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The paper deals with upper and lower bounds for the quality of
(probability) density estimation. Connections are established between these
problems and the theory of approximation of functions. Particularly, it is
demonstrated how some of Kolmogorov’s concepts work.

1. Introduction. The aim of this paper is to present some ideas which
can be used in nonparametric estimation problems. These ideas are connected
with Kolmogorov’s contribution to the theory of approximation of functions. It
should be stressed that these ideas can be used for a wide class of statistical
models, but we consider here only one example of them.

We assume that a statistician observes i.i.d. random vectors X, X,,..., X,,
taking values in R* and having density f with respect to the Lebesgue
measure on R*. The problem is to find an estimator, based on these data, for
the density f, unknown to the statistician. We denote by f,(-) =
.0, X, ..., X,) any estimator for f, i.e., any real-valued Borel measurable
function of all arguments. It is not assumed that f,(-) is necessarily a density
for the fixed data; it is not even necessarily nonnegative. The quality of
estimation is measured by the loss function || f,, — f||;, where | - ||, is the L,
norm on R* and r is a positive number.

We assume that the unknown density function f is in some known set 3,
and the problem is considered as nonparametric if it is impossible to embed 2,
in finite-dimensional space. A general scheme for nonparametric estimation is
the following. The statistician chooses (in advance) some subset ® of functions
such that (a) the subset ® is a sufficiently good approximation for 3 and (b) it
is easy to find sufficiently good estimates for any ¢ € ®. In this way, the
estimation of f is reduced to the estimation of a suitable element of ®. This
approach is popular not only for statistical problems, but also for some applied
problems in physics [see Babenko (1979, 1985)]. So the estimation error
consists of two parts: the error from approximating the element f <3 by
¢ € @ (this is bias in typical situations) and the error from estimating an
element from ®. ® can be a finite set (then estimation is reduced to hypothe-
ses testing), a finite-dimensional set (it leads to projection estimates) and so on.
In general, ® will be an element of a collection % of function classes. If ® is
chosen optimally, the first part of the error depends on the Fdiameter of 2,
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[see Babenko (1979, 1985)], defined as

il sup nf 17 61,
Here || - || is a certain norm (if % consists of N-dimensional linear manifolds,
we have Kolmogorov’s diameters [Kolmogorov (1936)]; if .# consists of finite
sets with a fixed number N of elements, we have something closely related to ¢
entropy [Kolmogorov and Tikhomirov (1959)]. Typically, we choose N depend-
ing on the sample size n in such a way to balance this part of the error with
the other part.

We consider here the estimation problem for densities defined on R*. It is
well known in approximation theory that entire functions of finite exponential
degree are convenient for approximation of such functions. Therefore we
choose such function classes as the elements of 7.

Our main interest is the behavior of the value

(1.1) A(p,r) = infsupE,|| f, — f|,-
fo fes

Here and further the infimum over f, is taken over all estimators, and 2 is
some subset of L,, 1 <p < x.

2. Upper bounds. An important part of the results presented here was
published in Ibragimov and Hasminskii (1980, 1981) (henceforth we use the
abbreviation IH for our names), but unfortunately some of these results are
not sufficiently known in the West. We would like to mention, for example,
that some of the results were reproved in Devroye and Gyorfi (1985) in a
weakened form, and the problem they formulated in their book (page 133) as
an open one, is solved by Theorem 4 in IH (1981).

Any estimation procedure gives some upper bound for the quality of estima-
tion. The literature on this theme is very rich, and we do not try to system-
atize it. It seems that Centsov (1962, 1972) proposed the following elegant
reasoning. Let f € L,(R*) = L, and let ®,, ®,,... be a sequence of subspaces
of L,, with dim®, = N. Let ¢{"),..., ¢’ be an orthobasis of ®,. The
equality

(2.1) f= g C{MN) + Ry(f)
i-1
(C{™) are Fourier coefficients) generates, the projection estimator
(2.2) fo n(x) = g CiY ¢ (x).
i=1
Here, C{M) is defined by
(23) € = 5 T #K) = [ (R (as),

where F, is the sample distribution function.
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We have that E.C{} = C{™ and moreover the inequality
(2.4) EJC — ¢ " < A/n

is often true. But then, the L, risk of the estimator fn, n for an optimal choice
of &5 (from the class & of N-dimensional subspaces) does not exceed the
Value

(2.5) Ellfon—Fl:

IA

AN 2
=X RN

AN
< — +d%(2).

Here A is a constant and d y(3) is the N-dimensional Kolmogorov diameter of
2. It is possible to choose N = N(n) in an optimal way such that the best
order for the rate of convergence to zero of the risk is obtained.

Modifications of this simple idea allow the use of similar estimators for
other loss functions. It is also important that it is possible to fix the sequence
®,, ®y, ..., because variability of this family is not suitable for applications.

The classical results of approximation theory yield the best order for the
rate of convergence as N — », when approximating functions f€ 3 c L,
1 < p < o, by elements from the standard families in .#. For example, let f
have a known parallelepiped 11, c R* as support and let its periodical exten-
sion have some smoothness 8. The natural # for this case is families of
trigonometric polynomials. Another example is functions f with support II,
without periodicity condition. Then the elements of % can be chosen as
families of splines. Finally, for functions f with support R¥, it is convenient
to choose as the elements of . the families of functions having analytical
extension as entire functions of some exponential degree. For a suitably chosen
sequence @, P,, ..., the rates of convergence to zero as N — » of the best
approximations by functions from &, for these examples, have the order
dy(%)in L, for any p € [1, =] and for a wide class of sets 3. We consider here
for brevity only the last example. [This class is apparently the most natural for
density estimation, but for other problems, for instance, regression estimation,
two other families .# are more natural; see IH (1980b and Nussbaum (1985)].

Let C* be the k-dimensional complex space. Recall that an entire function
g(2) = g(z,,..., 2,) is of the exponential type v = (v,,...,v,) if for any ¢ > 0
the inequality

3
12(2)] <Agexp{ 5 (v + s)|zi|}
i=1
holds for all z € C* and some constant A,. Denote by .#, (R*) the set of
such functions which also belong to L (Rk) as functions of real variables, and
let £®)(¢) be the value of the best approx1mat10n in L, norm of ¢ by the
functions from .#, R k),
EP(¢) = Hg o,

A vp
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Furthermore, denote by V (x) the kernel of Vallée Poussin type [see Nikolskii
(1969)] for v = (vy, vy, ..., v,):

k _
COS v;x; — COS 2vjxj

Vi(x) =TI

] 2
j=1 wvjxj

It is shown in IH (1980, 1981) that the best order for the rate of convergence
for estimates in L, norms for a wide class of sets X is reached for kernel
estimators with kernel V (x), provided v = v(n,3) is suitably chosen. The
estimator has the form

- 12
(2.6) forl®) = — L Vi(x = X;) = [ Vi(x = y)F(dy).

The following theorem plays the most important role in obtaining upper
bounds for risk of f, , (A; are some constants).

THEOREM 1. (i) Let f € L (R*), 2 <p < w. Then
Ef| £ () = FO) |, < A1+ £1,)

(&P(f) + (~n—)/]

(r+1)/2

(2.7)
X

(ii) Let f € L{R*). Then

Ef” fn,v(‘) — f(.)”:° sA2(1 +) f”m)(r+1)/2

(2.8)
X

r/2
- . v, vy In(uy o wy)
(&) + . .
(i) Let f e Lp(Rk), 1 <p <2 Then

7o) = Ol < A1+ £1,)
P r IR T (p=Dr/p
x[(gj( (£)) +(__n—) ]

Proor. The proof of the assertions (i) and (ii) is given in IH (1980, 1981),
so we prove (iii) only and restrict ourselves to the case r = p [the consideration
of arbitrary r is also analogous to IH (1980, 1981)].

The equality

(2.9)

Eff, (x) = [Vi(x =y f(y) dy
is the immediate consequence of (2.6). So E, fn,,,(x) € My, ,(R*) and
|E,f. — £, < CED(£).
[See IH (1980) for details.]
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Therefore
Ef"f-’l”’_ "p <C{(§(P)(f)) +E||fnv_ fnv

Furthermore, we have

;)Z/Ef

—fEf

It is known that for independent random variables &, ..., £, with E¢; = 0 the
inequality [see von Bahr and Essen (1965)]

E|}Y ¢
i=1

b

D

% z (V(x - X;) - EV(x - X))

E|\f,. - Ef,.

Zf(x)

P n

<2Y El|¢P

i=1

is true. Therefore
= ~ P
Ef" fn,u - Effn,v p

This relation and inequality

k
JplVelx =) e =TT [

<en'™ [ f) dy[ [Vi(x =) dr.

9 p
COS VX ; COoSs ijj

-1
dx; < cy(vvy « - v,)?”

TV X}
give assertion (iii) for r = p. O
Theorem 1 and the known upper bounds for £PX(f) with fe€ 3 imply

upper bounds for risks of the estimator f; .. It allows us to choose v = v(n, %)
optimally. Consider two examples.

ExampPLE 1. Let
H;;;L, :B=(BI’._"Bk)’ Bi=ri+ai>0<aisl’i=ﬂ»

be the set of functions having Sobolev’s derivative with respect to x; of order r;
and suppose

(here A, g is the partial increment of g over x,).
It is well known [Nikolskii (1969)] that for all p €[1,],

(2.10) sup &P (f) <c¢ Z v P
feHSL Jj=1

The substitution of this bound in the right part of relations (2.7)-(2.9) and
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optimization over v,,...,v, imply the results about upper bounds which are
written in the first and second lines of Table 1.

ExampLE 2. Let AL be the family of functions g in R* which admit
analytical extension in the set |Im z;| < A, i = 1, k, and suppose

lg(-+ir)|, <L.

It is known that for this class, for v, =v,= -+ =v,=v and for all p €
[1, ], the relation
sup &P (f) < Le ™
feALL
holds.
In a similar way as in Example 1 we obtain results (concerning upper
bounds) which are written in the third and fourth lines in Table 1.

3. Lower bounds. Establishing lower bounds, in the minimax sense of
(1.1), is a more complicated problem. A very important step was made by
Farrell (1972). He has obtained lower bounds for the estimation quality in a
point by reducing this problem to discrimination between two close hypothe-
ses. IH (1979) have proposed for the same problem another approach, which is
based on reducing it to an estimation problem. IH (1979) also proposed (for
another situation) an approach to obtaining lower bounds in L, norms,
2 < p < ». The method here is to reduce the problem to discrimination
between an increasing number of hypotheses and to use an information
theoretical approach to the latter. Independently, a different approach to
establishing lower bounds in L, norms, p < =, for the classes HSL and some
other ones, have been proposed by Bretagnolle and Huber (1979).

Here we present briefly the main ideas of our approach. Its application to
the density estimation problem was published in IH (1980, 1981). Let p be
some metric in ¥ C L,. Let I(x), x > 0, be a nondecreasing function with
1(0) = 0. Assume that there are N(&) densities f;; € 3 such that p(f;;, f;5) >
6. Then the inequalities

"5

supE,l 5

> sup E;! (
fex

i=1, N(8)

p(fns fis) )

0
(3.1)
1(1/2) %&P 5\ _(L\p
2 S iss In) 2 51 = 5 |
N(5) ) fm{P( fiss fn) 2} (2)
are evident and the problem is reduced to obtaining the lower bound of the
average probability error P, for the discrimination problem of N(8) equidis-
tributed hypotheses, i.e., P{n = f;5} = Ny !, i = T, N;, on base of the sample
X,,..., X,. The value P, can be estimated with help of Fano’s lemma in
information theory [see, for example, IH (1979)]. As result we have the bound

P,>1- (In N(8)) 'I(n;(X,,..., X,))

(3.2) .
>1 - (In N(8)) *nI(n, X,).
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The desired result will be obtained if we can find a sufficiently good upper
bound for Shannon’s information I(n, X;).
Let f,s; be an arbitrary density in R*. Then

dPXl/TI
I(n7Xz) _E{ln dP (th)}

N(8) N(8)

1 1
= N(5) Z _/ ( ZS(x)/N(B) Z fis(x) | fis(x) dx

1 N® 16( )
In
< W) 2, Jplo I G
1 N® )
= N(6) Z f (fis(x) = foa(x))ln fo&( )dx
< 1 N® (fi5(x) _foa(x)) dx
T N(3) [Z,/r* fos(x)
fis = Fos|
< max —_—
i=1,NG) fos 2
So
p(fu> f) 1 n fis_foaz
. I|———| =21 = -— — |.
09 s (M5 o 3|t~ i | 272
Now, let us define the number §(n, X) by the formula
2
(34) 6&(n,2) = sup{&: (In N(8)) ' max M < i}
i=T, NG fos ||, 2m
Relations (3.3) and (3.4) imply the inequality
(3.5) lﬁugEfl(P( fus £)/8(n, %)) = 31(3).

So the following theorem, which is a more strong and precise version of
Theorem 8 in IH (1980) is established.

THEOREM 3.1. For any 8 > 0, let there be densities f,;5 € X, i = 1, N(9),
such that p(f;, f;3) =28, i,j =1,N(3), i #j, and let the value 8(n 3) be
defined according to (3. 4) for an arbztrary family of densities f,, 5, 6 > 0. Then
the lower bound (3.5) is true for any nondecreasing function I(x).

This theorem is connected conceptually with Kolmogorov’s ¢ capacity C.(3)
of the set % in the metric p [see Kolmogorov and Tikhomirov (1959)].
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TaBLE 1
l<p<2 2<p<w p=o

= KB
3 =HJLn{|fll, <M} n \Br/@B+D
A(p,r) = n~Br/@B+1) = n~Br/2B+1) = (__)

n\t’s Inn

n \B/(B2B+1)
v nB/(BLaB+1) nB/(BA2B+1) ( _ )
Inn

— AA
2 - APL & r/q % r/2 & r/2
Ao, 1) (Inn) (Inn) (Inn)*Inlnn

b.r - n - n - n

Inn —klnlnn Inn—klnlnn Inn-klnlnlnn —Inlnlnn
qA 2A 2A

Theorem 3.1 reduces obtaining of lower bounds for risks to the construction
of the “richest”” family f;; with the required properties. This construction is
realized in TH (1980, 1981) for Examples 1 and 2 and p > 2. As a result we
have that the upper bounds of Section 2 for these examples coincide with the
lower bounds in the sense of rate of convergence (see Table 1). The construc-
tion of a suitable family for the case 1 < p < 2 is the content of Section 4.
Table 1 is the final result of the considerations in Sections 2-4.

We use the notations

& -1
g=p/(p—-1), B=(ZB{1) :
i=1

The notation a, < b, means that 0 < liminfla,/b,) < limsup(a,/b,) < ®
and A, (p, r) is the quantity which is defined in (1.1). The first and third lines
give rough (in the sense x) asymptotics for the risk; the second and fourth
lines present the values v = (v,...,v,) in the estimator f:l,,,, for which this
order for the rate of convergence is reached.

4. An illustration. Let us demonstrate the construction of the family
fs> satisfying the conditions of Theorem 3.1, for the case p € [1, 2[. We restrict
ourselves to the case & = 1 for simplicity [the generalization for arbitrary k
can be made analogously; see TH (1981)].

Put fys(x) = m7187/(x26%? + 1) and consider the family of densities f,;,
depending on the M-dimensional vector a = (ay,...,a,,), where a, is 0 or 1:

M
(4.1) fas(x) = fos(x) +y Z Qb ,s(x).
m=1

Here M =[8"97F7"|, ¢,.5(x) = 89p(x5 2 — m) and the function ¢ [cf. TH
(1980)] is infinitely differentiable, has the support ] — %, %[ and satisfies
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J¢(x)dx = 0. It is easy to verify that the conditions
fis20,  fo€HEL,  [fi(x)dx=1

are fulfilled, if vy is sufficiently small. Furthermore

M 1/p
1 fon = foal = y( 5 la, - afm|) 16l
m=1

M 1/p
= YII¢|16‘”“””_1(Z lap, — a’ml) :
1
This equality and the relation M ~ §=9-#"" guarantee the fulfilment of all
conditions of Theorem 3.1, provided a € A, where A is the largest set of a for
which
M
(4.2) Yla,-a,|2M/4, a,a €A a+a.
1

It is known [for instance, it follows from the Varshamov-Gilbert bound; see
IH (1980, 1981)] that

(4.3) card A > exp(M/2).
Finally, a very simple verification gives the inequality
2
fas ~ fos

<C foréd <34,.

for |,

The last inequality and the relation In N(8) < M5~97#"" [this follows from
(4.3)] give the equality

8(n,S) = cnB/@B+D,

So we have established the lower bound in the first line of the table for the
situation 1 < p < 2.
If 3 = A} L we can consider the analogous family
M
fas(x) = fos(x) + v87 X a,do(x1In(1/8) /Ay — m).
m=1
Here ¢o(x) = sin® x/x*, f,5(x) is the same as in (4.1), vy is sufficiently small,
A is sufficiently large and M = [677 In(1/8)]. The analogous verification gives
the results: For suitable y and A, the functions f,, are densities from A%L
and for a,a’' € A, a # a/,
2

fa8_f0§

| fos = Farsll = €18 (¢; > 0);
fos

< C,.

2
These inequalities and (3.4) imply the relation

n xInN(8) < (8(n,2)) “In(1/8(n,3)).
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So 8(n,3) < (Inn/n)"/? and Theorem 3.1 gives the lower bound in the third
line of Table 1 for the case 1 < p <2 and . = 1.

5. Further results. Let 3, be the set of densities which have analytic
extension as entire function of exponential type A, where A is a symmetric
convex compact set in R*. In other words 3, is the set of densities, the
characteristic function of which is equal to zero outside A. The set 3, is
essentially infinite dimensional, but nevertheless it is proved in IH (1980,
1981, 1982) that for p > 2, the rate of convergence of the best estimator has
the order n'/2:

inf sup E/|| f, — f|, < ¢,n""/2
fu fes,
Moreover for p = r = 2 the precise asymptotic bound is found in IH (1982):
meas A
} - (2m)®

This result gave occasion to formulate the hypothesis [Devroye and Gyorfi
(1985)] that the same order n!/2 for the rate of convergence is preserved for
p < 2 and in particular for p = 1. But in IH (1981) the following relations,
refuting this hypothesis, are proved:

: . 2
(5.1) lim {nl?f sup Ef| f, — £

n—oe fes,

inf sup Ef|f, = f|, xn" "9, 1<p<2,
fa fes,

liminf inf sup E/|| f, — f|, = ® > 0.
n fa fes,
6. Remarks and problems.

1. The intrinsic reason for the existence of an estimator with property (5.1) is
the fact that the densities f € X, have a reproducing kernel. This means
for & = 1, for example,

sin A(x — )
vom(x—y)

So an estimator, which is asymptotically efficient in the sense of (5.1), has
the form

fx) = [ f(y) dy.

sin A(x — y)

fa(x) Z[R F (dy).

vom(x —y)

Similar estimators are possible in other situations, with sets 3 say, pro-
vided that for each f € X the representation

f(x) = [K(x,) f(y) dy

holds with sufficiently good kernel K. If we restrict ourselves to the case
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K(x,y) = K(x — y), then the equality

R 2 1 .
E|fu—Fl, = — (K0 =1 FI?)

‘holds. We think that the following generalization of IH (1982) is true in the
latter case:

lim {ninf supE|| f, - f”;} = K,(0).

n—o fa fes

2. The precise asymptotics for the quadratic risk in L, of the type (5.1) were
first obtained in Efroimovich and Pinsker (1982) for the case where 3, is the
set of ellipsoids in L,. Other references can be found in this paper.

3. The problem of constructing upper and lower bounds is interesting for
other % too. Nemirovskii (1985), for instance, found the true asymptotics
for the regression estimation problem if 3 = {||f ||, < L} and the loss
function is the L, norm of the difference f-n —f. Here, p,p; > 1 are
arbitrary. It would be interesting to obtain the corresponding results for the
density estimation problem. Other interesting sets 3 are considered by
Bretagnolle and Huber (1979), Bentkus and Kazbaras (1982) and Devroye
and Gyorfi (1985).

4. The upper bound of Section 2 can be extended to more general classes of
loss functions. It is possible to consider the loss function I(|| f, — f|| »); see
IH (1981) for details.

5. The present approach is also suitable for obtaining bounds in L p» norms for
the estimation of the derivatives of a density. An interesting and difficult
problem is obtaining the precise asymptotics for more general 3 and
p # 2. For instance, it is interesting to consider 3, which are determined by
a condition of the type

Je@|f®f dt <1,

where ¢ > 0 and £ is the characteristic function. Interesting results concern-
ing this problem were presented recently by G. K. Golubev at the Fifth Vilnius
Conference on Probability Theory and Statistics.
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