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A BAHADUR-TYPE REPRESENTATION FOR EMPIRICAL
QUANTILES OF A LARGE CLASS OF STATIONARY, POSSIBLY
INFINITE-VARIANCE, LINEAR PROCESSES

By C. H. HEssE
University of California, Berkeley

Bahadur has obtained an asymptotic almost sure representation for
empirical quantiles of independent and identically distributed random vari-
ables. In this paper we present an analogous result for a large class of
stationary linear processes.

0. Introduction. Bahadur (1966) has initiated the asymptotic represen-
tation theory of sample quantiles via the empirical distribution function. In
particular, he demonstrated that under certain fairly mild regularity condi-
tions on the distribution F and the density f of the iid sequence X(1), X(2),...
the following is true with probability 1:

p - F(&,)

——f(fp) +R

X, , =&+

n

and
R, = O(n=3*(log n)"/*(loglog n.)'/*).

Here, for 0 < p <1, £, is the unique p quantile of F, i.e., F({,) =p, X, , is
the pth sample quantile based on X(1), X(2),..., X(n) and F, is the empiri-
cal distribution function based on the same sample.

Bahadur’s theorem and proof give great insight into the relation between
empirical quantiles and the empirical distribution function. It has triggered a
number of refined studies in the iid case and subsequent extension to noninde-
pendent sequences: Analysis by Eicker (1966) has revealed that the remainder
R, is 0,(n"3/*g(n)) if and only if g(n) —» « as n — « and Kiefer (1967) gave
the definite answer

n®4R, 25/4(p(1 - p))/*
3/4 33/4

w.p.1 limsup +
P n—)oop (loglog n)

for either choice of sign.

Other references in the iid case include Duttweiler (1973) and Ghosh (1971),
who obtained a simpler proof of Bahadur’s representation but for a weaker
result.
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There are some extensions to sequences of random variables with certain
dependency structures, e.g., m-dependence, ¢-mixingness and strong mixing-
ness; compare Sen (1968, 1972) and Babu and Singh (1978). In this paper we
obtain an analogous strong representation for a very broad class of stationary
linear processes with parameters decreasing at a polynomial rate. In particu-
lar, the sequences considered are

(0.1) X(n) = ioﬁ(i)e(n —9),

where £(n) are iid innovations with E(je(n)|*) < » for some « > 0 and
16(2)] < c - i~ ? for some ¢,q > 0 and i > 1.

The class of linear processes in (0.1) is very broad. It includes both finite
and infinite variance linear processes and also incorporates processes based on
both continuous and certain (due to restrictions on the stationary distribution
function that will be imposed later) discrete innovation series £(n). It covers
m-dependent sequences, all autoregressive-moving average processes and cer-
tain sequences which are neither ¢ mixing nor strong mixing. Examples of
sequences within the class (0.1) which are not strong mixing are easily
obtained: The first order autoregressive process

(0.2) X(n) — 3X(n—-1) =¢(n)

is strongly mixing iff e(n) has a distribution with absolutely integrable charac-
teristic function, such as the normal distribution; see Chanda (1974). If for
example the &(n) are iid symmetric Bernoulli, X(n) is not strongly mixing;
compare also Andrews (1984). However, (0.2) is in the class (0.1) (even has an
absolutely continuous stationary distribution function), which is easily demon-
strated by obtaining the stationary solution of the difference equation, namely,

X(n) = §02_i5(n —9).

1. Statement of results. Theorem 1 in this section is the main contribu-
tion of the paper. It gives a Bahadur-type result for empirical quantiles of the
broad class of stationary processes introduced in (0.1) with parameters 8(i)
decreasing to zero in absolute value at a polynomial rate. For 0 < p < 1, what
is here and below meant by pth sample quantile X, , of a sequence of random
variables X(1),..., X(n) is the [n - p]th order statistic, where [ x| denotes the
smallest integer larger or equal to x.

As before, F, and F denote the empirical distribution and the stationary
distribution of X, respectively, ¢, is such that F(¢,) =p and c denotes a
generic positive constant, not always the same one. Other notation will be
introduced as needed.
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THEOREM 1. Let
(1.1) X(n) = ioﬁ(i)g(n -1),

where the innovations &(n) are iid with E(|je(n)|*) < © for some a > 0.
Assume also that for i > 1, |8(0)| <c-i” 7 with ¢ > 1+ 2/a and that the
density f of the stationary distribution of X is bounded away from 0 and © in a
neighborhood B, of &,. Then

D~ Fn(gp)
—f(fp) +R,

where R, = O(n=3**Y) for all y > (a*(8q — 5) + 2a(10q — 9) — 13)/
(42aq — a — 1)?).

X, =&+

bon a.s.,

REMARK 1. The lower bound for y in Theorem 1 is decreasing both for
increasing a and for increasing q.

2. Proof of main result. The proof is based on extensions of Lemmas
1-3 in Bahadur (1966) to the present context. Two of these extensions are
straightforward while one (our Theorem 2) is somewhat involved.

THEOREM 2. Under the conditions of Theorem 1 let, for givenn, 0 < <1
andi=1,...,n,
[nfl-1

(i) = L a()eli -,

Then it holds true for the empirical pth quantile (X,), , of X5(i),i =1,...,n,
that for all n sufficiently large,

(XB)p,n el,=(¢§,-a,,é +a,) as.
with

a, = O(max{nl/Z(B—l)(log n)l/z, na/(a+l)([3(l+l/a—q)+l/a)})'

REMARK 2. The parameter B determines the order of truncation of the
infinite linear combination of innovations in (1.1). To obtain the strongest
result in Theorem 1, an optimal choice for g will have to be made later.

Proor oF THEOREM 2. For later use we first evaluate the difference be-
tween X(i) and X,(i). Clearly,

©

| X(i) = Xp(i) | <e X j7%e(i —j) <ce*nl/ 3 jTavl/e
Jj=I[nf] Jj=Infl
where £* = sup(|e(0)|, supix|=1(|e(k)|/|k|}/*)} is almost sure finite due to the
conditions on &(k) and moreover P(e* > £) < cé™* for all ¢ > 0, as is easily
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proved. Hence, uniformly in i (up to n),
(2.1) | X (i) ~ X5(i)| < ce*nPO+1/ea-ati/e,

We write n = —B(1 + 1/a — q¢) — 1/a. Equation (2.1) implies that the dif-
ference between the pth sample quantiles based on Xj(i) and X(i), i =
1,...,n, respectively, is

(2.2) [(X4),., = Xp,n| = O(n7).

Here and below order relations are to be interpreted to hold almost surely.
Then, using Lemma 1 from the Appendix, we get

(2.3a) sup |F(y) — Fy(y)| = O(n=a/*bm),
YEB,
and
(2-3b) Sup |F(y) —_ Fﬁ(y _)| = O(n—dl/(01+1)77),
Y€B,

where Fj is the distribution of X,; and Fy(y — ) denotes the limit from the
left, i.e., Fg(y —) = lim, . Fy(y,).

We now exploit the independence of the truncated series after lag [n?] by
defining

St .= {XB(k),Xﬂ(k + [nB]),...,Xﬂ(k + (n, — l)fnﬂ])},
k=1,2,...,[n?],

where n, is either [n'7#] or [n'7#] — 1, its dependence on % being of no
concern. If for given n, X zlf,nk denotes the pth sample quantile of the £th set
S# , containing n, random variables, then by Lemma 2,

(2.4) min X', <(X < max X
B/p,n

n ynp*
1<k<[nf] D 1<k<[nf] D7

At this point it is necessary to point out one of the defects of the distribution
F,: its possible discontinuity. We remedy this by introducing the slightly
perturbed but continuous random variables

Ga(X5(i)) = UG) Fp(X(i) —) + (1 — U(i)) Fp( X,(1)),

where U(i) has the uniform distribution over (0,1) and is independent of
X,(i). If we also define G4(y) as

Gﬂ(y) = U(i)FB(y -)+ (1 - U(i))Fﬂ(y)’
then, using (2.3a) and (2.3b), we get

sup | Fy(y) — Fy(y —)| < sup |Fy(y) — F(y)| + sup |F(y) — Fy(y -)|
y€B, yEB, yE€B,

= O(n-o/(a+Dn)
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and hence

(2.5) Sug | Fa(y) — Gg(y)| = O(n=o/ @t by,

Since, in particular, for all n sufficiently large, (X, )o.n € B, a.s., by Lemma 5,
(2.5) therefore implies that

|FB (XB)p,n) - Gﬁ((Xﬂ)p,n)

from which we deduce

(26) (Fﬁ(XB))P,n = (GB(XB))p,n + O(n_a/(a+1)n)’

by monotonicity of F; and Gg. In (2.6), (Fy(Xp)), , is the [n - p]th order
statistic of Fy(X,(i),i=1,...,n, and (G, (X ), is defined similarly. Equa-
tion (2.6) demonstrates that the effect 1ntroduced by the perturbation with
respect to the corresponding pth quantiles may be ignored. Keeping in mind
(2.6) we are in the sequel concerned with G4(X,(i)),i = 1,...,n only.

We will first determlne how close (— log(G (X F)) the pth quantile of
—log G4(X,(i), i = 1,...,n, is to log p~ % Slnce X,(i) has distribution F,,

—log Gﬁ( 5(i)) has an exponential dlstrlbutlon w1th mean 1. On each set
S8 ., we may therefore apply the Renyi representation [see, e.g. Shorack and
Wellner (1986), page 723] to these transformed random variables. In particu-
lar, for the [n, - p]th order statistic (—log Gﬁ(Xﬂ))z,nk of the transformed
random variables in S? ,, we obtain

= O(n-a/ta+bm)

s En,k,v
(2.7) (- 1ogGB(X,3))p = L ,

v=[p-n;l v

where for each n,k, the E, , , for different v are independent random
variables with exponential distribution (with mean 1). This representation is
used to establish that

nl=p\" .
; _ _ -1
(2.8) hl,fl_?::p 1;’:1251” ( Tog ) }( log GB(XB))p,nk log p ‘ < o,
In view of (2.7) and the rectangular rule of quadrature it suffices to show, in
place of (2.8), that

W |

n,k,v

v

(2.9) max

1<k<[n®]

.= O(n'/%8~1(log n)"?).

v=[p-n,l

Lemma 3 in the Appendix proves the statement in (2.9).
Equations (2.9) and (2.7) together with (2.4) imply that

(—1log Go(X,)), . = log p~! + O(n/2#~D(log n)"/?)
and hence

(2.10) (Gﬂ(XB))p,n = p + O(n'/%F=D(log n)"?).
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Since

|Gﬁ((xﬁ)p,n) — F((X,),.,)

—|UG)[Fo((Xa),., =) — F((Xa),.,)]

+(1 - UG)[Fo((Xp),.,) - F((Xﬁ)p,n)”.
and because of (2.3a), (2.3b) and Lemma 5 we get
(2.11) (Go(Xy)),,, = (F(Xp)),, + O(n=e/x 1),
for n large enough. Then, combining (2.11) and (2.10) establishes
(F(X, )) =p+ O(max{nl/z“"l)(log n)‘?, n‘“/(““’"}).

Since, over the nelghborhood B, the derivative of F is bounded away from O,
which implies that F~' has bounded derivatives, we may transform from
(F(X,)),, , to (X,), , and obtain

(Xg),., €1, with probability 1 for all sufficiently large n.
This completes the proof of Theorem 2. O

REMARK 3. Because of (2.2) and since a/(a + 1) < 1 for a > 0, the state-
ment of Theorem 2 holds with (Xj), , replaced by X, ,

ProposITION 1. If FP* is the empirical distribution function of Xg.(i),
i=1,...,n, where B* is not necessarily equal to B above and

V(y) =|FE(y) — FF'(&,) — (Fpe(y) = Fau(£,)))

then
limsup(y(n)) "' supV,(y) <= a.s.
n—w yeIn
for any y(n) with
y(n) = O(max{n—(1/2)a/(a+1)11—1/2(1—13*)+e’ n—3/4+B/4+ﬁ*/2+5})’ £> 0,
and
In = (§p - an,) fp + an);
where
(2.12) a, = O(max{nl/2(ﬁ—1)(log n)2, n_a/(a+1)n})_

Proor. Without loss of generality we assume that Fg. is continuous. If not
we use the method introduced after (2.4) and consider Gg. instead of Fj..
Write F" for the empirical distribution function of X,.(i) based on the subset
SE, and Vk(y) accordingly. Then

supV,(y) < sup max V/'(y).
yel, yel, 1<k<[nf"]
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Let
(2.13) b, =[cn®]
be an integer sequence with an optimal exponent s to be selected later. Also,

write w, , =¢, +a,b,'v, IV for the interval [w W, ,+1) and u, =

n,v’

Fguw, 1) — Fzdw, ) for all n and integers v with —b, <v < b, — 1. Then
forall y eI?,

Vnk;e(y) =< Vnkk(wn,v-ivl) + un,v’
ani(y) = ‘/nkk(wn,v-%l) - un,v

and hence
(2.14) supV,(y) < max max VE(w, )+ max u,,
yel, 1<k<[nf] —b,<v<b, * —b,<v<b,—1

<Ty(n) + Ty(n), say.

Since w, ,,; — W, , <a,b; ! for each v and since Fg. (or better G,.) is
sufficiently well behaved in a fixed neighborhood of ¢ 1> it follows that Ty(n) =
O(a b, ).
As far as T(n) is concerned, it suffices, in view of the Borell-Cantelli
lemma and Bonferroni’s inequality, to show that
© [nf7]
(2.15) L X YP(Viw,,) =y(n))<wx,

n=Ny k=1 v

for N, sufficiently large so that here and below degeneracies are avoided. To
demonstrate this, we exploit the fact that the distribution of Vnkk(wn’v) is the
same as that of n;'|B(n,,8(n,v)) — n,8(n,v)|, where B(n,,o(n.v)) is a
binomial random variable with parameters n, and 8(n,v) = [Fplw, ) —
F,.(¢,)]. Using Bernstein’s inequality,

(2.16)  P(|B(n,8(n,v)) —n,d(n,v)| = y(n)) < 2exp(—h),

with A = y(n)?/{2[n,8(n, vX1 — 8(n, v)) + (y(n)/3)max{s(n, v), 1 —
8(n, v)ll}. N, in (2.15) has to be chosen so large that Fo(é, +a,) - Fyl¢,) <
c,a, and Fg(é) — Fp(é, —a,) < ca, for all n > N, and some constant ;.
Using h = h(n,, 8(n,v), y(n)) > y(n)?/(2[n,8(n,v) + y(n)]) and since v <
b, implies 8(n,v) < c¢,a, for n > N, it follows

P(Vi(w, ) = y(n)) < 2exp(—h,),
where h; = h(n,, y(n)) = n§y(n)?/(2lc,n,a, + n,y(n)]) which depends on
only through n, and is independent of v. Hence

[nf%]

k; L P(Vi(w,,) 2 y(n)) < 4b,[n® lexp(—h,([n1 "] - 1,7(n))),

v

where y(n) and the exponent of n in b, = [cn®] have to be chosen so that for
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all n > N,, the expression B* + s — h([n'"#"] — 1,y(n))/log n is less than
—1. Hence, given B*, we choose s so that the exponent of a,b,'n! #" is
larger than s and since

O(anbgl) = O(max{n—a/(a+l)n—s’ nl/2B=D=5(log n)1/2})’
this requires
a
a+1
which leads to

11 a . 1 B B*
<—|1- - < 4= - —
s 2( a+ 1" B) o SSYT YT g

and 'Y(n) — O(max{n—(l/Z)a/(a+1)7]—(1/2)(1—ﬁ*)+6, n—3/4+ﬂ/4+ﬂ*/2+£}), e > 0.
This completes the proof of Proposition 1. O

1
n—s+1—-B*>s or 1—3*—5(1—3)—S>8,

REMARK 4. The rate y(n) essentially determines the rate of convergence in
Theorem 1. An optimal choice for B in Theorem 2 is B, = (a + 3)/(2aq — a —
1) so that the optimal a, is a® = O(n~1/2%*) for all A > (a + 3)/(2a(2¢ — 1)
- 2) Since sup, . |F, (y) F(y)| O(n~*/@*bn"y with J, = (&, —an,f
+a%) and n* = —B*(1 + 1/a — q) — 1/a, the optimal B* is (1n view of
Lemma 4)

Bo— 1
2 —4aq/(a+1)"

B =Bo t+

(Note also that BF > B,.) This implies the optimal
(2.17) R, =0(n"3%4%7)
for all
a%(8q — 5) + 2a(10q — 9) — 13
4(2aq — a — 1)*

(2.18) v >

Proor oF THEOREM 1. Theorem 2 and Proposition 1 provide us with the
technology to establish the main result. Due to Theorem 2 and Remark 3, we
may select N, such that forall n > N, X, , € I? = J,,. Then, also, F.(X,, ,) =
[n-pl/n. Slnce sup, ¢ ; |Fps(y) — F(y)| = O(n "/("‘“)"0) and sup, c;_ |F ()
—FBi(y)| = O(n“"/("‘“)”o) by Lemma 4, using Proposition 1 (with g* = Bg)
applied to y = X, , gives

(2.19) [n';p]

= F,(¢,) + F(X,, ) = F(&,) + O(n~¥4%7)

for all y satisfying (2.18). Since, by assumption, F is sufficiently smooth
within the neighborhood B, of ¢,, we may use Taylor’s theorem (in Young’s
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form) to assert that

(2.20) F(X,.,) = F(&) + (X,,. — &) f(£,) + O((a%)°).
Consequently, combining (2.19) and (2.20),

[n-pl/n—F,(¢,)
f(&,)

Comparing the rates (a%)? and n=3/4*” and observing that [n - p]/n =p +
O(n~1) gives the desired result. This completes the proof of Theorem 1. O

X, =+

p,n

+ O(max{(a?,)z, n‘3/4+7}).

APPENDIX

The appendix contains the lemmas used in the proof of Theorem 1.

LemMA 1. Let X(i) and Xy(i), i = 1,...,n, be two sequences of random
variables with stationary distribution functions F and Fj, respectively. F; may
depend on n. Assume that F has bounded derivative in some neighborhood B
of ¢, with F(¢,) = p. Assume also that

Al) max [ X(i) — X,(i)| <ce*n™*, a.s.,
( X 8

p

1<i

where p is a positive constant and &* is a random variable independent of n
and such that

(A.2) P(e*>¢) <c&™™
for some a > 0 and any £ > 0. Then

lim supn®/*® sup |F(y) — Fy(y)| < .

n—w yeBp

Proor. We may conclude from (A.1) that for any A with 0 < A < p and all
y € B,

P(X(i) <y-n—*) - p(e* > %n,,_A)

' 1
<P(Xy(i) <y) <P(X(i) <y+n™*)+ P(e* > —n”_").
c
Using (A.2), it is clear that
Fly —n™*) — O(n==%) < Fy(y) <F(y + n™*) + O(n™o=0)
and consequently, since F has bounded derivative over B s

|F(y) = Fy(y)| = O(n~* + n7o¢—0),
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Selecting A = ap/(1 + a), we obtain the best possible rate:
sup |F(y) — Fy(y)| = O(n=o0/0+2).
yE

This completes the proof. m|
Theorem 2 utilizes this lemma with p = —g(1 + 1/a — q) — 1/a.

LEmMmA 2. Let J = {X(i):i €{1,2,...,n}} be a set of random variables and
S, k=1,...,r, be r nonempty disjoint subsets of cardinality n, of the set J
with U7, I IS,, r =d. Then, for any 0 <p <1, the pth sample quantile X,
of J and the pth sample quantiles X*  of S, i satisfy the inequalities

P ny
min X* sX , < max X*
l<k<r Ll 1<k<r Pyt

Proor. Since[n, pl=n,-p>[n, -p]l—1foral k=1,...,r,itistrue
that

er: [n,-pl=[n-pl> Z [n,-pl-r
=1

k=1
and hence

(A3) #{X(i): X(i) < min X}, }< Zi(lnk~p1—1)<rn'pl

and

(A0 #{X():X() < max XE,) 2 kZi [nepl= [0 pl.
<X,

(A.3) implies that min1 cner XE

f P,y
maxlsksrXpn ZX

and (A.4) implies that

REMARK 5. Both r and n, may be functions of n.

LemMA 3. For integers n,k,v, let E, ,  be random variables having an

exponential distribution with mean 1. Also, for all n, k, let E,,,aodE,,
be independent whenever v, # vy. Then, forany 0 < B <1,
ni=p\Y 2 E -1
. n,k,v
lim sup max ———|<® a.s,
n-—o (logn) lsks[n"] U=[P'nk] v

where the n, are defined after (2.3b) in Section 2.

Proor. We start by deriving sharp bounds for

1-g\ /2 n, B
(A5) P((n B) 3 MzM).

log n v=lp-n,l v
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Using Chernoff’s bound [Chernoff (1952)] we obtain that this probability is
bounded by

n 1 —t
( Il eXp(7))exp(—tMn1/2(ﬂ‘1)(log n)l/z)

v=ipn, 1 1 —t/v

forall0 <¢ <[p-n,]|. Wechoose ¢t = c;n'/?2"F)(log n)'/? with some positive
constant c; to be determined later. Then

. 1 —t n ty ¢t
log( Il — t/vexp(T)) = Yy - log(l - ;) -

v=[p-n,l 1 v=[p-n,l

n; 2

< (for n large enough)
bn,
c3
< —logn (for n large enough).
p
Hence
1-p\Y2 m g1
(A.6) pl|Z by T M| < ned/poesM,
log n v=lp-ny] v

Taking c¢; = pM /2, we may make, for given p, the exponent of n on the
right-hand side of (A.6) as small as we want by increasing M .2Hence for n and
M large enough, the probability in (A.6) is bounded by n 2"/ = y(n, p, M),
say.

The same argument can be applied to

ntB\* mo g o1
(_1)(1 ) Z _'k'—_.
og n v=[p-n;l v

Combining both, it is obvious that

A-B\Y2 m, E,,, -1
P11 Y ————|2M|<2(n,p,M)
ogn v=ipon,] v

and the bound is independent of k. Exploiting this uniformity and choosing M
large enough we get
" E -1

n,k,v

v

(A7) Y P

1-8 )1/2
n——NO

max
1<k<[n®] ( log n

>M| <w
v=[p-n;l

and the Borel-Cantelli lemma produces the desired result. O
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LeEMMA 4. With the notation of Section 2,
sup | F,(y) — FF(y)| = O(ne/*Dd),
yed,

where J,, = (£, — a%, ¢, + a)) and a®, By, BE are as in Remark 4.

PROOF Choose r such that a/(a + 1)(77(;k —1no) <r <n&—a/(a+ Dn,,
= [cn”] and define y, , = £, + a%d, !
For n sufficiently large and all v w1th lv| < d,, the empirical distribution

function evaluated at y, ,,

1 n
Fn(yn,v) = ; Z X(X(I’) Syn,v)

i=1

is upperbounded a.s. by

n

17 1
o > X(Xﬂ(’f(i) SYnw t a?ldzl) t > X(ng(i) -X@) > a(,)ldgl)-
i=1

i=1
Similarly,
1 n
Fn(ynu —;Z ( Ba‘( )<ynu_a0d )
LS (X)) = Xon(i) > ad
_; gl ( (1‘)_ Ba‘(l)>an n )1
so that

}

|Fu(yn.0) = FE(,.,)| < max{|FFi(y, , + a%d;") — FF¥(y,,,)

(A.8) 1 n
= ¥ x(| X() - Xg5(0)| > @),

i=1
where here the max is to be taken over the choice of signs in the argument of
F8(y, , + a%d;").

It is also easy to show that
sup |F.(y) - FFi(y)| < max |F (Yn.0) = FEO(3,..)

yE

+ max ‘Ffo(yn,u+1) _Fr{;g(yn,v) .

-d,<v<d,

Combining (A.8) and the previous inequality we see that

sup |F(y) — FF ()| < 2 max IF" Gnos1) = FE (3,0
ye

+; glx(p((i) — X (i)| > a%d;Y)

=2S(1) + S(2), say.
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To show the required rate for S(1), one makes use of the fact that
n(FP(y, ,.1) — FP(y, ,) has the same distribution as

n
Z X(yn,,v <XB5‘(1‘) Syn,v-&-l)
i=1

and x(y,, <Xz() <y, ,.1), i =1,...,n, is a sequence of [n”%]-dependent
Bernoulli random variables with parameter equal to

Fﬁa‘(yn,v+1) - Fﬁa‘(yn,v) = O(a(}tdr_tl)

The inequalities in Hoeffding (1963), Section 5d, admit a straightforward
extension to [ n#%]-dependent random variables and using these inequalities
together with the Borel-Cantelli lemma proves the required rate for S(1).

To show that

1
w )y X(IX(i) ~ X (i) > a?,d;l) = O(n~a/t+Dni),
i=1

it is sufficient to realize that

max |X(i) —Xﬂg(i)[ <ce*n " as.

l<i<n

by (2.1), that a®d ;! > ce*n "8 for all sufficiently large n and that ¢* is a.s.
finite. O

LEMMA 5. With the notation of Section 2 it is true for all B with 0 < g < 1
that

(Xﬂ)p’n € B, a.s. forall nlarge enough.

Here B, is the fixed neighborhood of ¢, over which the density of X(i) is
bounded away from 0 and infinity.

Proor. We will show that (X,),
follows. For all § > 0 it is clear that

F(¢,-8) <p <F(¢&, +9).

Now, if we can also show that

— ¢, as. from which the statement

n

FP(¢,-68) > F(¢,-8) as,
(A.9)

FP(¢,+68) > F(£,+8) as,
then it follows that

FP(¢, —8) <p <FP(£, +6) aus.forall n large enough
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and therefore
£,—-6< (XB)p’n <¢,+46 as.forall n large enough,

because clearly F2(&, + 8) = p iff £, + 8 > (FP)™(p) = (Xp), ,..
So we only need to show (A.9). We prove only that

FP(¢,-8) » F(£, —8) as.
That is, for all € > 0,

1

(A10) Y P - fx(xﬂ(i) <& —8)—F(&,—8)|>e| <=
n i=1

The left-hand side of (A.10) is upperbounded by

1 n
(A11) ZP(‘; ng(Xp(i) S51;_5) — Fy(¢, - 9)

>e - cn_"‘/("‘”)")

by (2.3a). By construction, x(X,(i) <¢, —8),i=1,...,n, is an [n?]-depen-
dent sequence of Bernoulli random variables and again we may use the results
in Hoeffding (1963), Section 5d, to prove the finiteness of (A.11). O
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