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LARGE-SAMPLE INFERENCE FOR LOG-SPLINE MODELS!

By CHARLES J. STONE
University of California, Berkeley

Let f be a continuous and positive unknown density on a known
compact interval 2. Let F denote the distribution function of f and let
Q = F~! denote its quantile function. A finite-parameter exponential fam-
ily model based on B-splines is constructed. Maximum-likelihood estima-
tion of the parameters of the model based on a random sample of size n
from f yields estimates f, ¥ and Q of f, F and @, respectively. Under
mild conditions, if the number of parameters tends to infinity in a suitable
manner as n — «, these estimates achieve the optimal rate of convergence.
The asymptotic behavior of the corresponding confidence bounds is also
investigated. In particular, it is shown that the standard errors of F and @
are asymptotically equal to those of the usual empirical distribution func-
tion and empirical quantile function.

1. Introduction. Let Y be a random variable that ranges over a subin-
terval & of R and has unknown density f on 2. Let Y;,...,Y, be a random
sample of size n from the distribution of Y. This random sample can be used
for inference about the density of Y and other aspects of the distribution of Y.

The classical parametric approach is to start by “assuming’ a fixed para-
metric model for f involving a J-dimensional vector 8 € ® of unknown
parameters. We write the resulting model as f(:;0), 8 € ®. The maximum-
likelihood estimate 8 of @ is obtained by maximizing the log-likelihood func-
tion

1(0) = L log(f(Y;,0)), 6€<0.

This estimate is especially attractive when the parametric model for f has the
form of an exponential family in which 0 is a natural parameter.

To obtain such a form, choose a J-dimensional vector space .~ of functions
on & such that (for identifiability) the zero function on % is the only function
in . that equals a constant almost everywhere on 2. Let B,,..., B, be a
basis of .. Given the column vector 8 = (6,,...,0,) € R7, set

J
s(+;0) =) 6,B; and c(9) = log[f@exp(s(y;e)) dy|.
1

Then © = {6 € RY: ¢(8) < =} is a convex subset of R7, which is assumed to be
nonempty and open. The corresponding <J-parameter exponential family is
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given by
f(-;0) =exp(s(-;08) —c(8)), 6€O.

For 6 € 0, let H(0) denote the Hessian matrix of c(:) at 0, which is the
symmetrlc J X J matrix having entry a2c(e)/ao 30, in row j and column k
for 1 < j, k < J. This matrix is positive definite, so ¢(+) is strictly convex on 0.
The log-likelihood function is given by

1(0) = Z [s(Y;;0) —c(0)], 6€0.

The Hessian matrix of the log-likelihood function at 0 is —I(8) = —nH(9),
where the information matrix I(0) is positive definite and hence its inverse
(I(0)) ! is also positive definite. Since the log-likelihood function is strictly
concave, the maximum-likelihood estimate is unique if it exists.

Let 7 be a real-valued parameter depending on f. Under the assumption
that f belongs to the indicated exponential family, r = g(8) for some function
g on 0. The maximum-likelihood estimate of r is given by # = g(8). Suppose
that g is continuously differentiable on ®. Let Vg(0) denote the gradient of g
at 0, which is the J-dimensional column vector whose jth entry is 6g(0) /90;.
The asymptotic standard deviation (ASD) and standard error (SE) of 7 are the
nonnegative quantities defined by

ASD(#) = V/(Vg(0))"(1(0)) *Vg(6)

and

A a a -1 a
SE(#) = v/ (V&(9))'(1(§))~'Va(®) .
Suppose that Vg(e) # 0, where 0 is the true parameter. Then

dlst[ ] = N(0,1) and dlst[ T ] = N(0,1), n> 1.

ASD(7) SE(7)
Consequently, 7 + z,_, 5,SE(7) is an asymptotic 100(1 — @)% confidence inter-
val for 7. Here ®(z,) = p, ® being the standard normal distribution function.

In the present approach, we do not assume a fixed finite-parameter model
for f, but we can still make use of finite-parameter models as approximations.
In order for the corresponding maximum-likelihood estimates and asymptotic
confidence bounds for parameters = defined in terms of f to be reliable, we
need the modeling error to tend to zero as n — «; for this, it is necessary that
the number of parameters tend to infinity as n — . Since the field of
statistics containing this approach involves a blend of parametric inference and
nonparametric inference, we refer to it as functional inference.

A thorough study of the use of finite-parameter models as approximations
requires a combination of mathematically rigorous asymptotics and computer
simulation. In the present paper we concentrate on the asymptotic approach.
To carry it out, we require that 2 be compact and that f be continuous and
positive on . Also, we restrict our attention to function spaces ./ consisting
of splines of fixed order ¢ (piecewise polynomials of degree less than q), to



LARGE-SAMPLE INFERENCE FOR LOG-SPLINE MODELS 719

bases consisting of B-splines and (for simplicity) to equally spaced knots. The
constant function 1 is in ./, so we impose the constraint Y6, = 0 and thereby
end up with a (J — 1)-parameter identifiable exponential family. Since
log( f(-;0)) € .7, we refer to this family as a log-spline model.

The main results of this paper and their motivation and application will now
be described in an informal manner.

Let || ||, and || ||, denote the usual L, and L, norms of functions on %"
Set

8 = inf ||s — log( f)]l.-
se”

As pointed out in Section 2, we know that 6 = 0(1) as n — « (under the
supposition that J — © as n — ). Under appropriate smoothness conditions
on f, it is also known that § = O(J ?), where the positive number p depends
on the smoothness condition. In particular, if f is m-times continuously
differentiable, where 1 < m < q, then § = O(J ™).

Set f* =f(-;0%*), where 0* maximizes the expected value of the log-likeli-
hood function. It is shown in Stone (1989) that ||f — f*|.. = O(8), the proof
being based on a similar result of de Boor (1976) involving L, projections.
Such results are surprising, since minimizing the L, error of approximation
and maximizing the expected log-likelihood do not appear to be closely related
to minimizing the L. error of approximation.

The functional viewpoint suggests looking at parameters that are values of
the density function at individual points or of the corresponding distribution
function or quantile function. We refer to f = f(-;#8) as the log-spline density
estimate of f. As a special case, if ./ is a collectlon of piecewise-constant
functions on %/, then £ is a hlstog'ram density estimate.

For technical reasons, we require that J = o(n%5~¢) for some ¢ > 0. This is
slightly stronger than the assumption J = o(n%5%) that arises in Portnoy (1986,
1988).

We will show that ||f — f*||, = Op(J/n) and | f - F*|. =
Op(y/J log(J) /n). (The result for ||f — f*||, is plausible: There are about
n/dJ trials per unknown parameter, so the asymptotic standard deviation of
the estimate of each parameter should be proportional to y/J/n.) Suppose that
8 =0(J7P), where p>05. Set y=1/@2p+1) and r=p/(2p +1). By
choosing J ~ n?, we get that ||/ — f|l, = Op(n~"). (Here a, ~ b, means that

a,/b, is bounded away from zero and infinity.) By choosmg J ~ [n/log(n)y,
we get that ||/ — f|l.. = Op({log(n)/n]"). Under suitable specifications, these
are the well-known optimal rates of convergence for nonparametric density
estimation; see Stone (1980, 1982, 1983).

Let F, F* and F denote the distribution functions of f, [ * and f
respectively. We will show that ||F* — F|.,= 0(5/J) and IF — F*||, =
Op(1/ Vn). Thus, provided that 8/J = O(1/ Vn). we get that |F — F||, =
Op(1/ Vn), which is well known to be the optimal rate of convergence for
estimation of an unknown distribution function in both parametric and non-
parametric settings.
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Let Fe™ denote the empirical distribution function, defined as usual by

L 1
Fe“‘p(y)=;#{izlsisnaninsy}, y € R.

Then SD(F*™P(y)) = \/F(y)(1 — F(y)/n, y € %. It is well known that, for
n>1,

Femr(y) — F(y)

dist =
SD(F*™r(y))

~ N(0,1) uniformly on compact subsets of int( %),

where int(%2/) denotes the interior of 2. We will show that, for n > 1,

P(y) - F*(y)

dist| ————=—=—| = N(0,1) uniformly over compact subsets of int( %)
ASD(F(y)) ] ( (
and
M = 1 uniformly over compact subsets of int( %)
SD(F™(y)) '

According to these results, the performance of the parametric estimate F(y) is
similar to that of the nonparametric estimate F*™(y) when n > 1 (recall that
J — © as n — »). The results can be used to obtain asymptotic confidence
bounds for F*(y) or F(y) based on the log-spline model. They also lead us to
conjecture that

IF = B2, = 0p(1/¥n) if 8/ = o(1/Vn),

which should not be hard to verify. .
Let @ =F !, @ =(F* ! and @ = F~' denote the quantile functions
corresponding to f, f* and 7, respectively. We will show that

1Q* — Qll. = 0(8/J) and ||Q — Q*||. = Op(1/Vn).

Thus, provided that 8/J = O(1/Vn), we get that |Q — Q|.. = Ox(1/ Vn),
which again is the optimal rate of convergence.

Let Qe‘:‘p denote the empirical quantile function as usually defined [for
example, Q°"?(0.5) is the sample median]. It is well known that, for n > 1,

Q*(p) - Q(p)
ASD(Q°™(p))

dist

] =~ N(0,1) uniformly over compact subsets of (0, 1),

A 1-
@) = | gy

where
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We will show that, for n > 1,

Q(p) - @*(p)
dist ~ N(0,1) uniformly over compact subsets of (0, 1)
ASD(Q(p))
and
ASD
_L?m(p_)) =~ 1 uniformly over compact subsets of (0, 1).
ASD(Q*™*(p))

These results can be used to obtain asymptotic confidence bounds for @*(p) or
Q(p) based on the log-spline model.

In parallel with the analytic approach and in continuation of the work of
Stone and Koo (1986a, b), Charles Kooperberg and I are currently using
computer simulation to determine the finite-sample performance of inference
based on log-spline models. An important advantage of the computational
approach is that attractive but mathematically unwieldy modifications can be
studied. In our investigation, we have focused on positive random variables Y
[2= (0, »)]. By using a suitable data-dependent transformation, which be-
haves like a power transformation at infinity and a logarithmic transformation
at the origin, we first transform Y to a real-valued random variable [%/=
(—o,®)]. So far, we have used cubic splines. The first knot has been placed at
the minimum value in the random sample Y;,...,Y,, the last knot has been
placed at the maximum value and a number of intermediate knots have been
placed at selected order statistics of the random sample. Also, the selection of
the number of intermediate knots and the order statistics used in placing them
has been made in a data-independent manner. To reduce the standard errors
of log-spline estimates of extreme quantiles, we have imposed linear restric-
tions on the fitted splines to the left of the first knot and to the right of the last
knot. Thus the estimated distribution of the transformed random variable has
exponential tails.

We have focused on confidence bounds for quantiles, especially on the 90%
upper confidence bound for @(p) with p = 1. As applied to the transformed
random variables, such confidence bounds are of the form Q(p) + tSE(Q(p)),
where the indicated standard error is obtained by ignoring the data depen-
dence of the preliminary transformation and the knot selection. In order to
achieve a satisfactory approximation to the desired coverage probability over a
broad range of n, p and underlying: distributions, have chosen ¢ by adaption
to the exponential distribution (using computer simulation as in the use of the
bootstrap) instead of using the value ¢ =z,, = 1.28 suggested by normal
approximation.

The results obtained to date confirm the necessity of having J — » as
n — «. The performance of the nominal 90% log-spline upper confidence
bounds for extreme quantiles (1 — p = 1/n or 0.1/n with n = 100 or 500) is
satisfactory, although not quite as good as that of the best procedure that
emerged in the fairly extensive computer simulation study by Breiman, Stone
and Kooperberg (1989). As expected, if there is an order statistic that serves as
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a 90% upper confidence bound for @(p) (which, for n > 1, can only happen if
1 — p > 2/n), then the performance of the upper confidence bound based on
the log-spline model is very similar to that of the order statistic.

Some advantages of inference based on log-spline models over that based on
kernel density estimates are as follows: Log-spline density estimates are
automatically positive and can be chosen to achieve the optimal rate of
convergence n~ " for values of r that are arbitrarily close to 0.5, log-spline
estimates of extreme quantiles are sensible, the corresponding upper confi-
dence bounds are reliable, and standard inferential tools for treating exponen-
tial families are applicable. A disadvantage of log-spline models based on
quadratic and higher-order splines is that the evaluation of ¢(6) and its partial
derivatives requires computationally intensive numerical integration.

The log-spline approach could probably be extended to handle multidimen-
sional distributions by using the tensor product B-splines or certain function
spaces arising in connection with the finite-element method. In three or more
dimensions, however, the approach may be impractical.

In Stone (1985), the goal was to achieve the optimal rate of convergence for
nonparametric estimation of the best additive approximation to the regression
function; it was realized by using the least-squares method to fit an additive
spline. The setup of the follow-on paper, Stone (1986), included additive
logistic regression and other nonparametric extensions of generalized linear
models [see McCullagh and Nelder (1983)]. There the goal was to achieve the
optimal rate of convergence for nonparametric estimation of the best additive
approximation to the response function. This goal was realized by using
maximum likelihood to fit an additive spline. Some of the results in Stone
(1985, 1986) and the present paper are summarized in Stone (1987).

It would be worth while to include the setup of Stone (1986) and that of the
present paper in a common framework. Consider, in particular, a random
variable Y whose density depends on a real-valued variable x. It seems
reasonable to use a log-spline model f(-;0,) based on linear splines to approxi-
mate the unknown density, where the dependence of each entry of 6, on x is
approximated by a cubic spline. Tensor-product B-splines arise naturally in
this manner. Stone (1989) contains a start at the mathematical analysis of this
approach [namely, the extension of Theorem 1(i) in the next section].

Log-spline models are flexible exponential families. Previously, Neyman
(1937) and Crain (1974, 1976a, b, 1977) considered other such families. [For
recent results in the spirit of the present paper, written after the original
versions of Stone (1989) and the present paper but independently of these
papers, see Barron and Sheu (1988).] Leonard (1978) and Silverman (1982)
considered various nonparametric estimates of log( f), an attractive feature
being that the corresponding estimate of f itself is automatically positive.

Precise results will be stated in the next section and proven thereafter. The
proofs use refinements of the known analytic properties of splines that have
been developed in Stone (1985, 1986, 1989). They also use refinements of
standard techniques for determining the asymptotic behavior of maximum-
likelihood estimates of the unknown parameters of an exponential family that
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are applicable when the number of parameters tends to infinity as n — o.
Some of these refinements were developed in Stone (1986). Portnoy (1988) has
also studied the asymptotic behavior of likelihood methods for exponential
families when the number of parameters tends to infinity. It might be interest-
ing to compare Portnoy’s approach to that of Stone (1986) and the present

paper.

2. Statement of results. Let Y,,Y,... be independent and identically
distributed random variables taking on values in a known compact interval 2
having positive length; without loss of generality, let 2= [0, 1]. These random
variables are assumed to have a continuous and positive density f on . Let F
denote the distribution function of f and let @ = F~! denote its quantile
function. Given the positive integer n, we refer to Y,...,Y, as “he random
sample of size n.

For simplicity in notation, we suppress the dependence on n of various
quantities after these quantities are defined.

Let q denote a positive integer. Given n > 1, let K = K, denote a positive
integer. Let % be partitioned into subintervals

%, =[(k-1)/K,k/K),1<k <K and 2= [(K-1)/K,1].

Let /= ., denote the collection of functions s on % satisfying the following
two properties: s is a polynomial of order g (degree less than ¢) on each of the
subintervals %1,..., %; if q = 2, s is (¢ — 2)-times continuously differen-
tiable on 2. Then ./ is a vector space of dimension J =J, =q¢ + K — 1,
which is a space of polynomial splines of order ¢ with simple knots at 2/K for
1 < k < K. The functions in ./ are piecewise-constant, linear, quadratic or
cubic splines according as ¢ = 1, 2, 3 or 4. Consider the usual B-spline basis
B;=B,;,1<j <d,of / [see de Boor (1978)]. These functions are nonnega-
tive and sum to 1 on Z. Also, there is a fixed positive integer o/, depending on
q but not on n, such that (i) the support of each B ; 1s contained in the convex
hull of J, consecutive knots and (ii) if |k — j| > J, the supports of B, and B,
are disjoint. (The support of B; is the subset of % on which B; > 0.)

Let ® = 0O, denote the collection of all J-dimensional (column) vectors.

Given 0 € 0, set
o= [T 07,
¥ o

s(;0) =s5,(;0) = 1 6,B;,
J

c(0) = ¢,(0) = g exp(s(:;0))].
and

f(-50) =f,(-;0) = exp(s(-;0) —c(0)).
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Then [f(-;0) =1 for 6 € ©. Let F(-;8) = F,(-;0) and Q(-;0) = @,(-;0) de-
note the distribution function and quantile function corresponding to f(-;#).
Set

A(8) = A,(0) = E(log( f(Y;0)))
= [log(f(:;0)) f= [s(:;0) f— c(8), 0€8O,

where Y has density f.

It is assumed from now on that J > 2 for all n. The exponential family
f(-;0), 0 € O, is not identifiable, for if we add a constant to each element of 9,
we do not change f(-;0). Let ®, = ©,, denote the (J — 1)-dimensional sub-
space of ® consisting of those vector 8 € ® whose entries add up to zero.

Let H(6) = H,(8) denote the Hessian matrix of c(-) at 0, which is the
symmetric J X J matrix having entry 4°c(8)/96, 86, in row j and column %
for 1 <j,k <J. It is an elementary and well-known property of exponential
families [see Lehmann (1983)] that if 0, r € O, then

(1) = H(O)7 = [[s(-;7) —a]*f(-;0), wherea = [s(-;7) f(:;0).

Thus +'H(8)r > 0 if 7 is a nonzero element of ®,. Consequently, c(-) is
strictly convex on . Since —H(0) is the Hessian matrix of A(-) at 0, A(:) is
strictly concave on @, If 6 € ® and 0 # 0, then A(¢0) =t/s(-;0)f —
log( [ exp(ts(-;0))) and s(-;0) is not almost everywhere equal to a constant in
%, thus A(¢0) > —x as |¢| » » [consider the maximum value of s(-;0) on
Z’]. It follows that for each n > 1, there is a unique 6* = 0* € ©, that
maximizes A(-) on @,. Set f* = f* = f(-;0%), F* = F* = F(-;0*) and Q* =
QF = Q(-;0%).

It follows from the assumption on f that log(f) is continuous and hence
bounded on %. Set

5 =5, = inf |ls ~ log( )]l

If J > was n — «, then § = 0(1) by (2) on page 167 of de Boor (1978). Let m
be a nonnegative integer with m < q,let0 <a <landset p=m +a.If fis
m-times differentiable and its mth derivative satisfies a Hélder condition with
index a, then 8 = O(J?) [see de Boor (1978)].

THEOREM 1.
(i) 17* = fll. = O(8);
(ii) |F* = Fll. = 0(8/dJ);
and

(iii) 1Q* — Qll, = 0(8/).
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Let I(-) = 1,(-) be the log-likelihood function based on the log-spline model
and the random sample of size n, which is given by

1(6) = X log(f(Y;;0)) = X (s(Y;0) — c(6)).

Then I(-) is a strictly concave function on ©,. Let 6 = 6, € ©, denote the

maximum-likelihood estimate of 8 € ©, based on the random sample of size

n. The 8 is unique if it exists. (The log-likelihood function has a maximum if

and only if there is no nonconstant function s € . such that Y,,...,Y, all

maximize s.) Set f=7, =f(-;0), F=F,=F(-;6)and @ = @, = Q(-; 6).
From now on it is assumed that

(2) J =0(n’®"%) for some ¢ > 0.

THEOREM 2. (i) 0 exists except on an event whose probability tends to zero
with n;

(ii) 18— 0% = 0p(J/Vn);
(iii) max |0; = 07| = Op(y/J log(J) /n);
(iv) 1 = F*lly = Op (T /0 );
(v) 1 = *Il. = Op(yJ log(J ) /n );
(vi) I# — F*||, = 0p(1/Vn);
and
(vii) 19 — @*|l. = Op(1/Vn).

Let I(6) = I,(0) = nH(0) denote the information matrix based on the ran-
dom sample of size n. Then I(8) has range ©,; that is, I(8)r € @, for r € ©.
Also, there is a positive semidefinite symmetric J X J matrix (I(8))~ having
range 0, such that

I(0)(I(0)) == (I(0)) I(0)r, =<0
The matrix (I(0))” is referred to as the generalized inverse of 1(0). Set
I* = I¥ = I(6%), @) =A}) " =@0*)", i =1, =10) and I-=1; = @@~
Given y € %, let
G*(y) = Gi(y) €@, and G(y) = G,(y) €O,

denote the J-dimensional vectors having elements
de . dc . )
G () = Bj(y) = 5,-(0%) and Gy(y) =B,(y) — o-(8), 1<j<d,
J J

respectively. The asymptotic standard deviation and standard error of f(y) are
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defined by

ASD(7(y)) = F*(y)V[G*(»)]“(I*)~ G*(y)

and

SE(f() = F0)V[6()] T-6() .

THEOREM 3. Suppose that J — © as n — ». Then uniformly iny € %,

ASD(f(y)) ~ yJ/n,
SE(/())
ASD(7(y) 1o
and
F(y) = ()
dist| ————=—~-| - N(0,1).
“| o) < Mo
THEOREM 4. Suppose that J — © as n — . Then
M -1 uniformly on compact subsets of int( %),
SD(F°™(y))
dist w — N(0,1) uniformly on compact subsets of int( %),
ASD(F(y))
A—Qg% -1 uniformly on compact subsets of (0,1)
and
dist %} — N(0,1) uniformly on compact subsets of (0,1).

The results in this paper can be extended in two directions with essentially
no change in proof: The restriction that the functions in . be (g — 2)-times
continuously differentiable on %/ can be weakened in an arbitrary manner and
the knot locations 1/K,...,(K — 1)/K can be replaced by a sequence that is
o-quasiuniform in the sense of page 216 of Schumaker (1981) (that is, such
that the ratios of the differences between consecutive knots are bounded away
from zero and infinity uniformly in n).

3. Proof of Theorem 1.
Lemma 1. [s(f*—f)=0 fors e.”.
Proor. Choose s € . and define g on R by [f*e’*~¢® = 1, Then g'(0) =

Jsf*. Also [(log(f*) + ts — g(¢)) f is maximized at ¢ = 0 and hence g'(0) = [sf.
Thus the conclusion of the lemma is valid. O
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The proof of Theorem 1(i) is contained in Stone (1989). We now verify
Theorem 1(ii), from which Theorem 1(iii) follows easily. It can be assumed that
J — © as n — «. It will be shown below that there is a positive constant M
satisfying the following condition: For n > 1 and x € [2M /J,1 — M /J ] there
isan s €./ suchthat —~-1<s<1,s=1on[M/J,x — M/J], and s = 0 on
[x + M/, 1]. According to Lemma 1,

0=fols(f*—f) =f0x(f*—f) +[OM/°’(s— D(f* - f)

X
R CAR PR M IPAE}

x—M/J
The desired result now follows from Theorem 1(i).

In constructing the desired function s it can be assumed that g > 1 (since
the result is obvious when g = 1). Let B, and B, be elements of the usual
B-spline basis with g replaced by ¢ — 1 such that B, vanishes outside
[0, M/J]and B, vanishes outside [x — M /J, x + M /J]. Then B, and B, are
nonnegative functions. Let a, and a, be positive constants such that [a,B, =
1 and fa,B, = 1. Then the function s defined by

s(y) = f [a,By(z) —ayBy(2)]dz, 0<y<l,
has the desired properties. This completes the proof of Theorem 1. O

4. Proof of Theorem 2. The proof is broken up into a series of lemmas.
In particular, the first conclusion is contained in Lemma 8, the second and
fourth conclusions are contained in Lemma 12 and the third conclusion follows
from (2) and Lemmas 19 and 20. For the proofs of the remaining three
conclusions of Theorem 2, see the discussion following the proof of Lemma 20.

LemMA 2. For any positive number M there is a § > 0 such that if fand g
are positive density functions on %, ||g|l, <M and |log(f) — log(g)|l.. < M,
then

min [ [log(f) ~ log(g) — a]” = 5 [log( f) ~ log(g)]".

Proor. The minimum value of a is.a, = [[log(f) — log(g)]. Set

=log(f) — log(g) — a,.

Then |h| < 2M. Since f and g integrate to 1, a, = —log(l + fg(e - 1)).
Thus there is a positive constant M, depending on M such that a0 < M, [h®
Consequently,

Jlog(f) — log(&)]* = a% + [A < (M, + 1) [2,

which yields the desired result. O
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LEmMA 3. There is a positive number M such that
le(0)] < M||log( f(-;0))l.., 6€®,.

ProOF. Since
log(f(-;0)) = ¥ [6; —c(0)]B;,, 0<0,
J

the desired result follows from (viii) on page 155 of de Boor (1978). O

LEMMA 4. Let M be a positive constant. Then there are positive constants
M, and & such that if n > 1, 8 € ® and |log(f(-;0)) — log(f|l, < M/ VJ,
then

Ilog( f(-;0* + (0 —0%)))|l, <M,, 0<t<l,

and .
A(0) — A(0%) < —d|log( f(;0)) — log( f*)I|3-

Proor. Without loss of generality, it can be assumed that 6 € ©,. It
follows from Theorem 1(i) and from Lemma 7 of Stone (1986) that there is a
positive constant M, depending on M such that if n and 0 are as in the
statement of the present lemma, then [log( /*)|, < M, and |log(f(-;0)),, <
M,. Thus by Lemma 3 there is a positive constant M, depending on M such
that ||s(-; 0* + #(6 — 6%))||, < M3, 0 < ¢ < 1. This yields the first conclusion of
the lemma. Observe that

= 0.

t=0

d * ES
27 A0% +2(6 — 6%))

Thus it follows from (1) and Taylor’s theorem with remainder that
A(8) = A(0%) = =3 [[s(-50 — 0%) —a]*f(-;0% + (0 — 0%))

for some ¢t € (0, 1) and a € R. The second conclusion of the lemma now follows
from the first conclusion and Lemma 2. O

LEMMA 5. Given M > 0, thereis a 6 > 0 such that

1(8) — [(8*
P('%i—) — [A(®) — A(8%)]

= b|llog(f(-;0)) — log(f*)||2) < e~ onb*
forn>1,0€0®and 0 <b <M/J.
Proor. Write
1(0) — 1(8*) — n[A(8) — A(0%)] = X Z,,

where
Z; = log(f(Y;;0)) — log( f*(Y;)) — E[log(f(Y;,8)) — log(f*(Y;))].



LARGE-SAMPLE INFERENCE FOR LOG-SPLINE MODELS 729

Set a = |log( f(-;0)) — log(f*)||,- By Lemma 7 of Stone (1986) there is a
positive number M, such that |log(f(-;0)) — log(f*)||.. < M,aVJ . Thus there
is a positive constant M, such that |Z,| < M,yaVJ and var(Z;) < M,a? The
desired result now follows from Bernstein’s inequality [see (2.13) of Hoeffding
(1963)]. O

The next result is an immediate consequence of the definitions of the
various terms.

LEmMA 6. If 0,0, € O, then

1(92) - 1(01)

n — (A(8,) — J1(0,)) | < 2[log( f(-;05)) — log(f(-; 0.))ll...

Set =%, = {f(-;0): 6 € O}. It is convenient to define the ‘“diameter”’ of a
subset A of .7 as sup{|log( f,) — log(f)I|l.: fi, fo € A}. The next result, essen-
tially Lemma 12 of Stone (1986), is a consequence of Lemma 7 of that paper
and (viii) on page 155 of de Boor (1978).

LEmMMA 7. Given ¢ >0 and 6 >0, there is an M > 0 such that the
following is valid:

{£(-;0):0 € © and |log( f(-;0)) — log( f*)|l, < n* J/n)
can be covered by O(exp(MJ log(n))) subsets each having diameter at most
sn%*dJ/n.

LEMMA 8. fexists and is unique except on an event whose probability tends
to zero as n — ». Moreover, |log(f) - log(f*)||, = Op(n®y/J/n) for ¢ > 0.

Proor. Set b =b, = n®y/J/n and
0,=0,, = {0 < 0,:log(f(-;8)) — log( f*)|l, < b}.
Then O, is a compact set whose boundary, relative to ®,, is contained in
0y =0,, = {6 € O |llog( f(-;8)) — log( f*)Il, = b}.

In light of (2), it can be assumed that there is a positive constant M such that
b <M/ VJ for n > 1. By Lemma 4 there is a 6 > 0 such that A(8) — A(6%) <
—8b% 6 € ©,. Thus by Lemmas 5 through 7, except on an event whose
probability tends to zero as n — o,

L(0) <i(6%), 0€0,,

and hence I(-) has a local maximum in the interior of @, relative to ®,. The
desired conclusions now follow from the strict concavity of 1(8) on @,. (The
first conclusion of the lemma can also be obtained from the necessary and
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sufficient condition for the log-likelihood function to have a maximum that
was mentioned in Section 2.) O

Let S(8) = S,(8) € O, denote the gradient of I(-) at 0; that is, the J-dimen-
sional vector whose jth entry is
al(0)

a0,

B (Y, e 0
= ZL (Y:) — a_oj( ) |-
Set S* = S§* = S(6*). Then ES* = 0 and
E(S*?) =nY var(B;(Y)) <n) EB¥(Y)=nEY, BXY) <n.
J J J
Consequently, the following result is valid.
LEMMA 9. [S*%2 = Op(n).
The maximum-likelihood equation S(@®) =0 for 8 can be rewritten as
D(Oﬂ*) = S*, where D = D, is the J X J matrix defined by D = n/ H(0* +
(6 — 0%) dt.

LEMMA 10. There is a 8 > 0 such that, except on an event whose probabil-
ity tends to zero as n — », (8 — 0*)'D(6 — 0*) > 5n|log( f) — log( £

Proor. It follows from Lemmas 4 and 8 and (2) that

max [|log( f(+;6* + (8 — 6%)))I.. = Op(1).
The desired result now follows from (1), Theorem 1(i) and Lemma 2. O
LemMa 11, (8 — 0%)'S* = O, (Ynd)|log(F) — log( £ ).

Proor. Let 1 denote the J-dimensional vector each of whose coordinates is
1. Then 1'S* = 0 since S* € ©,. Now

(3) log(f') — log( f*) = )» [6, — 07 — c(8) + c(0%)] B,,
Jj
so it follows form Lemma 9 together with (12) of Stone (1986) that
A t 2 N A ¢ 2
(6 — 0%)"s*| =|[e — 0% — (c(8) — c(6%))1] S*|
<[(8 = 0%) = (c(B) - c(0%)1[ 8%

= Op(nd)||log( f) — log( f*)|12

as desired. O
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Lemma 12. () [[log(f) — log(f*)|ly = Op(JT /n);

(ii) log( /') — log( f*)Il. = Op(J /¥ ) = 0p(1);
(iii) I = F*lg = Op(yI/n);

and
(iv) 16 — 0% = 0p(J/Vn).

PRroOF. According to the maximum-likelihood equation for 9,
(6 — 0%)'D(d — 0%) = (8 — 0%)'S*.

Thus the first result follows from Lemmas 10 and 11. The second result now
follows from (2) and Lemma 7 of Stone (1986). The third result follows from
the first two results and Theorem 1(). Since (8 — 0%)1 = 0, it follows from 3),
the first result, and (12) of Stone (1986) that

18— 02 + J[c(B) — c(0%)]" =8 + [e(8) = c(01)]1[’
= O(J1llog(f') — log( f*)IIZ) = Op(J2/n)

and hence that the last result is valid. O
The next result follows from (2) and Lemmas 4 and 12().

LeMMA 13. There are positive constants M, and M, such that, except on an
event whose probability tends to zero as n — ®,

M <f(-;0*+¢(8-0%) <M,, Os<t<l.

Let Vc(6) denote the gradient of c(-) at 8; that is, the J-dimensional vector
having entries 9c(6)/46;, 1 <j < J.

LEMMA 14. ¢(8) — c(8%) = [Ve(09)](8 — 0%) + Op(J/n).

Proor. Observe that c(®) — c(8%) = [Ve(09)(d — 0%) + (b — 0%
R(§ — 0*), where R=R, is the J X J matrix defined by R=/l1-1)
H(0* + t(6 — 0%)) dt. The des1red result now follows from (1), Lemmas 12(iv)
and 13 and (12) of Stone (1986). O

LEmMA 15. There is a positive constant M such that, except on an event
whose probability tends to zero as n — ,

3

% A ax
max (0% + (6 — 0%))

)y (Z Y m |Tk|) <MJ %2, nre0.

J E m

36,36, 36,
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Proor. It is easily seen that

3%c(0)
26, 06,, 99,

=[BjBkBmf(-;0)
— [B,B,f(-;0) [B,,f(-;0)
—fBijf('?O)kaf(‘;o)
— [B4B,. f(-;0) [B,;f(-;0)

+[B;f(:;0) [By f(*;8) [ B, f(-;0).

The desired result now follows from Lemma 13 and the basic properties of
B-splines. O

It follows from Theorem 1(i) that

ac

—(0*)| = -1
(4) oax, a91.(9 )| =0(J7)
and hence that
(5) |G*(y)| ~1 uniformly fory € 2.

The next result follows from (3) and Lemma 14.
Lemma 16.  [log(f) — log(f*) — [G*(:)J(® — 8%)||, = Op(J/n).

For 6 € ® let min f(-;0) and max f(-;0), respectively, denote the mini-
mum and maximum values of f(-;0).

LEmMA 17. There are positive constants M, and M, such that
M,J 7> min f(-;0) < +'H(0)r < M,J '|7|> max f(-;0)

forn>1,0 €0 and T € 0,.

Proor. By (12) of Stone (1986) there are positive constants M; and M,
such that

M J 7 r? < |ls(5 7115 < Mpd ~Hal?, T€0.
It follows from (1) that
'H(0)T < ||s(-;7)[|53 max f(;0) < MyJ '|r|* max f(-;0)
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for 7 € O. It also follows from (1) that if + € ©,, then
T'H(8)7 > ||s(*; 7 — al)||3 min f(-;0)
> M,J Y7 — al|> min f(-;0)
> M,J 7|2 min f(-;9).

Thus the conclusion of the lemma is valid. O
Let VC(S*) denote the variance—covariance matrix of S*.

LeMMA 18. There are positive constants M, and M, such that
Mnd Yz < v'VC(S*)1 < Mynd Y712, n>1,7€ 0,.

Proor. Since 1! VC(S*)7 = nf[s(-; 1) — al’f, where a = [s(-;7)f, the re-
sult follows from the argument used to prove Lemma 17. O

Consider the approximation ¢ =¢,-€ 0, to 0 — 0* defined by I*¢ = S*.
Then & = (I*)~S* and hence [G*(y)'¢ = [G*(y)FT*)~S*. It follows easily
from (5) and Lemma 17 that

(6) |t{(I*) 'G*(y)| = O(n~YJ|7|) uniformlyinn > 1,7€ @yandy € 2.
)

LEmMMA 19. max,_;_ ¢, = OP(\/J log(J)/n).

Proor. Since (I*)~VC(S*)I*)~ is the variance—covariance matrix of &, it
follows from Lemmas 17 and 18 that max ;var(¢;) = O(J/n). Observe that

¢ = L (I GX(Y)),.

1

According to (6),

sup max |((I")” G*()) | = 0(J/n).
yeg,;/ISJsJ

The desired result now follows from (2) and Bernstein’s inequality. O
LEMMA 20. |6 — 0* — &2 = Op(n~%J2 log(J)).
Proor. It follows from the maximum-likelihood equation that
0—0*=0¢— (I*) (D —I*)(0 — 6%).
According to Lemmas 13 and 17,
|(1%)7 (D = 1*)(8 - 0%)[* = 0(n"272(D - 1¥)(6 - 0%)[").

The entry in row j and column k& of D — I* can be written as
ny Ajkm(ém - 9;5),
m
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where
3

Ajpn = Apjim = [(1— 1) ————— (0% + £(d — 0%)) dt.

Thus the jth entry of (D — I*)§ — 0*) is
ny X A0, —07)(8, —62).
E m

Hence by Lemmas 12 and 15

d6; 96, a9,

(D = T%)(8 — 0%)2 = op(n max (4, - ej*)z)

l<j<dJd J

and therefore

|6—9*—¢|2=0P(n_1J2 ax (6 —9*))

1<jSJ
Consequently, by Lemma 19,
5 2 _ -1 172
11;1}33} (Oj - 0;“) = Op(n J log(J) + n™1J
Thus by (2)

ax, (6, 7))

131<J

ax (9; - o7 ) = Op(n=4 log(J)),

1 <j<dJ
which yields the desired result. O
This completes the proof of the first four conclusions of Theorem 2 (see the

first paragraph of this section). We will now verify the fifty conclusion. It
follows from (3) and Lemma 14 that

(7 og( /) — log( £*) — [G*(-)]'(8 — 0%)]l, = Op(J/n).
Since
[G*(y)]t‘AP = Z Bj(y)()aj E 26, (0*)%,
J

it follows from (4) and Lemma 19 that .

(8) I[G*()]°®],, = Op(VT Tog(J) /).

The fifth conclusion follows from (2), (5), (7), (8), Theorem 1(i) and Lemmas 12
(ii) and 20. .

We will now verify the sixth conclusion. It follows from (4) and Lemma 20
that

(9) (Ve(0%))'(8 — 0* — &) = 0p(n~Jy/log(J) ).
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It follows from Lemma 20 (and basic properties of B-splines) that

(10) T 16; — 6, — ¢,1 [ B; = Op(n""Jy/log(J) ).
J
By (9) and (10),
(11) JIG*()1(8 = 0 = §)| = Op(n"17ylog(d) ).

The sixth conclusion is a consequence of (2), (5), (7), (8), (11), Theorem 1(i),
Lemma 20 and the following result; the seventh conclusion follows from the
sixth conclusion and Theorem 1.

Lowva 21, max, ., |3 F* OGN dy| = 0,1/ V).
Proor. Observe that
var([Vc(O*)]téa) = var([Vc(O*)]t(I*) " 8%)
= [(@%) 7 Ve(8%)] VO(S*) (1%) Ve(0¥).
Thus it follows from (4) and Lemmas 17 and 18 that
var([e(8%)]'¢) = O(nd~*|(1¥)~ Ve(8*)%) = O(n~J|Ve(84)?) = O(n"")

and hence that [Vc(0%)]'¢ = Op(1/ Vn). Consequently, to prove the desired
result, it suffices to verify that

(12) [max |} éjfxf*(y)Bj(y) dy| = 0p(1/Vn).
<x< J 0

For any particular value of x, all but a bounded number of terms
[6f*(y)B;(y) dy are equal to Jo F*(y)B,(y)dy or to zero. By (2) and Lemma
19, the total contribution of the bounded number of exceptional terms is

Op(J 1V log(J) /n ) = 0p(1/Vn).
Thus, by the form of the supports of the B-splines B;, 1 <j < J [see de Boor
(1978)], to verify (12), it suffices to show that
k

Y. ¢/ f*B,

j=1

(13) max
l<k<d

= OP(]‘/‘/;)‘

Let # be a subset of consecutive integers in {1, ..., J} and let J' denote the
number of integers in _#. Let 7 denote the J-dimensional vector having
elements [f*B; for j € / and zero otherwise. Then

(14) |72 = O(J'/J?) uniformlyin # and n.
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Since
var( Y qu[f*Bj) = ((1*) " 7)'VC(S*)(1%) .
JESL
it follows from (14) and Lemmas 17 and 18 that
JI
(15) var| ¥ qaj/f*Bj = 0[—] uniformly in _# and n.
jes neJ
Observe next that
(16) L ¢ffB,=% (Z ((I*)‘G*(m)j/f*B,) - T X,.
JES v \jes i

Here X ,; = X, ,;, 1 <i < n, are independent random variables having mean
0; by (5), Lemma 17 and the basic properties of B-splines,

(17) |X,;|<b withb=5,=0(n"1VJ).

It follows from (15) through (17) and Bernstein’s inequality that there is a
B > 0, which does not depend on n or £, such that

|
(18)

for A>0and 0 <a < 0.5.

Set R=R, =min[r: 2" >J)]. For 0 <r <R, let .#. =.#,, denote the
collection of all sets of integers of the form {(m — 1)2" + 1,..., m2"}, where
1<m<dJ/2". It follows from (2) and (18) that, for any ¢ ~ 0, A can be
chosen sufficiently large so that

Y 4;[f*B;
JESL

For 1 <k <dJ,(1,..., k} can be written as a disjoint union of sets Fe ULz,
such that for 0 < r < R, there is at most one such S € #,. Thus it follows
from (19) that (13) holds, as desired. O°

Y é,[f*B,
jE/qp /
< 2exp(~BA(n/J) VAT /J)*) + exp(-p A /7)),

> An_1/2(J’/J)a)

R

(19) P( > An~YV2(J'/J)" for some fe |J A, | <6, n>1.
0

5. Proof of Theorem 3. Now
(20) Var([G*(¥)]¢) = [G*(»)]"(I*) " VC(S*)(I*) ~ G*(y), ,
so it follows from (5), Theorem 1(i) and Lemmas 17 and 18 that

(21) Var([G*(y)]'#) ~ J/n.
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LeEmMA 22, Uniformly iny € 1,

[6*(n]'¢
SD([G*(»)]'#)

- N(0,1) asn — o,

ProOF. Observe that [G*(y) ¢ = L Z,, where Z, = Z,, = [G*(y)'I"G*(Y)
for 1 <i < n. For each n, the random variables Z,, ..., Z, have mean 0 and
are independent and identically distributed. Moreover,

[[G*(») ] (1*)~ G*(Y;)

<[[G*(1)]'(1*)” G*(»)| [[G*(¥)]'(T*)~ G*(Y;)

The desired result now follows from (2), (21) and the central limit theorem [see
the corollary on page 201 of Chung (1974)]. O

2

= 0(J2/n?).

LEmMA 23. There is a positive constant M such that

[FVC(S*) 7 — 1'T*1| < Mnd 872, n=1,7€0.
PrOOF. Set a =a, = [s(-;7)f and a* = a* = [s(:;7)f*. Then
T'VC(S*)7 = nf[s(~;-r) -a]?f
and
TiI*r = n/[s(~;-r) - a*]?f*.

The desired result now follows easily from Theorem 1(i) and (12) of Stone
(1986). O

It follows from (5), Theorem 1(i) and Lemmas 17 and 23 that there is a
positive constant M such that, for n > 1 and y € %,

(22) |IG*()'@*)” VC(S*)A*) ™ G*(y) — [G*(»))'A*)~ G*(y)| < Mn~J 5.
It follows from (2), (5), (7) and Lemma 20 that
|log( /) — log(*) — [G*()]'¢
Thus by (21) and Lemma 22,
. log( /) — log( f*)
SD([G*()]‘®)

It follows easily from this together with (2), (20) through (22) and Theorem
1(i) that the first and third conclusions of Theorem 3 are valid.

= onlyT7m).

) — N(0,1) uniformlyin y as n — o.
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LemMma 24. Uniformly in 7 € 9,
|} = 1¥)7|" = 0p(nd ! log(J) )|

Proor. Observe that

d%c d%c 1 33

(6) - =X/

26, 96, 36, 00, ~ Jo 3,00, 00,

(0% + (8 — 0%))(6,, — 6;) dt.

Thus the desired result follows form Lemmas 15, 19 and 20. O

Since I~—(I*) "= @*)~@* — Di-, the next result follows from Lemmas 13,
17 and 24.

LemmA 25. Uniformly in v € O,
(E =@ )| = 0p(n=27% log(J) )2
Lemma 26. |G(y) — G*(¥)|2 = 0p(1/n) uniformly in y.
PrOOF. Observe that G(y) — G*(y) = —[Ve(8) — Vc(8*)]. Since
n 1 n n
Ve(d) — Ve(%) = ([ H(0* + £(0* — 8)) dt)(o _ %),
0
the desired result follows from Theorem 2(i) and Lemmas 13 and 17. O

The next result follows from (5), (22), Theorem 1(i) and Lemmas 17, 25
and 26.

LemMA 27. Uniformly in y,
[G(N]T-6G(y) - [6G*(»)]“(T*) ™ VC(S*)(I*) ~ G*(y)

= 0,(VJ? log(J) /n® + Js/n).

The second conclusion of Theorem 3 follows from (2), (20), (21), Theorems
1(i) and 2(v) and Lemma 27. O

6. Proof of Theorem 4. For a given value of x € [0, 1], set

£2(0) = g,(0) = foxf(yzﬂ) dy, 0ec0.
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It is easily seen that
(23) Va(0") = [(G*(y) () dy.
The next result follows from (2), (7), (8), (11), (23) and Theorem 1(i).
LEMMaA 28. F(x) — F*(x) = [Vg(0")I'¢ + 0p(1/ Vn) uniformly in x.
Observe that
(24)  var([Vg(8%)]'¢) = [Vg(8*)]'(I*) VC(S*)(I*) " Vg(6*).
By (4) and (23),
(25) |Vg(0”‘)|2 = 0(J™ 1) uniformlyin x.
It follows from (24), (25), Theorem 1(i) and Lemmas 17 and 23 that
(26) var([Vg(ﬂ*)]’«i:) = [Vg(8%)](I*)” Vg(0*) + O(8/n) uniformly in x.

Let E, and var, correspond to the assumption that Y has density f(-;0).
According to the Cramér—Rao inequality,

(27) [Ve(0")I'd*)” Vg(6*) < n~ ! varg(indy ,;(Y)) = n7'F (x)[1 — F,(x)].

LEmMA 29. Suppose that J — © as n — «. Then

. [Vg(8M))'(I*)” Vg(8*) , . .
hrrln Tl = Fo)] =1 uniformly for x in compact subsets of int(%").

Proor. Choose ¢ = ¢, € 0,. By Schwarz’s inequality

(28) [Veg(6*)]'(1*) Vg(0*) > ([V—g:?;%i)—.

By (1)

(29) ¢'I*¢ = n vary.(s(Y;¢)).

It follows from (23) that |

(30) [Vg(0%)]‘e = Eqg(indyy (Y)[s(Y;¢) — Epes(Y;9)]).

The desired result follows from (27) through (30), Theorem 1 (ii), the construc-
tion of s € ./, used in the proof of that result and the corresponding choice
of ¢,. O
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The proof of the next result is similar to that of Lemma 22.

Lemma 30. Uniformly for x in compact subsets of int(%),

[Vg(6")]'é
SD([Vg(6%)]')

- N(0,1) asn — .

The first conclusion of Theorem 4 follows from (26) and Lemmas 28
through 30. The second conclusion follows from the first conclusion and
Theorem 1. O
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