5) a = lima, = lim sup Prob(m,(X) < Cp ,(a)).

— 0 n—o
n PEQ,

, 1=1,2.

PN

Also, there must exist a constant Cgz(a) such that
Cp .(a) » Cp(a) asn — o,

There are two cases to be considered in determining the critical value Cz(a) of
the bootstrap test. Under the null hypothesis, that is, when p™ = p®, then
u;=0fori=1,2o0r3.

Case 1. When I(p©®) = {i}, i = 1,2 or 3, by Theorem 3.2,
lim Prob(m,(X) < Cy .(a)) = Prob(®(V,) < Cs(a)) = Cp(a).

CaseE 2. When I(p©®) = {1, 2}, by Theorem 3.2,

(4.6)  lim Prob(m,(X) < Cg ,(@)) = Prob(®,(V;,V,) < Cy(a)).
n-—o
The right-hand side of (4.6) is the probability that (V;,V,) is below the curve
bounded by the. contour of @, of value Cy(a). Since for any (v,, v,) on this
curve, the region {(x,y) € R% x < v,, y < vy} is a subset of the region defined
by
(Dp(Vli Vz) < CB(“),

we have
(4.7) Prob(®,(V,,V;) < Cz(a)) > Cp(a).

Because 7,(X) converges to 1 when p is in the interior of the null set, by
(4.5)-(4.7), the size of the test is determined by Case 2 and

a = Prob(®,(V,,V;) < Cy(a)).
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In other words, to determine the critical value for a given level a test, one
needs to inspect only those sequences of p™ for which the limit points are on
the edge defined by p; = p, = p;. For example, when @ = 0.05 and A, = A, =
Az = 3, with 1000 replications, the critical value is 0.0154. The standard error
of the estimate of the critical value is 0.002957.

4.2. Asymptotic powers. Since the asymptotic distribution of —21log A (X)
under a sequence of alternatives depends on the limit point of the sequence
and the limiting sample fractions, so does the asymptotic power . If the limit
point is in the interior of a boundary face of the transformed null set such that
g, is 0 for only one i, then the asymptotic power B; can be calculated using the
formula

B; = Prob([min(Z +n;,0)]% > CL(a))
= Prob(Z + m; < —y/C(a) ) = ®(—m, - YCr(a)), i=1,2,3.

If the limit point of the alternative sequence is on the edge of the trans-
formed null set defined by g, = g, = 0, then the asymptotic power B is

2
B=1Y Prob((afZ + n,-)z > Cr(a)and a?Z + 1, < 0,bTZ + v, > 0)
(4.8) i=1
+ Prob((AZ + )" (AZ + 7)>Cy(a))Prob(bfZ+,<0,i=1,2).
Since a; and b, are orthogonal, a?Z and b?Z are two uncorrelated standard
normal random variables. The first term of (4.8) is thus

2
Y. Prob(alZ + n, < —Cy(a)"/*and b]Z + v, > 0)
i=1

2
_ g1¢(-ni ~ Cy(@)H)®(,).

The second term of (4.8) needs to be evaluated numerically.

Next, we consider the asymptotic power for the bootstrap test. If the limit
point of a sequence of parameters p™’, defined in Theorem 3.2, is either in the
interior of the null set or of the alternative set, then the asymptotic power is 1
or 0, due to the consistency of the maximum likelihood estimator. When p©® is
on the boundary of the null set, then the asymptotic power depends on the
location of p©.

Given a, the level of the test, the critical value Cz(a) can be approximated.
Knowing the value of Cg(a), one can calculate or approximate the power
according to where p©@ is. The powers B are as follows:

CasE 1. When I(p®) = {i}, i = 1,2 or 3, by Theorem 3.2, the asymptotic
power is

B; = Prob(®(V, + ;) < Cp(@)) = Prob(V; < —p; + ®7(Cp(a))).
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Because V; is a standard normal random variable, (4.9) is now
B: = (D((D—I(CB(O‘)) - /-"i)'
Casi 2. When I(p©®) = {1, 2}, by Theorem 3.2, the asymptotic power is
B = Prob(®,(V, + py, V, + py) < C(a)).
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