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CANONICAL PARTIAL AUTOCORRELATION FUNCTION OF
A MULTIVARIATE TIME SERIES

By SERGE DEGERINE

Joseph Fourier University

We propose a definition of the partial autocorrelation function B(-) for
multivariate stationary time series suggested by the canonical analysis of
the forward and backward innovations. Here B(-) satisfies B(—n) = B(n),
n=20,1,..., where B(0) is nonnegative definite, {8(n),n =1,2,...} is a
sequence of square matrices having singular values less than or equal to 1
and such that the order of B(n + 1) is equal to the rank of I — g(n)B(n),
the order of B(1) being equal to the rank of B(0). We show that there exists
a one-to-one correspondence between the set of matrix autocovariance
functions A(:), with the positive definiteness property, and the set of
canonical partial autocorrelation functions B(-) as described above.

1. Introduction and notation. In the scalar case, the parametrization
of an autocovariance function A(-) by a sequence of partial autocorrelations
B(+) was first established by Barndorff-Nielsen and Schou (1973) for autore-
gressive (AR) models. It was extended independently by Ramsey (1974) and
Burg (1975) to the general situation. This correspondence is a well-known
result of orthogonal polynomial theory [see Geronimus (1960)]. The attractive
property of B(-) is that its variation domain is unconstrained, which gives rise
to new estimation techniques: maximum entropy method [Burg (1975)], recur-
sive or exact maximum likelihood estimation of AR processes [Kay (1983) and
Dégerine and Pham (1987)]. See also Atal (1977), Dickinson (1978) and
Dégerine (1987).

B(-) appears naturally in the well-known Levinson-Durbin algorithm for
fitting AR models of increasing orders to a given A(-). Whittle (1963) extended
this algorithm to the multivariate nondegenerate case and Inouye (1983, 1985)
considered the general situation. However, the AR filters giving the forward
and backward innovations are now different, because of the noncommutativity
of the matrix product, and B(-) is no longer naturally defined. Morf, Vieira and
Kailath (1978) proposed a normalized version of this extended algorithm and
so obtained a possible definition of B(-). Sakai (1983), using a Levinson-type
circular recursive algorithm, characterized A(-) by a set of sequences of scalar
partial autocorrelation coefficients whose magnitudes are all less than 1.
Estimation techniques of B(:), in the multivariate case, were proposed by
Morf, Vieira, Lee and Kailath (1978) and Dickinson (1979).

Let X(-) ={X(¢),t € Z} be a zero-mean real m-variate stationary time
series with autocovariance function A(-),

A(t —s) = E{X(¢)X(s)}, (t,s) €z
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962 S. DEGERINE

A(-) characterizes the structure of the real Hilbert space generated by X(-),
M= L2(X(t),j=1,...,m,teZ).

Elements of .# are zero-mean R-valued variables, so the inner product in .# is
just defined by (U,V) = E{UV}. When the dimension of .# is finite, X(-) is
said to be linearly singular of order d, where d is the smallest integer & for
which X(-) satisfies the stochastic difference equation

Bl

b(j)X(t-j)=0, tez,
Jj=0

b(0) being the m-identity matrix I,.
We define, for all ¢ of Z, the following subspaces of .#:
H(t;n) =j{Xj(s),j =1,....m,t—n<s< t},
n e N*, .#(t;0) = {0}.
X(t; n) denotes the best approximate of X(¢) by its nearest past of length n:
Each component X(¢;n), j =1,...,m, is the orthogonal projection of X (8

on .#(¢ — 1;n). With the convention X(¢;0) = 0, the nth-order forward inno-
vation is defined as

(1) e(t;n) =X(¢t) —X(t;n) = Y. b(n,k)X(t—k), neN,teZ,
k=0
where b(n; k), k = 1,...,n, satisfy
(2) Y b(n,k)A(j—k) =0, j=1,...,n.
k=0

The forward residual covariance matrices o%(n) = E{e(t;n)e(t;n)}, n € N,
are given by

(3) o(n) = kf b(n, B)A(—F).
=0

Notice that (2) and (3) are the Yule-Walker equations. In what follows the
symbol * indicates the backward quantities obtained by reversing the time
index in the considerations above.

When o?(n) is singular, the regression coefficients b(n, k), k = 1,...,n, in
(1) are not uniquely defined. Nevertheless, e(¢;n) is well defined and the
partial autocovariance function 8(-) is given by 8(0) = E{X(¢)X(¢)} and

8(—n) =8(n) =E{e(t;n — De*(t —n;n— 1)}, neN*,
A definition of B(-) will be a normalized version of 8(-):
B(n) = [o2(n = D] *s(n){[**(n - D] VY,  nen,

but the difficulty is: Which matrix square root must be used? Morf, Vieira and
Kailath (1978) consider, for positive-definite (p.d.) matrix R, a lower triangu-
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lar matrix R!/? such that R/2(RY2?)Y = R. We can see that any other
definition of R!/2, provided that it is unique, gives rise to a possible definition
of B(-). Moreover, matrix square roots are used to normalize the successive
innovations, and so to any choice corresponds a normalized innovation with a
different interpretation.

In the present paper a square root o(n) of 0?(n) and a generalized inverse
o(n)~ are defined recursively. It is seen that the matrix correlation coefficient
B(n)=0(n — 1)~ 8(n)lo*(n — 1)"] has a singular value decomposition
B(n) =L" A,0,M, in which L,, M, and O, are orthogonal matrices such
that ®, commutes with A, and can be seen as a generalized sign. A, is the
diag-
onal matrix associated with the canonical correlations between e(¢;n — 1) and
e*(t — n;n — 1). We prove also that {(L,,A,),n > 1} [resp. {(M,,A,),n > 1}],
together with A(0), is in a one-to-one correspondence with {oc%(n), n > 0} [resp.
{o*%(n),n > 0}]. Finally we note that the normalized innovations n(t;n) =
o(n)~e(t;n) and n*(t — n;n) = o*(n)"e*(t — n;n) are the canonical vari-
ables between e(¢; n) and £*(¢ — n; n) and that the canonical correlations are
also given by A ,.

Notice that our definition of B(n) is always valid and stops when the rank of
o2(n) is equal to 0 while that of Sakai and of Morf, Vieira and Kailath stop as
soon as o%(n) is singular.

2. Standard partial autocorrelation functions. For a matrix A let
A~ denote any generalized inverse (g-inverse) of A, that is to say any matrix
A~ such that AA~A = A [cf. Rao (1965), page 24].

THEOREM 1. Innovations and partial autocovariances satisfy the following
recursions:

e(t;n) =e(t;n — 1) —8(n)o**(n—1) e*(t—n;n—1),
(4) e*(t;n) =e*(t;n — 1) —8(n)o?(n—1) e(t+n;n—1),
neN*teZ,
where the residual covariance matrices are given by
o?(n) =c*(n—-1) —8(n)o**(n — 1) &(n),

(5) _
o*?(n) =o**(n - 1) —8(n)o?(n—-1) 8(n), neN*

Proor. We suppose that the recursion is valid up to order (n — 1), n € N*,
The first relation in (4) holds if

E{e(t;n — 1) X(¢t —n)'} =8(n)o**(n — 1) o**(n — 1),

which is equivalent to 8(n) = 8(n)A~A with A = 0**(n — 1). The matrix A
being symmetric, (A™) is a g-inverse of A and the equality comes from the
definition of &§(n) if, for ¢* = £*(z — n; n), we prove that ¢* = A(A™)e* a.s.
Using the symmetry of A, it is derived, as in the proof of Lemma 6 of Inouye
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(1983), from
E{)le* — A(A7)e*|?} =A - A(A")A-AA"A+ A(A")AA"A=0.
e(t;n) and £*(¢ — n;n — 1) are now uncorrelated so we have
o%(n) =0%(n-1) —8(n)A"AA~ §(n),

which gives the first equality in (5) since 8(n)A~A = 8(n). The second rela-
tions in (4) and (5) can be proved in a similar way. O

The Levinson—Durbin algorithm. When g-inverses are uniquely defined,
using Theorem 1, the associated regression coefficients are given by

[6(n;0),...,b(n,n)]
=[b(n - 1,0),...,b6(n —1,n —1),0]
- &(n)o**(n—-1) [0,6*(n—1,n—1),...,b%(n - 1,0)],
[6%(n;0),...,6%(n,n)]
=[b*(n — 1,0),...,0%(n — 1,n — 1),0]
-8(n)o?*(n—-1) [0,b(n—-1,n—1),...,b(n —1,0)],
where the covariance matrices are updated by (5) and
n-1 n—1 !
8(n)=Y b(n—-1,k)A(n—k) = { Y b*(n—1,k)A(k —n)},
k=0 k=0
with 5(0,0) = 5*(0,0) = I and 02(0) = ¢*%(0) = A(0) as starting values.

This algorithm was given by Whittle (1963) for regular residual covariance
matrices. In the singular case if we use, for uniqueness, the Moore inverse [cf.
Rao (1965) page 25], we recognize the algorithm of Inouye (1985) and the
forward coefficients b(n, k) are the AR parameters given by the algorithm of
Inouye (1983). These two algorithms are proved directly on the regression
coefficients, using the Yule-Walker equations (2) and (3). Nevertheless, the
choice of the Moore inverse is not determining and one could lead a similar
proof of our Theorem 1.

It is easy to see that such an algorithm provides a one-to-one correspon-
dence between A(-) and 6(-). But 8(-) must satisfy conditions in order that (5)
well defines nonnegative definite (n.n.d.) matrices. Partial autocorrelation
functions eliminate this problem.

Standard orthogonalization process. We call so a process that associates to
any n.n.d. matrix o2 two uniquely defined matrices o and o, where o is a
square root of 02, oo’ = 02 and o~ is a g-inverse of o such that o7 = h is
a diagonal idempotent matrix. Then, if ¢ is a zero-mean random vector with
covariance matrix o2 n = o~ ¢ gives an orthogonalization of the components
of ¢ with E{nn'} =h and & = on. This last equality comes from on =
oo~ ¢ = ¢ which is proved by using 00~ 0? = 00 00’ = 00’ =0? in

E{llc — 007 ¢||?} = 0% — 0070 =0 (07) o' + 00 0 (07) 0",
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The function defined by B(0) = E{X(¢) X(¢)} and
B(—n) =B(n) =E{n(t;n — n*(t —n;n—1)}, neN¥,
where
n(t;n—1)=0(n—-1) e(t;n —1),
n*(t—n;n—-1)=0*(n—-1) e*(t —n;n—1)

is called the standard partial autocorrelation function of X(-).

THEOREM 2. A standard orthogonalization process establishes a one-to-one
correspondence between the associated standard partial autocorrelation func-
tion B(-) and the autocovariance function 8(-) through the recursions, n € N*:

B(n) =o(n—-1)" 8(m)[o*(n-1)7],
8(n) =o(n—-1)p(n)o*(n — 1),
o*(n) =o(n—1)[I-p(n)B(n)]o(n - 1),
o**(n) = o*(n — 1[I - B(n)'B(n)]o*(n - 1),
with 0%(0) = o*%(0) = B(0) = 8(0) as starting values.

Proor. Relations between B(n) and 8(n) are straightforward. From (5)
and o(n — 1)o(n — 1) = 0%(n — 1) we obtain

o?(n) = a(n - 1)[I-B(n)o*(n - 1)
xo*2(n — 1) o*(n — 1)B(n)]o(n — 1)

Putting h = o(n — 1)"o(n — 1), we have hn(t;n — 1) = n(¢;n — 1) and then
hB(n) = B(n). We have also B(n)h* = B(n), where h* = o*(n — 1)"0*(n —
1). Neglecting (n — 1) arguments, we can write

B(n)o*o**~o* = B(n)h*c*a** " g* = B(n)o* o**c** g*
=B(n)o* o* =p(n)h* = B(n)

and the expression of o%(n) is proved. That of ¢*%(n) is proved in the same
way. O

The main constraint that B(-) must satisfy is that, for n € N*, the singular
values of B(n) [positive square root of the eigenvalues of B(n)B(n)] are less
than or equal to 1. Furthermore, the variation domain of B(-), which depends
on the orthogonalization process, can be well described as in the following
examples.

(a) Gram-Schmidt process. Let € be a zero-mean real m-variate random
vector with covariance matrix o2, The Gram-Schmidt orthogonalization pro-
cess of the successive components ¢;, j = 1,..., m, of £ uses the inner product
(ej, &y = Ele;e) and defines unlquely new varlables m;, Jj=1,...,r, where r
is the rank of o2, The random vector n = (7,,...,7n,) is zero-mean with
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E{nn'} = I,. We have ¢ = o, o being a unique m X r matrix. We also have
m = 0~ ¢, where the r X m matrix o~ is unique if 7 is expressed only through
the r components of ¢ which, in the orthogonalization process, gave rise to n s
Jj=1...,r.

(b) Principal component process. Let o = VA2V’ be a spectral decomposi-
tion of o2 in which A? is the square diagonal matrix with the eigenvalues
8>+ 28, of o including the multiplicities, as diagonal elements. A
denotes the diagonal (not necessarily square) matrix with the positive square
root of nonzero elements of A? as diagonal elements (AA’ = A2) and A~ is the
matrix obtained by replacing the nonzero elements of A’ by their reciprocals.
For a root with multiplicity, the first corresponding eigenvector is such that
the number of successive zero components, starting from the last one, is
maximum; the next eigenvectors are selected in the same way while preserving
the orthogonalization conditions. Then V is unique if the first nonzero compo-
nent of each eigenvector is positive. ¢ and o~ are given by o = VA and
oT=A"V.

Notice that the symmetric square root Vo2 and its Moore inverse Vo2 ©
(which is symmetric) used in Inouye (1983) does not satisfy the constraint
o o=h.

The normalized version of recursions (4) is

) n(t;n) =o(n) o(n—1){n(t;n—1) - B(n)n*(t — n;n — 1)},
n*(t;n) =o*(n) o*(n - 1){n*(t;n — 1) — B(n)n(t + n;n — 1)}.

The coefficients in

n n

n(t;n) = 3 B(n;k)X(t — k), n*(t;n) = ¥ B*(n;k)X(t + k)
k=0 k=0

are uniquely defined by B(-) and can be given by a normalized version of the
Levinson-Durbin algorithm. The associated regression coefficients come from
e(t;n) = o(n)n(t; n) and agree with those of the original algorithm in which
g-inverses o2~ are (0™ Yo ~.

From (6) we observe that the variation domain of B(-), further denoted by
,(m), in the orthogonalization processes (a) and (b) is as follows. B(0) is
nnd,; {B(n),n =1,2,...} is a sequence of square matrices having singular
values less than or equal to 1 and such that the order of B(n + 1) is equal to
the rank of I — B(n)B(nY, the order of (1) being equal to the rank of B(0). So
either the sequence is not finite and the rank of B(rn) is constant from some n,,
or X(-) is linearly singular of order d and the sequence stops with B(d) in
which all singular values are equal to 1.

The Gram-Schmidt process leads to the definition of B(-) proposed by Morf,
Vieira and Kailath (1978). Using the normalized version of the
Levinson-Durbin algorithm, they prove the one-to-one correspondence be-
tween {A(n), n=0,...,N} and {B(n),n =0,...,N} as long as o%N) is
nonsingular.,
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To any orthogonalization process corresponds a normalized innovation
n(t; n) with a specified interpretation. If we use the Gram-Schmidt process
with an upper triangular matrix for ¢ and a lower one for o*, then the
components of the normalized innovations are the variables which appear in
the circular lattice filtering of Sakai (1983). But his characterization of
{A(n),n =0,..., N} is different and also stops as soon as ¢o%(N) is singular.

3. Canonical partial autocorrelation function. Let B8 be a real square
matrix whose singular values are less than or equal to 1. A singular value
decomposition of B can be uniquely defined as

B=LAGM=LOAM,
where L and M are the orthogonal matrices of the spectral decompositions
I-BB8 =L(I-A)L, I-pB=M(I-A)M,

using the conventions of the principal component process. Then A is the
square diagonal matrix whose diagonal elements are the singular values of B,
including the multiplicities, arranged in increasing order. ® is given by
LBM' = A® with zero elements in rows and columns of ® corresponding to
the zero elements of A. The matrix O is block diagonal and commutes with A;
each block corresponds to a different nonzero singular value and is an orthogo-
nal transformation on the associated eigensubspaces. If the singular values are
all distinct then © is a diagonal matrix giving the signs of the diagonal
elements of AO.

We use the following notation: (I — A%)'/2 and (I — A%?)!/2~ are the diagonal
(not necessarily square) matrices defined from (I — A?) as in the principal
component process. In the particular case of the spectral decomposition
%) = Ly A%0)L,, Ay and A, are associated with A%(0) as above. Notice that
all spectral decompositions are uniquely defined because of the conventions of
the principal component process.

LEmMMA 1. Let 0%(n), n € N, be the sequence of forward residual covari-
ance matrices of a stationary process X(-). From the spectral decomposition
0%(0) = Ly A*0)L, we define the starting values o(0) = Ly A, and o(0)~=
Ay L, of the recursion

a(n) =o(n - 1)L,[I - A%(n)]"?,
o(n) = [I-8(m)]""*  Lo(n-1", neN*,
where L, and A*(n) are given by the spectral decomposition
o(n—1)"oX(n){o(n-1)"] =L,[1- A*n)]L,.

Then, for any n € N, a(n) and o(n)~ are rectangular matrices bf respective
order m X r(n) and r(n) X m, r(n) being the rank of o*(n), and satisfy

() o(n)o(n) = a(n),
(i) o(n)~o(n) =1,
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ProoOF. At first note that a similar statement holds for the sequence of
backward residual covariance matrices o*%(n), n € N. The proof is carried out
simultaneously for the two sequences. Note also that properties (i) and (ii)
imply that o(n)~, o(n) and [o(n)"To(n)~ are g-inverses of o(n), o(n)~ and
a%(n), respectively. Obviously, o(0) = L, A, and 0(0) = A; L, satisfy (i) and
(ii) and then o*%(0)~ is well defined since o*2(0) = 02(0). Now we suppose
that o(n — 1) and o(n — 1)~ satisfy (i) and (ii) and that c*%(n — 1)~ is given.
Using (5), we have

o(n—1)"oX(n)[o(n—-1)"]
=Ly —o(n—1)" 8(rn)o*2(n-1)" 8(n)[o(n-1)"].
Then the left-hand side of the above equality is a n.n.d. matrix whose spectral

decomposition can be written as L' [I — A%(n)]L,. The recursion leads to o(n)
and o(n)~ and the verification of (ii) is straightforward. For (i) we have

o(n)o(n) = o(n - Do(n - 1) e2(n)[o(n - 1) | o(n - 1).
o(n — o(n — 1)~ is the projection, in R™, onto the subspace generated by
the rows (or columns) of o?(n — 1). Writing (5) as
c®(n—-1) =0%(n) +8(n)o**(n — 1) &(n),
the kernel of o%n — 1) is included in that of o2(n) and we can delete
o(n — Do(n — 1)~ and its transpose in the above expression of o(n)o(n).
The order m X r(n) of o(n) comes from the inclusion of kernels just noted

together with our conventions. Now o-2(n)~ is available for the further step in
the recursion on the backward sequence. O

Lemma 1 gives an orthogonalization process of special kind: o(n) and
o(n)~ are defined from o(n — 1) and o(n — 1)~. Nevertheless, this process,
further called canonical process, operates as a standard process. For backward
quantities we use the following notation:

0*2(0) = M(; A2(O)M0, M, =L,,
o*(n —1)"o*}(n)[o*(n — 1) = M.[I- &%(n)|M,, neN*-
Theorem 2 proves that A,, n € N, are the same for the backward and forward
sequences.

The standard partial autocorrelation function associated with this canonical
process can be defined as follows.

DEeFINITION. The canonical partial autocorrelation function B(-) of a sta-
tionary process X(-) is defined by B(0) = E{X(¢)X(¢)} = L; A%(0)L, and

B(~n) =B(n) = E{n(t;n — )n*(t—nsn— 1) =L, A,0,M,, neN,
where the normalized innovations are given by the recursion ‘
n(t;n) = [I - Az(n)]l/z_ {L,n(t;n —1) — A,0,M,n*(t —n;n — 1)},
n*(t;n) = [I— 82(n)]"*" {(Mn*(¢;n — 1) — A,0,Ln(t + n;n — 1)},
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with n(¢;0) = n*(¢;0) = Ay L, X(¢) as starting values.

From now B(-) denotes the canonical function. We see that the variation
domain of B(-) is Z,(m) and the one-to-one correspondence between A(:) and
B(+) can be proved using the normalized Levinson-Durbin algorithm associ-
ated with the recursion in the definition of B(-). The following constructive
process proves that the application A(-) — B(-) is one-to-one from the set of
matrix autocovariance functions A(-), with the positive definiteness property,
onto Z,(m).

Let {Y(n), n € N} be a sequence of uncorrelated zero-mean random vectors
whose covariance matrices E{Y(n)Y(n)} = 0%(n) are associated with a given
B(-) in Z,(m) by use of (i) in Lemma 1. Then we can verify that the recursion

X(n)=X(n;n-1)+0o(n—-1)B(n)e*(n—-1) £*(0;n —1) + Y(n),
n € N¥,

starting with X(0) = Y(0), well defines a stationary sequence {X(n),n € N}
having B(-) as canonical partial autocorrelation function.

From Lemma 1, we see that {(L,,A,),n € N} [resp. (M, A,),n € N}]is in
a one-to-one correspondence with {c%(n), n € N} [resp. {c*%(n),n € N}]. As in
the scalar case, B(-) is defined, except for signs {0®,,n € N*}, by the residual
covariance matrices. We observe also the following properties.

(i) The rank of o¢%(n) is equal to that of 0*%(n), n € N.
(ii) The kernel of o%(n — 1) is included in that of o%(n), n € N*,
(iii) The diagonal elements of I — A%(n) are the eigenvalues of o%(n) with
respect to the inner product defined by ¢%(n — 1):

o?(n)o?(n—1) o(n — 1)L, =o(n —1)L,[I - A*(n)],
[o-(n - l)L'n]az(n -1) [a(n - 1)L'n] =1.
The covariance matrices of the random vectors
Ln(t;n—1) =L,o(n—1) e(t;n - 1),
Mn*(t —n;n—1) =M,o0*(n —1) &*(¢t —n;n — 1),
are equal to the identity matrix and their correlation matrix is given by
E{L,n(t;n — 1)n*(¢ —n;n - 1)YM,} = L,B(n)M, =A,0,.

Then A, stands for the canonical correlation between &(¢; n — 1) and £*(¢ — n;
n—1), L,nin —1) and M,n*(t — n;n — 1) giving the associated canonical
variables. For another orthogonalization process, the singular values of the
corresponding sequence {8(n),n = 1,2,...} are also given by the canonical
correlations but the normalized innovations differ. In our choice the compo-
nents of n(¢; n) and of n*(¢ — n; n) are the canonical variables in the canonical
analysis of {e(¢; n), e*(t — n; n)}.
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THEOREM 3. The correlation matrix between the normalized innovations
n(t; n) = o(n) e(t; n) and n*(t — n;n) = o*(n)"e*(t — n;n) is given by

E{n(t;n)n*(t — n;n)} = —[1 - 2%(n)]"*"4,0,[I - 82(n)]"*.
Proor. The following equalities lead to the result:
E{n(¢;n)n*(¢ — n;n)'}

Y E{B(n, k)X(t - k)n*(t - n;n))
k=0

E{B(n,n)X(t - n)n*(t — n;n))

= E{B(n;n)e*(t — n;n)n*(¢ — n;n)'}

E{B(n;n)e*(t — n;n)e*(t — n;n)’[a*(n)—],}

—[1- 8(n)]"*” 1,0,M,B*(n - 1;0)0*(n)o*(n)[o*(n) |
—[1-2%(n)] "7 4,0,M,0%(n — 1) o*(n — 1)M,[I - A*(n)]
—[1-22(n)]"*" 8,0,[1 - 2(n)]"*, o

1/2— 1/2

The above correlation matrix is the matrix obtained from —-A,®, by
deleting rows and columns corresponding to the singular values equal to one
in A,.

Acknowledgments. The author would like to thank the referees for
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