The Annals of Statistics
1990, Vol. 18, No. 3, 1378-1388

TIME-SEQUENTIAL POINT ESTIMATION THROUGH
ESTIMATING EQUATIONS!

By I-SHOU CHANG AND CHAO A. HsiunG

National Central University and Academia Sinica

Time-sequential point estimation is studied in the model of fully
parametric censored data and Cox’s regression model. Both are investigated
in the context of counting processes through estimating equations defined
by martingales. The concept of information and a related inequality devel-
oped in estimating function theory by Godambe are adapted to these
models. These suggest some optimality criteria for choosing stopping times
as well as estimators. These lead naturally to some sequential procedures,
which are shown to be asymptotically efficient with respect to the above
criteria.

1. Introduction. Let X, X,... be a sequence of i.i.d. random variables
with distribution F. Let 6, denote a parameter or a functional of F. The
classical sequential point estimation is to estimate 6, with loss measured by
the squared error of estimation and a linear function of the number of
observations. In case the estimator is decided, the problem is mainly to study
the behavior of the estimator at certain relevant stopping times. With the
pioneering work of Robbins (1959), there have been many interesting develop-
ments in various directions. [See, for example, Martinsek (1984), Ghosh,
Nickerson and Sen (1987) and the references there for some of these develop-
ments.]

In the context of life-testing problems, Sen (1980) initiated the study of
time-sequential point estimation for the mean 6, of an exponential distribu-
tion, which is to estimate 6, under the situation that the cost of recruitment of
subjects into the study and of the follow-up time are to be considered together
with the squared error loss of the estimation. Later, Gardiner, Susarla and
Van Ryzin (1986) and Aras (1987) extended the work of Sen to the case
allowing random withdrawals. Recently, Chang and Hsiung (1988b) studied
the problem for a more general parametric model with censored data in the
context of counting process theory.

In most of the above works, the estimators are chosen because they enjoy
some nice properties such as sufficiency, minimaxity, robustness, etc. Once the
estimator is chosen, it is the stopping time, suggested jointly by the estimator
and the loss function, that attracts the most attention.

In this paper, we will study the time-sequential point estimation problem
from a different perspective. Both the estimators and the relevant stopping
times are suggested by the concept of information developed for estimating
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TIME-SEQUENTIAL ESTIMATION 1379

function theory initiated by Godambe (1960, 1984). The estimator is chosen to
maximize the information, and the stopping time is chosen to minimize a
function R, defined to be a sum of the inverse of the information and the
expected cost due to follow-up time and recruitment. We note that an analo-
gous treatment in sequential point estimation appeared in Ferreira (1982),
which discussed some sequential procedures, without giving their perfor-
mances.

In our present time-sequential case, we find that this estimating equation
approach is quite useful. We will illustrate it in two models of counting
processes. The first is a fully parametric model with censored data. The second
is Cox’s regression model, in which the regression coefficient is to be esti-
mated.

In both cases, estimation is done through estimating equations defined by
martingales, which amounts to considering families of estimating functions
unbiased at every stopping time. This takes into account progressive censoring
schemes. The concept of information and related inequalities in Godambe
(1960, 1984) are adapted to this situation, which gives an optimality criterion
both for choosing the estimator and deciding the stopping time.

The following describes the major steps in the study for both models. First,
the optimal estimator is determined according to certain information inequal-
ity. Next, an asymptotic representation for the function R is obtained, which
is a function of the unknown parameter and time. This representation sug-
gests a stopping time, which hopefully may give small R value. Finally, we
study the R value at this stopping time, establishing the asymptotic efficiency
property.

This paper is organized as follows. Section 2 treats the fully parametric
model with censored data. We would like to point out that the optimal
estimator in this case is the maximum likelihood estimator and hence the
problem was studied with classical loss function in Chang and Hsiung (1988b).
While our conclusion here proposes the same sequential procedure as the one
in Chang and Hsiung (1988b), we do not need many of those stringent
conditions on intensity. Section 3 treats the more difficult Cox regression
model, using the optimum property of maximum partial likelihood estimation
studied in Chang and Hsiung (1990). Because this section parallels Section 2 in
many ways, we will only give a condensed account.

2. Parametric case: Optimal estimating equation and asymptoti-
cally efficient stopping time.

2.1. Preliminaries. Let (X;, X,,...) be a sequence of ii.d. nonnegative
random variables with distribution function F(-,8,) in {F(-, 0)|0 € E}, where
E is bounded and open in R!. Let (C,,C,,...) be a sequence of i.i.d. nonnega-
tive censoring variables with unknown distribution. Assume that the X’s and
C’s are independent and both have continuous densities. Let A(-,6) be the
intensity function of F(-,8). We assume that A(z,6) has continuous third
derivative in 6, A is bounded away from 0, and 9%)/062 is bounded on
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(0, T,] X E for some T, € (0, ), and all of A, dA /36 and 3%\ /962 are continu-
ous on [0, T,] X E.
Forevery n > 1,¢> 0, let

FW=0o{[X; <s],[C;<slls <t,i= 1,2,...,n},
Ni(u) = Lix (u A Cy), Hi(u) =14 x, ncy(u).

Since we are in the statistical situation that, at time ¢, the observed variables
are X; A C; At and Ly _c. ., for the ith subject, the log-likelihood function
of an experiment of size n at time ¢ is

n n
C.(1,0) = L ['log A(x,0) dN,(u) = ¥ ['H(u)A(u,6) du.
i=1"0 i=1"0
The score process and the information process are, respectively,

ad
U,t,0) = ECn(t,e)

" (w,0)
= L [ ey (@N(w) — H(w)A(w,0) du),
I,(t,0)=— a—Cn(t, 0)

202

‘. n 1 0%A n
fod(u,e)digll\/'i(u) + /Ow(u,f))(ingi(u))du,
where

. 1 ar\2 %A
d(u,0)=——(( )(u,@)—)t(u,@)—(u,@)).

a0 962

2.2. Optimal time-sequential estimating equation. Since we allow the pos-
sibility of terminating an experiment at any stopping time, it is more appropri-
ate to consider the estimating function G such that E,G(T,8) = 0 for every
stopping time T' and 6 € 5. We will formalize this and let #™ denote the set
of all mean-0, square-integrable right-continuous (%™, P,)-martingales G(¢, §)
on [0, T,] for every 6 € E, such that

(a) 4G /30 exists and 0 < (E,(3G(T,8)/38))* < = for every stopping time
T<T,0cE,

(b) some regularity conditions hold to ensure the interchanging of the order
of differentiation and integration in the calculation leading to (2.1).

We note that using martingales as estimating functions appeared in Hutton
and Nelson (1986), Thavaneswaran and Thompson (1986), Godambe and
Heyde (1987) and Chang and Hsiung (1990) etc., after the germinating work of
Godambe (1985).
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To choose an estimating function from ¢, we will reason at the guidance
of Godambe (1960). Let G € #™. Then, using the fact that U/(t,0) is a
(%™, P,)-martingale [Chang and Hsiung (1988a)] and the argument in Go-
dambe (1960), we get

G(T,9) 2
B, ( aG(;, 9) )

(2.1) E, > (E,UXT,0)) ",

for every stopping time T < T; and when G is replaced by U,, (2.1) becomes
equality. Godambe (1960) explained that a smaller value of the left of (2.1) is a
desirable property of an estimating equation. This leads to the following
definition and proposition.

DEFINITION 2.1. An estimating function G* € 4™ is said to be optimum
if G* makes (2.1) an equality. The inverse of the right of (2.1) is called the
information about 6 at the stopping time 7', denoted by J (T, 6).

PRrOPOSITION 2.2. The score process U,(t, 6) is optimum.

Khan (1969) obtained results similar to Proposition 2.2 in the classical
sequential case, without considering martingale estimating equations.

2.3. Asymptotically efficient stopping time. Based on the concept of infor-
mation in Definition 2.1, we introduce a criterion of optimality for stopping
times.

For every #,"-stopping time T, we define

(2.2) R (T) = +bn+cEy Y, (X, NC;AT),
i=1

a
Jn(T’ 00)

where a, b, ¢ are positive numbers with b interpreted as the per unit cost of
recruitment of subjects into the study and ¢ the per unit cost of follow-up time
or total time on test expended up to time T'. It is assumed that b = pc for
some p > 0. ‘

It seems desirable to minimize R (T) with appropriate choice of T for a
given size n and specified constants a, b, ¢. Since there is no explicit formula
available in general, we shall content ourselves with an asymptotic representa-
tion for R, (T), which enables us to find a stopping time T giving small R,
value. ' '

We will study the asymptotics along a subsequence n(c) such that cn2(c)
converges to some a* > 0 as ¢ tends to 0. Sometimes we shall write n, instead
of n(c), to simplify notation.
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THEOREM 2.1. Let T, be a %,"V-stopping time such that {T,} converges in
probability to t, € (8, T,], then

(2.3) R (T, ~ +pa* +a /

0, %]

2 H(u)d
5 (u) u]

where H(u) = P[X A C > ul, Z() = [o 4¢u)du, ¢(u) =
H(u)(0A/30)%(u, 0,)/Mu, 8,), 8 = inflt|L (¢) > 0}.

Proor. Since I,(¢,6,) — U2(¢,6,) is a martingale, we know that

Jo(T,,00) = E,(U(T,,8,))" = E, I(T,,6,).

It follows from Theorem 3.3 of Chang and Hsiung (1988a) that (1,/n)I,(T,, 6,)
converges to [ ,;¢(«) in probability. Since the conditions on A stated in
Section 2.1 entail the uniform integrability of (1/r)I (T,, 6,), we know

1
(2.4) lim — £, 1,(T,, 6,) = £ ().
Besides,
1 n
(2.5) im—E, ¥ (X;AC;AT,) =[ H(u)du.
n i=1 0, 0]

With (2.4) and (2.5), we get (2.3) immediately. O
Let

&(¢) = Z((It) +a f H(u)du on[s,T,].

An ideal choice of {T,} should converge to #*, a minimum value point of g.
Since t* satisfies

(2.6) (T (%) = ((t* eo))/A(t*,oo),

depending on the unknown parameter 6,, we are led to consider the stopping
time

(2.7) T* = inf{t > 8[(%In(t, 5n(t)))

) 2 n
> (55 (68.0) / A(t,o,,(t))} AT,

where 6,(¢) is the solution of the optimal estimating equation UJt,0)=0
studied in Chang and Hsiung (1988a).
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The asymptotic efficiency of T,* in the following theorem can be established
by using the same arguments used in Section 4 of Chang and Hsiung (1988b).
The proof is hence omitted.

THEOREM 2.2. Assume g has a unique minimum point t* € (§,T,)
with H(t*) # 0 and its derivative &' is negative on (8, t*) and positive on
#*,t* + &) for some ¢ > 0. Then T.* converges to t* in probability as c tends
to 0. Consequently, R, (T *)/R,(t*) converges to 1 as c tends to 0.

Thus, the “asymptotically optimal” solution to this time-sequential point
estimation problem is (T,*,6,(T,*)). Although this is the same as the one
discussed in Chang and Hsiung (1988b), we require fewer conditions in this

section. There are no conditions on d in the information process I,, for
example.

3. Cox’s regression model: Optimal estimating equation and
asymptotically efficient stopping time. This section treats time-sequen-
tial point estimation of the relative risk B in Cox’s model, with the baseline
function A as a nuisance parameter. According to Chang and Hsiung (1990),
maximum partial likelihood estimation (MPLE) is the estimation through an
optimal estimating equation. Therefore, the task that remains is to establish
an asymptotic representation for the function R and investigate the perfor-
mance of stopping times suggested by this representation.

Although this section is technically more difficult than Section 2, the
motivations and rationales behind various concepts and the major steps of the
proofs are similar. We will hence omit some of the details.

3.1. Preliminaries. Let (X,,C,, Z)),(X,,C,, Z,),... be a sequence of i.i.d.
random vectors with X, > 0, C; > 0. Assume that the conditional intensity of
X, given Z; = z is of the form

(3.1) A(t) e,

where A(-) is a baseline function such that A € A = {A|A is nonnegative
continuous function on [0,T,] and [[° X(t) dt < o}, where T, € (0,), and
B € %, a compact set in R'. Assume further that X, and C, are conditionally
independent given Z,, and Z,’s are bounded.

The statistical situation we have is to estimate 8 based on the data
(X, AC ALy coonep Z)E=1,2,...,n, t <T,} at some stopping time T,,,
treating A as a nuisance parameter, where T, is a stopping time relative to

9;(”) = U{(Zi’Xi A Ci NS, 1[X15C,/\s]) i = 1’2""’n’ s = t}

Jox (1972, 1975) suggested that inference on B be based on the partial
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log-likelihood at ¢:

n

(32) C(t,8) = ¥ [BZ;dN(s) - ¥ /‘bg{ > Hj(s)eﬂzf}dzvi(s),
i=1 j=1

i=1"0

where Ni(s) =1y (s A C), H(s) =14 x c/($). In fact, maximum partial
likelihood estimator of B at ¢ is the solution of U, (¢, B) = 0, where U (¢, B) =

(3/9B)C, (¢, B).
Let
]_ n
S\t B) = — X H(¢)ZjeP”,  1=0,1,2,
j=1
SP(t,B) [ SP(¢,B) )\’
8B = 5o, gy (Sff“(t,ﬁ)) ‘
Then
n t Sr(zl)(sy B)
(3.3) U,t,B) = Elj;(zi - (m)) dN,(s).
Let
92 noo
(3.4) L(t.B) = = 73Cu(t,B) = & /0 V,(s, B) dNy(s).
i=1

We note that U, is a (%", P ,,) square-integrable martingale with variation
n
t
5B = L [Vils, B)Hi(5)A(s) €% ds
i=1
and I,(¢, B) — (U,(-, B)), is also a square-integrable martingale on [0, T].

3.2. Information and an optimum property of MPLE. Let &£ be the set
of all mean-zero, square-integrable right-continuous (%™, P ,))-martingales
G(t, B) on [0, T,] such that

(a) G is independent of the nuisance parameter A,

(b) 0G /9B exists and 0 < (Ez ,(0G(T, B)/9p))* < » for every F,™-stop-
ping time T' < T, and every (8,A) € & X A,

(c) some regularity conditions hold to ensure the interchanging of the order
of differentiation and integration in the calculation leading to (3.5).

Let 7° be the set of square-integrable (%, P, ,))-martingales V(¢; B, A)
such that V is orthogonal to every element G in £; or equivalently,
f(ﬁ’ A))G(T, BWVI(T, B,A) = 0 for every %, ™-stopping time T, and parameter
B,A).
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According to Chang and Hsiung (1990), for every stopping time T < T,

9G(T,B) \*
E(ﬂ,A)(G(T,B)/E(ﬂ,A)T)
(3.5) -1
e (e L(TEN
> ‘}27 (ﬁ,/\)( 03 - ( ,B, ) )

where L(T, B, A) is the likelihood ratio for Cox’s model, and that (3.5) becomes
an equality when G is the U, defined in (3.3), and

AU(T,B)\* -1
(3-6) E(B,/\)(Un(T’ B)/E(ﬂ,/\)_aﬂ_—) = (E(B,).)Unz(T, 3)) .
This is the optimum property of U, and, consequently, we let
(3-7) Jn(T’B) = E(B,).)Unz(T, B)

denote the information about B, eliminating A, at stopping time 7.

3.3. Asymptotic representation for R. Based on (3.7), we introduce a crite-
rion of optimality for stopping times as follows. For every %, ™)-stopping time
T, we define

(3.8) R (T) = +bn+cEg L (X, AC;AT).
i=1

a
J.(T,B)

The following theorem is the counterpart of Theorem 2.1. We shall assume
P(X AC =Ty > 0. The conditions on a,b,c and the subsequence for the
asymptotics to be valid are the same as in Theorem 2.1. The arguments for its
proof are also similar, except it needs some asymptotic properties of (1/n)I,
which can be found in Andersen and Gill (1982). We shall hence omit its proof.

THEOREM 3.1. Let T, be a %,"-stopping time such that {T,} converges in
probability to t, € (5, T,l, then
a

_ 1
(3.9) R, (T,) ~ ;[E(to)

where H(u) = P[X A C > ul, 2(8) = [lv(u, B)s(u, B)Mu) du,
sD(u,B) = E(ﬁ’A){Hi(u)Zfeﬂzl}, 1=0,1,2,

+ pa* + a*f
(0, to]

H(u) du],

s@ ( s

2
v(u,B)=;(0—,— —s(—o)) & = inf{¢t > 0|X(¢) > 0}.

3.4. Asymptotically efficient stopping time. Let
a

g(t) = S0 + a* (OYt]H(u)du on[§,T,].
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An ideal choice of {T,} should converge to t*, a minimum of §. Since ¢*
satisfies

a v(t*, B)sO(t*, B)A(2*)

a* H(t*) ’

(3.10) (Z(t%))® =

we consider the stopping time

T = inf{t > Sl(éln(t,én(t)))z

(3.11) X R X
a V(2 B,(2))SO(¢, B(t))A.(t) .
= o A1) "o

where

" 1z
A, = — L H(®),
i=1

B,(t) is the solution of the optimal estimating equation U,(¢, 8) = 0 and A, is
a uniformly consistent estimator of the baseline intensity A(t), to be given
below.
Let
s n -1 n
An(s) =f {Z Hi(u)eBn(t)Zl} d(z M(u))a s € [O’To]a
0 \i=1 i=1
be the Aalen-Nelsen type estimator of [§A(x) du at time ¢. Then the intensity
A(s) can be estimated by smoothing An(s) with a kernel function [see Ramlau-
Hansen (1983)],
N 1

mﬁ)=?£w4%§ﬁd&wx s € [Tob,, To(1 - 5,)],

n

where K is a suitable kernel function, which is of bounded variation, vanishes
outside [T, T,] and has integral 1. The window &, > 0 goes to 0 and nb?
goes to o«

The following theorem gives the asymptotic efficiency of Tx*.

THEOREM 3.2. Assume that § has a unique minimum point t* in (8, Ty
and its derivative §' is negative on (8, t*) and positive on (t*,t* + £) for some
£ > 0. Then T* converges to t* in probability as c tends to 0. Consequently,
R.(T*)/R (t*) converges to 1 as c tends to 0.

The proof of Theorem 3.2 is omitted because it is similar to that for
Theorem 2.2. The only difference is that the following Lemma 3.1 is needed in
various places of its proof. Lemma 3.1 strengthens some results in Andersen
and Gill (1982) and Ramlau-Hansen (1983). Its proof is also omitted because it
is standard and tedious.
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LeEmma 3.1.
@ sup | B,(s) — B| —20 in probability,
se€(s, Tyl
1 n .
(i) sup |—I,(s,B.(s)) — Z(s) —=20 in probability,
sels, Tyl T
(iii) sup |S,(ll)(s, B,(s)) — s(s, B)l —20 in probability,
. s€[8, Tyl
forl =0,1,2.
@iv) sup |Vn(s, BAn(s)) —v(s, B), —=20 in probability,
se€[s, Tyl
) sup |)Atn(s) - AMs)| 7520 in probability,
s€(ty, t,]

forany 0 <t, <t, <T,.
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