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A RISK BOUND IN SOBOLEV CLASS REGRESSION

By GriGgor! K. GOLUBEV AND MICHAEL NUSSBAUM

Institute for Information Transmission
and Karl Weierstrass Institute

For nonparametric regression estimation, when the unknown function
belongs to a Sobolev smoothness class, sharp risk bounds for integrated
mean square error have been found recently which improve on optimal
rates of convergence results. The key to these has been the fact that under
normality of the errors, the minimax linear estimator is asymptotically
minimax in the class of all estimators. We extend this result to the
nonnormal case, when the noise distribution is unknown. The pertaining
lower asymptotic risk bound is established, based on an analogy with a
location model in the independent identically distributed case. Attainment
of the bound and its relation to adaptive optimal smoothing are discussed.

1. Introduction and main result. In the area of nonparametric curve
estimation, some attention has recently been devoted to asymptotically mini-
max estimation for integrated mean square error. In a class of problems, it has
been possible to improve the results on best obtainable rates of convergence by
finding the exact asymptotic value of the minimax risk in the class of all
estimators. The constant involved represents the analog of Fisher’s bound for
asymptotic variances, for those ‘“ill-posed” curve estimation problems where
Vn -consistency does not obtain. The key original result is due to Pinsker
(1980); it concerned a filtering problem over ellipsoids in Hilbert space. The
notion of ellipsoid is important in this context since Sobolev smoothness
classes can be described in this way.

Consider observations

(1.1) Yin = f(x;,) + &, x;, €[0,1],i=1,...,n,

where {¢;} are independent random variables with zero expectation, and the
function f is to be estimated. The nonrandom design points x;, are assumed
to be generated by a density g on [0, 1] such that

(1.2) j()xi"g(t) dt =i/n,

where g is assumed to be continuous ard positive on [0, 1].

Let L, = L,0,1) be the Hilbert space of square integrable functions on
[0,1] and let || - || denote the usual norm therein. Let, for natural m and
f € L,, D™f denote the derivative of order m in the distributional sense and

Received December 1987; revised June 1989.

AMS 1980 subject classifications. Primary 62G20, 62G05; secondary 62C20.

Key words and phrases. Nonparametric regression, asymptotic minimax L, risk, smoothness
ellipsoid, location model, shrinking Hellinger neighborhoods, adaptive bandwidth choice, experi-
mental design, robust smoothing.

758

[
v
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to /2
The Annals of Statistics. BIKOIRS ®

®

WWWw.jstor.org
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let
Wy ={f€ Ly; D™"f € Ly}

be the corresponding Sobolev space on the unit interval. The nonparametric
class of functions to which f is assumed to belong is

Wy (P) = {fe W;"; | D™f|" < P}
for given m and P > 0. We are interested in the limiting minimax risk

3 3 m m 2
(1.3) A = lim inf s1}l}m2 /e VE | - £
[sup over f & W,”(P), inf over all estimators f]. In the paper of Nussbaum
(1985) the case of normal ¢; with variance o2 and uniform design (g = 1) was
studied. The result was

(1.4) A = y(m)otm/@m+Dpl/@m+1)
where
(1.5) y(m) = (2m + 1)Y®" P(m/m(m + 1))>m/Em Y

is Pinsker’s constant. The method of proof was to show that with the help of
some spline smoothing theory, the regression problem can be reduced to the
original filtering problem. Normality of the errors was essential there. For
some closely related results, see Speckman (1985).

The present paper addresses the problem of a risk bound for unknown error
distribution. For the heuristics it is helpful to consider an analogy with mean
estimation. The sample mean of independent identically distributed observa-
tions with mean ¥,

(1'6) yl=19+§l’ i=1,...,n,

is an asymptotically efficient estimator of ¥ when: (a) the errors ¢; are
N(0, 02); (b) loosely speaking, the distribution of the errors is unknown. The
result (b) is due to the fact that the sample mean is a linear functional of the
empirical distribution function; see Levit (1975). It will be instructive first to
formulate the risk bound for the mean in the semiparametric form, where the
distribution of the errors ¢, appears as an infinite dimensional nuisance
parameter, varying in a shrinking Hellinger neighborhood of some central
measure @,. Let, for distributions Q,, @,

H(Q,,Q) = (f ((dQy)"* - (dQ)l/b)z)l/z

be the Hellinger distance. Consider a sequence 7, such that
7,20, 7,n/2 >0 asn o .
Introduce the set of probability measures on the real line:

(17) @,{I= {Q’H(QO’Q) STn7EQ§=O}‘
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The central measure is assumed to have zero expectation, finite second
moment and to fulfill the following regularity condition: If ,, denotes the
shifted measure Q,,(-) = Q,(- + ¢), then

(1.8) H(Q,,Qy) =0(t) ast— 0.

We can now formulate a lower asymptotic risk bound, where the infimum is
taken over all estimators 9 of the mean at 9 at sample size n.

PROPOSITION 1. Assume that in model (1.6), the ¢, are independent with
distribution @ € Q , where the central measure @, has zero expectation,
second moment o? and fulfills (1.8). Then for all 9,, we have

liminf inf sup nEy o (9 - 9)" > o2
Y j9—9gl<r,, Qe

The sample mean ¥, will indeed attain this bound when the appropriate
uniform convergence of its variance is ensured, e.g., by a moment condition.
Suppose that both @, and @ are in the set

(1.9) QY = {Q; Egét < ¢}
for some ¢ > 0. Then we have [compare relation (3.1)]
Eﬂ,Q,n(yn - 19)2 - 0.2 asn — x

uniformly over (&, @): |0 9l < 7,, @ € QF N QM. This means that the risk
bound of Proposition 1 is sharp and that the sample mean is asymptotically
efficient, provided that the lower bound holds also on the narrowed parameter
set.

ProposiTiON 2. If, in addition, Q, is in a class QM for some ¢ > 0, then

lim inf sup nE,,,Q’n('é -9) =02

" 99y <, QeQFnQM

As the bound is attained by 7,, Proposition 2 holds relative to the class of
estimators & which do not depend on @,. The shrinking Hellinger ball model
is appropriate when investigating the sample mean as an estimator of the
mean functional of a distribution [Levit (1975); see also Ibragimov and
Khasminski (1981), Chapter 4.1]. Proposition 2 is in fact a reformulation of
these results for the ‘‘parameter + noise” model (1.6) [note the condition
Eyé = 0in (1.7)]. This is a convenient way of describing the efficiency of the
sample mean when the error distribution is unknown, in analogy to the case of
normal errors.

Proposition 2 can be extended to parametric linear regression, stating
efficiency of the Gauss—Markov linear estimator. However, from studies in the
context of robustness [e.g., Beran (1982)] one particular feature has emanated:
The model giving meaningful results here is one of nonidentically distributed
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errors. The distributions of ¢; will still vary in a small neighborhood of some
(unknown) central measure @,, but will in general be different.

The Sobolev class model can be regarded as an extended or nearly linear
regression model. Define r = 1/(2m + 1). Then the normalizing factor of the
risk in (1.3) is n'~". The shrinking rate of the distribution neighborhoods to be
defined will be tied to this factor. Let 7, be a sequence such that

(1.10) 7,20, 7,n02 50 asn o

Consider a central measure Q, as above and a neighborhood QZ, defined in
terms of the new 7, [see (1.7)]. We will also consider a ‘“moment neighborhood”
QY containing @,. Denote the distribution of (¢, ..., £,) in model (1.1) by II
and define a set of product measures

Qy = { ®Q;Q cQfnal,i= 1’“""'}'
i=1

The distributional model for the noise in (1.1) will be II € Q. We study the
asymptotic minimax risk

(1.11) A = liminf inf supnl"’Eﬂn,n"f— f"2.
n  fofu

Here the supremum is taken over (f, II) € W,"(P) X Q}, while the infimum
is taken over all estimators f at sample size n which may depend on m, P and
Q. Our main result is as follows.

THEOREM 1. Suppose that in the model (1.1), the design points are gener-
ated according to (1.2) and the central measure defining the neighborhood Q}
fulfills the conditions of Proposition 2. Then

A>y(m)(ad) P,
where o® = Eg £%, d = [g ™' (x) dx.

This represents the desired extension of the result (1.4) to the case of
unknown error distribution. We also claim that this risk bound is sharp, and
we will provide evidence on the basis of a first two moments argument for
linear estimators (Section 3).

An extension to the case of weighted L, loss can be given as follows. Let w
be a continuous and positive function on [0, 1] and consider a loss given by

(1.12) folw(x)(f(x) —f(x))zdx.

Such a loss arises naturally when one considers the design loss n "' 7_ ( (x;) —
f(x,))?, which may be viewed as a discrete approximation to (1.12) for w = g.
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THEOREM 2. Let A, be the analog of (1.11) when the loss (1.12) is
substituted for ||f — f||?. Then, under the conditions of Theorem 1,

8,z y(m)(o%d)" P,
where d = [3g~ {x)w'*1/2™(x) dx.

We note the following implications for experimental design and robustness.

ReMARk 1. Optimal designs of nonparametric regression experiments have
been studied for a variety of settings and criteria. For the asymptotic L, risk
we mention Agarwal and Studden (1980) and Miiller (1984); for a result
involving Sobolev classes, see Spruill (1984). As the present bound is sharp for
a given design, it is of interest to try to minimize it further. For given w, we
obtain, with @ = (2m + 1)/4m from Jensen’s inequality,

d= f(g(x)w_“(x))_lw"‘(x) dx > (fw"(x) dx)2

so that g = w®/[w* is optimal. In particular, for L, loss (w = 1) the uniform
design is best. On the other hand, when g and w are tied by w = g (design
loss), then d = 0 is achieved in the limit by taking all x; equal, which is in
agreement with intuition since the rate of convergence then changes.

ReEMARK 2. The Hellinger neighborhood model for the noise distribution
adopted here resembles the light contamination neighborhoods occurring in
the robustness study of Beran (1981). The crucial difference is the additional
moment restriction (1.9) which ensures robustness of the sample mean (when
robustness is given the asymptotic minimax definition). The analogy with the
location model exploited here quite naturally suggests an asymptotic minimax
theory for robust smoothing, based on infinitesimal distribution neighbor-
hoods expressing heavier contamination [cf. Millar (1983)].

The problem of best possible estimation in terms of optimal rates of
convergence has been extensively investigated [Ibragimov and Khasminski
(1982); Stone (1982) and Birgé (1983)]. In our study on the level of constants a
global error criterion is adopted (L, loss); for comparable recent results on
functionals (like the value of f at a point), see Ibragimov and Khasminski
(1984) and Donoho and Liu (1988).

In Section 2, we review the background of the risk evaluation (1.4) in the
normal case. In Section 3, we argue that our new bounds are attainable and
discuss some recent results indicating that this should be possible adaptively.
Refined bounds are the topic of Section 4 and proofs are in Section 5. An
Appendix contains a short proof of an auxiliary result related to the Hajek-
Le Cam asymptotic minimax theorem.

The following notations are adopted: [f means integral with respect to
Lebesgue measure; a ~ b means a = b(1 + o(1)).
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2. Some background on L,-optimal smoothing. For additional in-
sight, we try to elucidate why, under normality, the minimax linear estimator
is asymptotically overall minimax [Pinsker (1980)]. This task is facilitated by a
related minimax identity due to Pilz (1986). Suppose an n-dimensional ob-
served random vector n has expectation ¥ and covariance matrix 3, where
9 € O and O is known to be a compact subset of R”, which is symmetric about
the origin. Consider the class of linear estimators of 9, 153 = Bn, where Bisa
matrix of fixed coefficients. Their risk under squared Euclidean loss is

(2.1)  Ey||d5 — 9| = tr[(I - B)99'(I - B")] + tr[ BSB'] = R(B, §%").

Along with “minimax’ or ‘“Bayesian’’ we shall employ the terms ‘“ minimax
(or Bayesian) linear,” meaning the respective extremal property within this
special class of estimators. Let v be an arbitrary prior distribution on ® and
consider the mixed risk of . It can be expressed as

(2.2) E,R(B,99') =R(B,M,), M, =E®99.

Let .# be the set of all second moment matrices M, when v is concentrated
on @. Clearly (2.2) implies
sup R(B,d9') = sup R(B, M).
9e® Me.
According to the result of Pilz (1986) there is a saddle point (B*, M*) such
that
R(B*, M*) = sup R(B*,99') = 1nfR(B M*).
ve®
Hence 193* is minimax linear and it is Bayesian linear for a prior on ® having
second moment matrix M * (a least favorable prior). If 95. were also Bayesian
with respect to such a prior it would be minimax. But if 7 is normal, then 193*
is Bayesian with respect to a normal prior N(0,, M*) on R™. This prior is not
concentrated on @, but if in some asymptotic setting it tends to concentrate on
O, then 5. can be expected to be nearly minimax.
In the ellipsoid framework of Pinsker (1980), O is, e.g., a set

. ,
(2.3a) O™(P) =({d€R"; } a0 sP}, a;=(mj)*",j=1,...,n,
j=1 "
while 7 has a structure

(23b) nj=19]+n_1/zfj, J= 1,...,n,

¢; being independent normal with variance o2 In the saddle point pair
(B*, M*), both matrices are diagonal with respective diagonal elements

(2.4a) b} =b(jt), m* =n"'o?8(jt), j=1,...,n
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where the functions b, 8 are defined on (0, «) by

(24b)  b(x) =(1-(7x)"),, B(x) =b(x)(1-b(x)) "

and ¢ > 0 is chosen such that ©7_; a;m* = P. The latter identity implies that
for n - », N(0,, M*) is asymptotically concentrated on ®™(P’) for any
P'> P. Then R(B* M*) is asymptotic to the minimax risk over ®™(P).

From (2.1) and (2.4) we obtain

(2.5) R(B*,M*) =n"'o% Y b*.
Jj=1

The above choice of ¢ implies

(2.6) t~nr(02/P) ', p2mtl= [b(l -b).

We then obtain from (2.5) and (1.5),

(2.7 R(B*,M*) ~ (¢%/n)" "Put [b=(a%/n) "Pry(m).

For recent results on more general sets ® and an interesting geometric
perspective, see Donoho, MacGibbon and Liu (1988).

Consider now the Sobolev class regression model (1.1) with g =1 and
normal noise &; with variance o 2. In Speckman (1985) and Nussbaum (1985)
it was shown how to use an orthogonal transformation in R" (a spline analog
of the Fourier transform on [0, 1]) to reduce the model to one of (essentially)
the type (2.3). The risk bound (1.4) is then equivalent to Pinsker’s (1980)
result.

For the nonnormal errors case, the basic reasoning is that a smooth
function can be well approximated by one which is constant on small intervals.
The problem would be then to estimate a ‘“local”’ mean, in the presence of
random noise ¢;,. When the ¢, are independently distributed with given,
possibly nonnormal distribution @,, one can apply maximum likelihood theory
to find a risk bound which involves the Fisher information of @, in the
location problem. Such a result was obtained in Golubev (1984). However our
present goal is to emulate the efficiency of the sample mean as described by
Proposition 2. We establish that the same risk bound as in the normal case is
valid for a large class of distributions @,, when a small Hellinger neighbor-
hood around @, is taken into account.

3. Attainability. A complete proof is beyond the scope of this paper, but
we provide theoretical backing for our claim that the bounds are indeed
attainable.

3.1. Consider first the regression model (1.1) with g = 1 and normal noise
&, with variance o%. From the previous section it is clear that the risk bound
(1.4) is attained by the minimax linear estimator, given in the frequency
domain by coefficients b* [see (2.4a)]. In the time domain (1.1), this corre-
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sponds to a certain linear spline smoothing procedure. In (2.4) the function b
can be interpreted as a filter shape, while ¢ serves as a smoothing parameter.
The relation (2.6) gives the appropriate choice of ¢, in dependence on P
and o2

3.2. In the nonnormal case, when the noise in (1.1) is uncorrelated with
zero expectation and variance o2, the risk behaviour of the minimax linear
smoothing spline estimator of 3.1 remains unchanged. Indeed, the risk of
linear estimators under quadratic loss depends only on the first two moments
of the observations; cf. (2.1). Now, the actual noise distribution model in
Theorem 1 ensures that Var ¢; ~ o2 Indeed for @ € Q¥ N Q¥, we have

2
2
|Eqx? — 2| =

fxzd(Q - Q)

@ < ([#((@@)"* + (@)Y’ | H¥(Q0. @

< 4cH?*(Qy, Q) = o(1).

Thus it is obvious that the bound of Theorem 1 is attainable for g = 1 and
known P, o2

3.3. Speckman (1985) established that the case of general design density g
in (1.2) can be treated as in 3.2 if the a ; defining the ellipsoid are properly
adjusted. As a result, we obtain attainability in Theorem 2 for w = g, still on
the basis of the minimax linear smoothing spline. The general case of Theorem
2, with w, P, 02 known, can also be covered by linear estimators, but we
invoke here the nonlinear (adaptive) smoother of point 3.6 below.

3.4. Up to now o2 i.e., the variance of the central measure @, has been
assumed known. But the basic motivation of the present paper is to give a risk
bound for unknown noise distribution. As (2.6) shows, o2 enters in the
smoothing (or bandwidth) parameter of the optimal procedure, along with P.
Thus an unknown o2 leads to a similar problem as an unknown P, namely
adaptive (or automatic) selection of the smoothing parameter based on the
sample. However, when P is known, the plug-in-type procedure based on an
estimate of o2 is relatively easy to treat theoretically. In the present model o2
can be estimated with parametric convergence rate [see Rice (1984) and Li
(1985)].

3.5. In the problem of adaptive smoothing parameter selection there has
been much progress recently; for a survey see Marron (1988). In the present
context one could ask for estimators which attain the bound of Theorem 1
without depending on P and o2. In fact any combination of the filter shape b
[see (2.4)] with a known optimal bandwidth selector such as cross-validation,
empirical risk minimization or plug-in (estimating o2 and || D™f||?) could be
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considered. Note that the decision-theoretic risk and the minimax aspect are
not at the center of many of the recent investigations [Rice (1984), Hardle and
Marron (1985), Li (1986) and Marron (1987)]. Earlier results on risk perfor-
mance of the plug-in method are due to Woodroofe (1970) and Nadaraya
(1974) (for density estimation without the minimax aspect). Speckman (1985)
came close to proving minimax risk optimality of the appropriate smoothing
spline estimator with bandwidth chosen by generalized cross-validation (in the
setting of 3.1).

3.6. For our attainment question, on the adaptive level, the most relevant
result is in Golubev (1987). For a Gaussian model similar to (2.3), with known
o2 and m but unknown P, it is proved that the bound (2.7) is attainable by an
adaptive smoother with plug-in-type bandwidth selection. Actually the estima-
tor is a refinement based on the following idea. Return to the time domain, i.e.,
to the regression model (1.1) on [0, 1]. Let {A} = A be a partition of [0, 1] into
intervals A of equal length. When f & W,*(P), then the restriction of f to
any A € A is in a Sobolev class on that interval, i.e.,

(3.2) [A(Dmf)2 <P,, Ae€A, YP,=P.

Here the P, are unknown even when P is known. Now, on each A use an
adaptive estimator rescaled to that interval. The resulting estimator on [0, 1]
will then be adaptive also with respect to P. Furthermore, when the length of
the A’s tends to zero sufficiently slowly this estimator will also be risk optimal
with respect to weighted L, loss (1.12), even though it does not depend on w.
As this result holds under normality, the above arguments 3.2 and 3.3 suggest
that the bound of Theorem 2 is attained by adaptive estimators, where at most
an additional moment assumption for the noise would come into play.

The locally adaptive procedure described is optimal in an even stronger
sense; see Section 4.2. The idea of a locally varying adaptive bandwidth choice
is also developed by Miiller and Stadtmiiller (1987).

3.7. The question of adaptivity with respect to the degree of smoothness m
is also of interest. For minimax rate optimality, the problem was raised by
Stone (1982) and solved by Hirdle and Marron (1985). Simultaneous choice of
kernel order and bandwidth by cross-validation was treated by Hall and
Marron (1988). We briefly review here the method of adaptive estimation
which has been developed by Efroimovich and Pinsker (1984) and indepen-
dently by Rudzkis (1985). In the ellipsoid model (2.3), one could ask for the
linear estimator ¥z, which at a particular 4 € ®™(P) minimizes the risk
R(B, 99", call its coefficient matrix B(d¥). In what follows it suffices to
consider only matrices B of diagonal kind, i.e., given by a set of coefficients b,,
j=1,...,n. Then B(¥9) is given by

2

ﬂj .
(3.3) bi(9) = =353, J=L..n

_ )
102 + 97
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If the unknown b,(8) could be determined from the data, the resulting
estimator might asymptotlcally dominate any linear estimator and, hence,
attain the minimax bound. Plugging in the n; for d; in (3.3) does not yield the
desired result. Consider now a restriction on the set of coefficients and the
corresponding minimizer B(9) of R(B, 39", such that: (a) the set is wide
enough so that R(B(ﬁ) 99') ~ R(B(9),99%) as n — »; (b) it is narrow
enough to ensure that B(9) is estimable. A solution is to require that b; as a
function of j is constant between indices k2, %k = 1,2.... The resulting
estimator of ¥ is shown to be asymptotically minimax over any ellipsoid ®
from a large class; in particular, in the Sobolev class model it is adaptive with
respect to m and P. For further results on this type of smoothers in density
estimation, see Efroimovich (1985) and Kazbaras (1986). Clearly the method
also is applicable, in principle, in the present regression model.

4. Localized bounds. In Theorems 1 and 2 the supremum with respect
to the regression function f is taken with respect to the whole Sobolev class
W,™(P). It is compelling to consider some shrinking neighborhood setting here
also, in analogy to the noise distribution model adopted. A localization can be
achieved in two ways.

4.1. Let f, be some function serving as a center of localization. The bound
of Theorem 2 remains valid when the supremum with respect to f is taken
over

(4.1) {f; F=Fo€ WS(P), |~ foll <7},

where 7, fulfills (1.10). As usual f, may be assumed known for the lower risk
bound. The proof is continued in Section 5.4. Attainment over a set (4.1), with
fo unknown, can be shown if f, is of higher smoothness than f, e.g., if
fo € Wy"*1. To see this, consider the analogous problem in the ellipsoid model
(2.3). Suppose that instead of (2.3b) we have

n

n; =, ++n" V%, j=1,...,n, Z 2t DYS < .

In the optimal filter (2.4a), replace the first [n"/log n] coefficients &7 by 1. In
this way the influence of the ¥,; in the worst case asymptotic r1sk is made
negligible.

4.2. Another possibility consists in narrowing the class W,"(P) as follows.
Observe that the prior distribution on f constructed in Section 5.3 is not only
asymptotically concentrated on W;*(P) but, more specifically, on the ellip-
soidal shell {f; 6P < ||D™f|? < P}, for some § < 1. One might now pass to
subintervals A of [0, 1] and ellipsoidal shells on each of them, possibly with
different radii P, [compare relation (3.2)]. Refinement of the partition leads to
a priori sets for f which prescribe a given approximate mass distribution of
the squared mth derivative on [0, 1]. Let v be a continuous positive function,
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and 7} be a sequence 7* — 0, 7*n"/2 - ». Consider a class

[ ((Dmf)* - v)

#,(v) = {fe W,"; sup
0

< 7',;"}
x<€[0,1]

Let A, , be the analog of A, when WJ"(P) is substituted by %,(v). Then

(4.2) Ay, = y(m)o-z(l")fwv’g’_l.

The proof is sketched in Section 5.4. For Gaussian noise and continuous
observations, this bound and its attainability for unknown w and v have been
established by Golubev (1987). The estimator employed is described in Sec- .
tion 3.6.

5. Proofs.

5.1. Analytic preliminaries. For establishing the lower risk bound it is
convenient to restrict the parameter space by boundary conditions on the
unknown f. Consider the Sobolev space Wz"‘ with boundary conditions on
[0, 1]:

W = (f € Wy (D*)(0) = (D*f)(1) = 0,k =0,...,m — 1}.
It is a Hilbert subspace of W," with respect to the norm (|| f||2 + || D™f||>)'/2.
We will make use of the results on the spectral theory of differential operators;
see, e.g., Agmon (1968).

There exists a basis ¢;, j = 1,2,..., in Wzm such that, if (-, - ) denotes the
inner product in L,(0, 1),

(¢:,0;) =8;5, (D™p;, D™p;) = A;8,;, i,j=1,2...,
where
0<A; <Ap< -+
and the asymptotics of the eigenvalues A ;18 given by
(5.1) A~ (mj)Pm, oo

The boundary conditions ensure that, when the functions ¢ ; are continued by
zero outside [0, 1], these functions belong to the Sobolev space of order m on
any interval containing [0, 1]. Furthermore, this property allows the construc-
tion of another orthogonal system in W;" which is obtained by a change of
scale. Fix a natural number g. Later we will let ¢ tend to infinity with n.
Define functions :

(52)  @pe(x) =q¢"%0(gx —k+1), k=1,...,q,j=1,2....

Each function ¢, is in W;", has support [(k — 1)g~%, kg~ and

(5-3) (GDikq, ¢jkq) = 8ij7 (Dm¢ikq, Dm‘ijq) = qzmAjaij'
Furthermore, fix a natural s and define W(q, s, P) as the intersection of the
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linear span of ¢, j=1,...,s, k =1,...,q, with W;*(P). From (5.3) we
obtain that for f € W(q, s, P),

s q
(5.4) |Dmf|? = E ¥ 0"\ (e f)°
e

and obviously W(q, s, P) is nonempty. Restricting f to this set, we reduce the
problem to the one of estimating the local Fourier coefficients £, = (¢;;,, f)-
The indices ¢ and n will frequently be dropped from notation in the sequel.

The functions ¢;, are orthonormal in L4(0, 1). We have to take into account
that our observation model is discrete. Observe that under the assumptions
made on the regression design {x;}, the Kolmogorov distance between the
distribution function G having density g and its empirical counterpart G,
(assigning mass n~' to x;) is O(n~"). The following statement then can be
proved in the same manner as Lemma 4.2 (i) of Cox (1984).

LeEmMA 1. Let fy, [, be functions from W,*. Then

ffled(Gn = &) < Cn (|| Fll D™ FU Fell +1D™Fs )

where C does not depend on f,, fo, n
Define g, = g(kq™%), k=1,...,q. In the following result concerning the
functions ¢, j < s, k < q, the number s will remain fixed until the last step
in the proof of Theorem 1.
LeEmMA 2. Suppose that ¢ = ©, ¢2™/n — 0. Then
gk_lf‘Pik(ij dG, =§;; + o(1)
uniformly over i, j <s, k <q.
Proor. From (5.3) it follows that
lesall +1 D™l = 1 + gmay.
Furthermore, the assumptions on g imply that
gk_l(f%k%'kg) = (@ip> @) +0(1)
uniformly over £ < ¢ and all i, j. The fesult follows now from Lemma 1. O

5.2. Local regression models. By restricting f to the subset W(q, s, P) of
the Sobolev class W,"(P), we achieve that the observations y, have a structure

S
(5.5) Yi = Z ‘ij(xi)fjk"’fi, i=1,...,n,
i=1
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where k above is uniquely defined by i € #(k) = {i; x; € ¢~k — 1, k]}. This
may be construed as a collection of ¢ linear regression models, each account-
ing for observations in the interval ¢~ '(k — 1, k] and having s parameters.
The parameters f;, satisfy [cf. (5.4)]

s q
Y X q2m/\j jiSP,
j=1k=1
while the risk can now be bounded by

2 S A 2
(5.6) E|f-fI"2EX T (fiu—fu)-

kE=1j=1
At this point, let us specify g by
g=[K n"],

where K, assumed fixed as well as s, will be selected later. Let us rescale the
parameter vector in each local model by the proper normalizing factor which,
in view of Lemma 2, is (ng,)"/2. Define vectors

h, = (ngk)l/z(fjk)j=l ..... s’

®; = (ngk)_l/2(¢jk(xi))j=1 ,,,,, 8 i€ (k).
Then (5.5) transforms to
(5.7) Yi=0th, + &, i€ (k)

for k =1,...,q. Here the disturbance distributions are assumed to be in
QF N QY and are as yet unspecified. We will now select them in accordance
with the method of least favorable parametric subfamilies. Consider a bounded
function ¢ on R such that, if u is the identity map in R,

JvdQo=0,  [upd@,=1.
For h € R?, let @;(h) be the measure defined by
dQ;(h) = (1 + h'g;¥) dQ,.
For the vector g; we find the bound

_ _ 2 e
(5.8) A O(n 'gsup sup|g,(x))| ) =0(nY).
Jj< x

Thus, when 7, satisfies (1.10), we infer that for || |> < 72n!~" and sufficiently
large n, all @,(h) are probability measures. Let @*(k) be the shifted measure

QF(R)(*) = QUA)(-+ Frh). |
LEMMA 3. Let 7, be the sequence occurring in the definition of Q¥ and let
t, be such thatt, > =, ¢, = o(r,n'""/%) as n — ». Then for sufficiently large

n, the set of measures {Qx*(h); ||h|<t,, i€{l,...,n)} is contained in
Q2 n QXM
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Proor. For the expectation we have

JudQ#(h) = [udQ(k) - Fih = 0.

Let @**(h) be the shifted measure Qy(-+ @/h). Then for the Hellinger
distance we have

(5.9)  H(Q*(h),Qo) < H(Qx(R),Qx*(h)) + H(Q*(R),Q)-

Here the first term on the right-hand side equals H(Q,(%),Q,) and can be
bounded by

(5.10) O(g!h) = O(t,n"~1/2) = o(7,)

in view of (5.8). The second term on the right-hand side of (5.9) can be
bounded similarly in view of condition (1.8). Hence all @;*(h) are in QF, for n
sufficiently large, |k| < ¢,.

For the fourth moment we find

Jutd@r(h) = [(u—h)* (1 + Bihy) Qo

= [u*dQ, + O(;h),
so that all @*(k) are in Q¥ for sufficiently large n. O
Now, in (5.7), assume that ||h,|| < ¢, and that distr(¢;) = @*(k,). Lemma 3

guarantees that this is compatible with the initial errors distribution model
IT € Q}. It is equivalent to the model

(5.11) distr(y;) = Qi(hy), i€ A(k)
for k = 1,...,q, where the parameters h;, = (h;,);,_, ., are now restricted
by
s q
(5.12) sup[[h,ll <t,, X X g*"A;nTlgr'hl, <P.
k<q Jj=1k=1

Our next goal is to establish that each of the ¢ distributional models (5.11)
converges to a normal shift model (local asymptotic normality). To achieve
uniformity, we let k(n) be an arbitrary sequence 1 < k(n) < q and consider
the logarithmic likelihood ratio in the k(n)th model of (5.11) (for hypothesis
h = 0):

A(h) = X log(1+3hy(£)),
i€ A(k(n)
where ¢, are independent with distribution @,. In the same setting, define o3
and an R°-valued random variable L by

o =(Ev*(&)), L= ¥ &u(&).

1€ #(k(n)
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LeEMMA 4. The random vector L converges in distribution to a multivariate
normal N(O,, 0%I,) and for each h € R® we have
2 _
LK
A(h) — KL = 2 + 0p(1).

Proor. First note that Lemma 2 and (5.10) imply

_ 2 —
X (gh)* =kl sup (p;h)” =o(1).
ie A(k(n) i€ #(k(n))
The proof is concluded via the expansion

42
log(1+¢) =t — 5t o(t?)

and the Lindeberg—Feller theorem. O

Note that the function #(x) can be selected to approximate x/o? in the
norm of L,(Q,). Then o2 approximates o?. Lemma 4 means that each model
(5.11) converges to {N(h,c21,), h € R} through an arbitrary sequence & =
k(n).

5.3. Main argument of proof. We shall introduce a prior distribution on
the parameter in the collection of local models (5.11). The A, will be indepen-
dent identically distributed random variables such that the prior measure
tends to concentrate on the space given by the restrictions (5.12). Since the
models (5.11) are asymptotically normal and independent, we can evaluate the
posterior risk by the general result proved in the Appendix. Let % be the set
in R?® defined by the inequalities (5.12).

LeEmMMA 5. Let v be a measure on R® with bounded support fulfilling
s 9 P
13 X < =
(5.13) fj§=1AJxJ dv(x) X

Let vi=v ® --- @ v (q-fold). Then
vi(#)>1, . n—o w

Proor. The first inequality of (5.12) is ensured by ¢, — « and the bounded
support of ». For the second, note that

q
q?mn-t~ q—lKl/r’ g ! Z gk—l ~ fg—l =d.
k=1

Hence the right-hand side has expectation bounded by 6P, é§ < 1, for n large
enough, while its variance tends to zero as n — «. O
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In the collection of models (5.11) the parameter is (h,..., k,); call it now
h. Consider a loss for an estimate h:

q
|h - h|2 = kZ ”h'k - hknzgk_l-
=1

The arguments connected with (5.6) and (5.7) imply, for the asymptotic
minimax risk,

(5.14) A> llm inf inf sup n"Ey|hs — h|
h hea

LEMMA 6. Let v be a measure as in Lemma 5. Then

n- supf lg— h| dv(h) -0, n - w
geR

Proor. For g € # we have
lg - h|* < 2/g|° + 2/h[°,
n"|g|2 < (qz'"n"l)tl)_lP =0(1), n — o,

Hence it suffices to prove
[ (1+q7Yh[)dvi(h) >0, n-e.
gc
This however follows immediately from g, ! = O(1) and Lemma 5. O

Proor oF THEOREM 1. Let i > u be some number where u is from (2.6).

Now specify K as
T AN
K1l= ( * ) Sii.

P

We select the prior measure v as a distribution on R® with finite support, zero
mean and diagonal covariance matrix M with diagonal elements o2 B(j/s),
j=1,...,s, where the function 8 is from (2.4b). Let us demonstrate that the
condition of Lemma 5 is fulfilled if s is large enough. Indeed we have for
s — o, in view of the eigenvalue asymptotics (5.1),

ZAO&mL“)~02%“{[Umfmﬂxﬁh

= 0231/'/1;(1 —b) =o2(sp)"",

where (2.6) has been used. On the other hand,
P
Rg = o} (sf)"

so that (5.13) is fulfilled.
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Note that the right-hand side of (5.14) is not changed if the infimum is
taken only over estimators h with values in %, since % is closed and convex.
We then obtain, from Lemma 6,

A> ili:fn"[Ehﬁl —h[’dvi(h) —o(1), n-o .

The product structure of the model implies that the preceding Bayes risk is a
sum of Bayes risks in the ¢ submodels (5.11). We obtain

q
A> (n"’ Y gk‘l) min ir}ffEh WA — h||2dv(h) + o(1),
k=1 k<q h ’

where E, , denotes expectation in the Zth model (5.11), for & € R°. Take a
sequence k(n) where min, _, is attained and invoke Lemma 4 and Theorem
Al in the Appendix to obtain

A= Kdo? ¥ B(j/s)(1+B(i/8))

Jj=1
S
> (02d) PETIsTEY b(ji/s).
Jj=1

The proof of Theorem 1 is now completed by letting s = ®, i = u, 002 - o2

and recalling y(m) = u~Yb [cf. (2.7)]. O

Proor oF THEOREM 2. Let a € (0, 1) and consider the problem of estimat-
ing f from n observations (1.1) for a loss [&(f — f)? and prior information
$(D™f)? < P. Let A, be the appropriate analog of (1.11). By a change of
scale, a bound for A, may be obtained from Theorem 1 as follows. Define
F(x) = f(ax), x € (0,1). Then

fa(Dmf)2 - a_2m+1”DmF"2, fa(f— f)2 _ a||ﬁ' _ F"2
0 0

The proof of Theorem 1 shows that, for estimating F, observations outside
[0, 1] may be disregarded; hence the relevant observation number is #i ~ nf§ g.
Note that for Theorem 1 to be valid, the regression design need not satisfy
(1.2) exactly but only the condition mentioned before Lemma 1. Then the
design density for estimating F is

£(x) = ag(ax)//o“'g, xe[0,1].

Now Theorem 1 implies

1-r

A, = lim(n/ﬁ)l_ray(m)(o-2f1g—l) (azm—lp)’
(5.15) " 0

_ y(m)(o-zfoag‘l)l_rP’.
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Let now a~! be natural, {A} = A be a partition of [0, 1] into intervals A of
length a, w, = inf, . , w(x) and P, be positive numbers with ¥ P, = P. We
have

[w(P=1) 2 Zwsf (7= 1)

Furthermore, to estimate A, from below, we restrict f to the set of functions
fulfilling [,(D™f)? < P,, all A € A. Analogously to (5.15) it can be shown that

1-r
A, = ‘y(m)):wA(crz/g_l) p;.
A
For P, = Pd,/Yd,, d, = wi*/?™, g~1, we obtain
A, = y(m)(o2Zd,) P
Fora » O we have Xd, —» d. O

5.4. The localized lower bounds. For the result 4.1, note that the set
Wi(q, s, P) defined in Section 5.1 is contained in an L, ball of radius O(rn~™").
Indeed for fixed s and f € W(q, s, P), we have, in view of (5.4),

s

q
IFIP=X kz (@jugr ) < ATg72| D f|* = O(n2m).
j=1k=1

For the bound (4.2), suppose first that the design density g is smooth, w =1
and use the prior of Section 5.3, but with (5.13) valid as an equality. This prior
in fact asymptotically concentrates on %, (v) for v = g7'P/d. (To deal with
the supremum involved, use the methods for stochastic processes on [0, 1].)
The case of general v and g however requires a nonuniform scaling of the
local basis functions ¢, in (5.2). Let g* be the density proportional to (gv)”
and J,,, k = 1,..., g, be intervals such that

g*=q7', k=1,...,q.
Jig
Each ¢;;, in (5.2) is now scaled so that it has support ;. This allows a proof
of the bound (4.2) with essentially the previous argument.

APPENDIX

A decision theoretic result. The Hajek—Le Cam bound, which refers to
the minimax risk in a weakly convergent sequence of experiments, cannot be
utilized here. The reason is that one has to evaluate a proper Bayes risk rather
than a minimax risk, in an asymptotically normal model (5.11). An appropriate
argument has been given by Efroimovich and Pinsker (1981). We propose a
concise proof using abstract notions, within the framework of Le Cam’s (1986)
asymptotic decision theory. The facts we need are found in a particularly
convenient form in Millar (1983), abbreviated (M) hereafter.
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Suppose that for each v from some index set .#, a sequence of experiments
{E, 1, h € RS ||h|| <t,} is given, where ¢, — ®. Assume that, for some 0% >
0,allc>0andall v e ./I/ the experlments {E, 4., IRl < c} converge weakly
as n— o to a limit {E, ,,||k| < c}, where EO » = N(h,0?l,) is a normal
measure on R®.

THEOREM Al. Let M be a symmetric positive definite s X s matrix and A
be the set of all probability measures on R® with finite support, zero mean and
second moment matrix M. Then

(A1) sup hmmfmffE Ih = k)P dv(h) = tr| oM (0L, + M) ]

vey N

nhv

(infimum over all measurable maps h: R® - R®).

Proor. Define truncated loss functions for ¢ > 0:
L, ,(x) = min(||x - h||2,c), x, h € RS.

We shall consider generalized procedures A as bilinear forms according to (M),
(I1.1.4). Then the risk of A for the (bounded contlnuous) loss function L,
and for distribution E is written fL(En v L ). For v € ./ define the
mixed risk

n,h,v

pu(h,v,¢) = [R(E, 4, L.x)dv(h), n=0,1,2....

Now observe that relation (II1.1.7) of (M), obtained in the course of proving the
asymptotic minimax theorem, implies that for any v € 4, ¢ > 0,

liminfinfpn(fz, v,c) = infpo(fz, v,c).

The map h — E, , is continuous in total variation norm, while h - L_ , is
continuous in the supnorm over R°. Since h is a continuous bllmear form
with norm 1, it follows that the family of functions A — fz(E0 wr Lig ) is
equicontinuous (and bounded by ¢) when A runs through the procedures. Now
select a sequence {v,} C .# such that v, - v, = N(0,, M) weakly, e.g., on the
basis of the central limit theorem. By the uniform Helly—Bray Theorem [see
Parzen (1954)]

po(ﬁ,yk,c) —>p0(fz,v'0,c), k —

uniformly in A. Here the right-hand side is continuous in A for the weak
topology, since all po(fz, vy, ¢) are. It follows that if z is the left-hand side of
(A.1), then

z= irhlfpo(ﬁ, Vg, €).

To evaluate this infimum, one may restrict oneself to procedures of Markov
kernel type, since these are dense in the set of procedures. Standard reasoning
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involving Anderson’s lemma~[Section VI.2 of (M)] shows that the infimum is
attained for an estimator A which does not depend on ¢ (the posterior
expectation of k), since L, , is a subconvex loss function. Letting ¢ — o, we
obtain as a lower bound for z the Bayes risk in {N(h,o?I,), h € R} for a
normal prior N(0,, M) and squared error loss, which is trlo?M (oI, + M) '].

O
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