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it is unconditionally advantageous to use them. This is an example of Brown’s
phenomenon at the level of loss estimators.

For more general point estimators & of the form (8.3.1), the Lemma
indicates how one might apply existing work to construct reasonable loss
estimators for (6 — a)?. If one works conditionally on S, as in (3.3.3), then it is
plausible that an improvement on the unbiased estimate of loss of (§ — a)?
will follow as in Section 5 of J and an improvement on the upper bound
02+ 0%2trS~! as in Lu and Berger (1989). Construction of loss estimates
corresponding to (3.3.4) and (3.3.5) is less clear, but an interesting problem
perhaps deserving further study.
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The fundamental ancillarity paradox introduced by Brown can be observed
in many other settings. As an example, we herein extend the results of Brown
to the confidence set scenario:

Let X be a p-dimensional normal random variable with mean u € R? and
covariance matrix 3. Consider the confidence procedure

Cs(X) = {u: (8(X) — w)271(8(X) — p) <c?},
where 37! is an inverse or generalized inverse of 3. The coverage probability
of C;, P(Cs(X) contains w), is the usual criterion used for evaluating proce-
dures of a fixed size (determined by c). It is convenient to rephrase this as a

decision problem, with 5(X) being thought of as an estimator and 1 — P, (C(X)
contains w) being the risk function corresponding to the loss function.

L(u,d) = {1, if (d _.#)'z_l(d —p) =c?
0, otherwise.

Brown (1966) and Joshi (1969) independently showed that §,(X) =X is

admissible if p = 1,2 and inadmissible if p > 3. Hwang and Casella (1982,

1984) proved that the positive part James-—Stein estimator is an improved

estimator under the above loss L,.
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526 DISCUSSION

Suppose, following Brown, that w € R” is a fixed vector and define
p
0= 2 wn; =wh.
i=1
It is obvious that the confidence set for 6 given by
Cs(X) ={0=wu: |wX—why|<c}
cannot be improved, since w'X ~ N{(8, w'>w), a one-dimensional problem.

Now assume that the values of (w, ..., w,) are observed coordinate values
of a random variable, W € R? and define

Q=E(WW).
The customary confidence set for 6 in this problem is still
Co(x,w) = {0 =wx: |wx —wu| <c},

but as in Brown’s Section 2.1 we can establish:

TueEOREM 1. Let X,W be independent. Suppose W ~ N,(0,Q) and Q is
nonsingular and p > 3. Then the confidence set Cy(x,w) can be improved in
terms of coverage probability [i.e., 8,(X, W) is inadmissible as an estimator
under loss L _].

Proor. Let 8(X) be any estimator of u:
Pr(|Ws(X) — Wu|>c) = EXPr(W's(X) — Wl > c|X)
=Ef Pr(|(8(X) — p)W| = c|X)

_ XPr( I(8(X) — n)W|
LX) - n)Q(s(X) — )]

d

= EL 2[1 - q’( [(8(X) — u)'Q(8(X) — u)]*/? )]
= Ele(lllS(X) = o),

where ®(x) is the normal distribution function,

Lo - of]

Z16(X) — w0y 2(3(x) — )]

and
1xlq = (x’Qx)l/z, x € RP.

Brown (1966) found sufficient conditions on the loss such that there exists
an estimator 8(X), which is better than §,(X) = X (Theorem 3.3.1 in Brown’s
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paper). Since the loss function W(d — u) = L(]|d — u||p) is bounded and
sufficiently smooth, the conditions of Theorem 3.3.1 are satisfied. The theorem
implies that there are constants ¢ > 0 and a constant matrix B such that

8*(X) = (I+B/(a +|X|)X
is a better estimator. Therefore, the confidence set
C*X)={0=Wu: |Ws*(X) - Wu| <c}
has larger coverage probability than C,. O

Next, consider the usual normal multiple linear regression as in Section 3 of
Brown. Consider the confidence set

Co(Y,V) ={a:|6, — a| < c}
and the alternate confidence set
Cs(Y,V) ={a:|8(Y,V) —a| <c},
where
8(Y,V) =Y - VB(B,S) = a+ V(B - B(B,9)).
THEOREM 2. Suppose V,,...,V, are i.i.d. with common distribution

N.(0, I) and for given V,Y ~ N,(1a + VB, 02I), o? is known. Then the confi-
dence set C, can be improved, in terms of coverage probability.

Proor. Let 8 =a + VB = E(Y). Note that Y is conditionally independent
of B, S, given V, and V is independent of B, S. Hence

Pr(a € C4(Y,V)) = Pr(|8(Y,V) —a| <c)
=E,,Pr(|[Y-0-V(B-B)|<c|B,S,V)
= E, 5(®(Vn[V(B ~ B) +c]) - o(Vn [V(B - B) - c]))
= E, ;E[o(vn [V( - B) +¢])
~o(Vn [V(B - B) —c])|B, 8]

=E.p[ (®(I - Bllu + V)

~ (I8 — Bllu ~ Vnc))p(u) du
= Ea,ﬁf_l(zq’(llé = Bllu +vVnec) - 1)¢(u) du

= E,5(1 - Ly(IIB - BI)),
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where
Ly(x) = f_m 2(1 — ®(xu + Vnc))o(u) du.

_ Consider B~ N(B,S™1), given S. Then we want to find an estimator
B = B(B, S), given S, such that

Eg[Ly(18 — BI)IS] < Eq[Lo(18 - BI)|S].
This again follows from Theorem 3.3.1 of Brown (1966). O
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1. Conditionality. A paradox is a self-contradictory statement, and a
paradox in science demands resolution. The discovery of each new paradox
creates an opportunity for a new growth and deeper understanding as we seek
explanation.

Professor Brown’s paradox is that conditionality is at odds with uncondi-
tional admissibility. While his concluding remarks do not resolve the paradox,
he seems to take sides by insisting that we account for ‘“‘the unconditional
frequentist structure of the situation.” I see it differently, and argue for being
as conditional as possible in making statistical inferences.

It can happen, and did in Brown’s example, that decision rules 1 and 2 with
risks R, and R, obey R, < R, uniformly in the parameters when we average
over an ancillary V, but that the conditional risks, given V, satisfy R,(V) >
R (V) for some parameters and some values of V. If V occurs and is observed
and it happens to be a value for which R, (V) > R,(V), then rule 2 is better for
that V. It matters not at all that for most V, R,(V) < R4(V). Brown’s example
is less clear. We do not know for the observed V which R(V) is smaller,
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