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This can raise issues which are largely external to the ordinary statistical
model and deserve more attention from the scientific side of statistics. It seems
necessary in this development to use the physical context as a guide to the
choice of operating model. In such contexts the issue of marginal optimality is
not of interest: only the conditional calculations matter. Our statistician in
Section 4 who advertises the shorter confidence intervals is guilty of profes-
sional misconduct.

Recent directions in conditional inference have deemphasized the ‘‘princi-
ple”’ aspect of conditioning. One motivation for this is that conditioning can
provide a means to eliminate nuisance parameters and focus on the parameter
of interest. Another is that conditional distributions are often much easier to
calculate, which is especially useful in high-dimensional problems.
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Put briefly, Brown’s paradox is that an estimator can be conditionally
admissible given each value of an ancillary statistic, but inadmissible uncondi-
tionally. Brown is to be congratulated for his insight in pointing out the
conflict between frequentist criteria of good performance for point estimators
and widely held notions concerning ancillary statistics. Brown supports use of
unconditional frequentist measures to guard against ‘‘inconsistency’ (uncon-
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508 DISCUSSION

ditional inadmissibility) of conditionally based procedures. In contrast, R. A.
Fisher’s introduction of the concept of ancillarity and his concern with “recog-
nizable subsets” in statistical design (which led him to modify the Latin
square design) both arose from recognition that procedures which had good
unconditional properties could be unacceptable conditionally.

Although the inadmissibility results which Brown presents have important
practical consequences [for example, in Monte Carlo simulation; see Gleser
(1987a, b)], my discussion here will concentrate upon theoretical issues.

In Section 1, I give a result (Theorem 1) concerning inadmissibility of the
usual estimator of any scalar component of the mean vector of a multivariate
normal distribution when the covariance matrix of this distribution is random,
observable and ancillary. This is a specialization of the general context of
Theorem 2.2.1 of Brown, but a different dominating estimator is given and the
proof provides some insight that may be helpful. The context of Section 1 (and
Theorem 1) serves a background to my discussion in Section 2 of the philo-
sophical position taken by Brown. The main point made in Section 2 is that,
except for some very specialized applications, unconditional inadmissibility is
generally only of interest to a statistician seeking to do well in many similar
problems, but not to users of the inference (estimate) presented by the
statistician in any particular problem. Some attempts are also made to resolve
the ongoing dispute between frequentists and Bayesians.

1. Estimation with a random observable ancillary covariance ma-
trix. Let V be a random positive definite matrix and y be a random
p-dimensional column vector. Conditional on V, assume that y has a multivari-
ate normal distribution with mean vector u and covariance matrix ¢2V. Both
y and V are observable, while p is an unknown parameter. The positive scalar
o? can be known or unknown. The (marginal) distribution of V is assumed
not to depend on u (or on o2, if o2 is unknown). Thus, V is ancillary for

estimation of .

Let
_ (N _ (" (Vi Vi
y_(y2)’ M_(”'2)’ V_(VZI sz)’
where y,, u, and V;, are scalars.

THEOREM 1. Assume that E[tr(V)] < ». Define
C = {Vyy: E[WW'|V,,] exists and has rank > 3},
where W = V,,'V,,,. If P{V,, € C} > 0, then the usual estimator y, of u, is
inadmissible under squared error loss.

Proor. Let 1, be the indicator function of C. Consider an estimator of u,
of the form

(1) 8(y,V) =y — Wh(y,, Vo)1,
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where the choice of the (p — 1)-dimensional column vector A(y,, V,,) is yet to
be determined. The difference in risks between y, and 8(y, V) is

A=E(y, - p)" ~ E(3(3,V) — py)*
(2) = 2E[(J’1 = p)Wh(y,, V22)IC]
+ E[W'h(yz, Vao) h' (2, V22)ch] .

Take expected values on the right-hand side of (2) in the order E, E,
and note that

E[(y1 = #)lye, V] = W(yz — ps).
Consequently, if
(3) 8*(y2, Vo) = ¥2 — h(¥2, Vao) ¢,
it is easily seen that
A=E[(y; — pa) WW'(y;, — 1)}
= E[(8*(y2, Vaz) — po) WW'(8*(y3, Vao) — o)l
Conditional on V,,, € C, W is random and
Q=Q(Vy) = E[WW'IV22]

has rank greater than or equal to 3. Further, conditional on V,,, y, has a
multivariate normal distribution with mean vector wu, and covariance matrix
3, = 2V,,. Calculating the expected values on the right-hand side of (4) in the
order Ey E  yy,, we see that A is the expected value (over V,,) of the
difference in the risks of W'y, and W'6*(y,, V) conditional on V,,. Theorem
2.1.2 and the remarks in Section 4.1 of Brown’s paper now apply to suggest an
estimator 6*(y,, Va,), and thus the vector function h(y,, V,,), such that this
conditional risk difference is always positive for V,, € C. Since P{V,, € C} > 0,
this implies that A is positive, completing the proof of the theorem. O

(4)

ReEMARK 1. Brown indicates two distinct contexts in which his ancillarity
paradox arises: (1) When it is desired to estimate a randomly chosen linear
combination of the elements of the mean vector of a normal distribution (or
the parameters of a linear regression model) and (2) when estimation of a
mean vector (or regression parameters) is desired when the observed vector y
has a random observable covariance matrix (design matrix). The former
context arises naturally in prediction problems, but the latter context is more
directly related to the classic concept of ancillarity, in which the ancillary
statistic provides information about the accuracy with which the unknown
parameter can be estimated. Context 1 is treated by Brown’s Theorem 2.1.2,
but Brown does not directly treat context 2, preferring to give instead a more
general result (Theorem 2.2.1). Theorem 2.2.1 of Brown with

Q =ejel, e; =(1,0,...,0),

applies to the context of Theorem 1 given here. Brown’s result is more general,
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applying when p = 3, whereas because W is (p — 1) dimensional, Theorem 1
is applicable only when p > 4. On the other hand, Theorem 1 provides an
explicit and possibly useful estimator, while the domination results in Theo-
rem 2.2.1 suffer from the defects noted by Brown in his discussion. Note that,
interestingly enough, the proof of Theorem 1 makes use of the existence of a
dominating estimator in context 1 described above to provide a dominating
estimator in context 2.

ReEMARK 2. The conditions on V in Theorem 1 are satisfied, for example,
when V has a nonsingular Wishart distribution with degrees of freedom
v = p + 1. The condition E[tr(V)] < = is needed only to ensure that the risks
of y, and y, are finite.

ReEMARK 3. It is not hard to see that Theorem 1 can be used to provide an
alternative proof of Brown’s Theorem 3.2.2.

Conditional on V, y, is an admissible estimator of w;. The dominating
estimator

(y, V) =y, - W’(y2 - 3*(3’2,V22))

makes use of an estimator A(y,, Vyy) = y5 — 6*(y,, Vo) of ¥, — o to improve
accuracy. Loosely speaking, this requires that y, and y, are correlated suffi-
ciently often as V' varies so that information from y, — u, is useful, and also
requires that enough components of y, are correlated with y, that the bias in
¥o — 8*(y5, Vyy) for y, — pu, can be made small by Stein-type shrinkage.
Theorem 1 can be extended to cover estimation of any arbitrary linear
combination a’u of w. It is enough to consider cases where a'a = 1. Let T be
an orthogonal matrix with first row equal to a’ and make the transformation

y—=>Ty, wpn->Iu, VTV

to reduce to the problem treated by Theorem 1. The basic condition of
Theorem 1 stated in terms of the original matrix V is that

(5) E[(FZVFZ’)_1F2Vaa’VI‘2’(I‘2VI‘2’)_I‘I‘zVI‘z’]

exists and has rank greater than or equal to 3 with positive probability under
the marginal distribution of I,V T, where I'" = (a, I'y). Again, this condition is
satisfied by a nonsingular Wishart matrix V with degrees of freedom v > p + 1.

If V satisfies condition (5) for all a, or even only for a running over the
columns of the p-dimensional identity matrix I,, then as a corollary to
Theorem 1, we have the very strong result: There exists an estimator §(y,V) of
w that dominates y coordinatewise in risk under squared error loss. Recall,
however, that Theorem 1 can hold only when p > 4.

Theorem 1 can be extended to the general context of Brown’s Theorem
2.2.1. However, verification of this assertion is tangential to the purpose of
this discussion and thus will not be given.
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2. Conditional versus unconditional admissibility. Brown in his
Section 5 makes a distinction between point estimators on the one hand, and
hypothesis tests and confidence intervals on the other. In the latter types of
inference, the correctness of an accompanying stochastic claim of accuracy
(level of significance, probability of coverage) is said to be essential in deter-
mining the validity of the conclusion (inference). On the other hand, Brown
claims that stochastic measures of accuracy of point estimators are less crucial
for accepting the results of point estimation, and that no conditionally inter-
pretable stochastic claim is made of accuracy when a point estimator is
presented. Rather, the statistician is asked only to show that no uniformly
better estimator exists (admissibility) and that the estimator is also “reasona-
ble in the fact of whatever generally acceptable a priori evaluations can be
made about the parameter.”

In actuality, point estimators are frequently presented along with a stochas-
tic measure of accuracy. Brown, himself, mentions the use of confidence
intervals as such a measure of accuracy. Alternatively, the estimated standard
deviation or covariance matrix may be given. Those individuals who read the
statistician’s report will certainly use such measures to evaluate the validity of
the estimate. The above measures of accuracy do not directly reflect risk under
squared-error (or alternative loss functions). Recently, Lu and Berger (1989),
Johnstone (1987) and others have suggested ways to remedy that deficiency.

Further, a conditional stochastic claim is being made even if we accept
Brown’s position. Readers of the statistician’s report will certainly interpret
the statistician’s claim of admissibility as being conditional upon the accuracy
of the experiment used, and his estimates of risk as being similarly conditional.
Thus, in the context of Theorem 1, the statistician’s claims will be interpreted
as conditional on the value of V. If the observed value of V shows small
correlations between y; and the remaining coordinates of y, such readers may
question the use of 8(y, V). Since y, is conditionally (given V) admissible,
these readers may feel that use of y, is more valid than use of &(y, V).

The statistician will respond that this objection leads to inconsistency in
that y; is unconditionally dominated in risk by 8(y, V). However, such incon-
sistency is only from the statistician’s point of view. Whereas the statistician is
concerned with his or her own accuracy or risk over a ‘“‘stream’ of similar
problems in which V varies randomly (and may often show large correlations
between y,; and the other coordinates of y), the readers are only concerned
with the given experiment (and, if the readers are frequentists, repetitions of
the experiment under the same covariance matrix V). Thus, consistency on
the part of the statistician can lead to conflict with readers’ notions of
reasonableness.

REMARK 4. If V has a continuous distribution and 8(y, V') is uncondition-
ally admissible, one can change 8(y, V) at any value v of V without affecting
the unconditional risk (and thus unconditional admissibility) of the resulting
estimator (since P{V = v} = 0). Consequently, an unconditionally admissible
estimator can be very poor conditionally (when V = v). Brown covers this point
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by requiring that estimators be both conditionally and unconditionally admis-
sible.

Since so much of the literature on Stein estimation uses baseball averages
as examples, I cannot resist using the following example. A manager must
choose a pinch hitter in a crucial moment of a ball game. Of the available
players, player A has the highest batting average (.300, say) against all
pitchers, but hits only .260 against left-handed pitchers. Player B has the
highest available average (.310) against left-handed pitchers, but an overall
average of only .275. In the long run, against a random stream of right-handed
and left-handed pitchers, player A would be the manager’s uniformly best
choice. But if the opposing pitcher is left-handed, the manager would face
considerable criticism from fans if he used player A instead of player B. Here,
identify the type of opposing pitcher with V, the choice of player A with an
unconditionally admissible (indeed, best) inference procedure, choice of player
B with a conditionally reasonable procedure, the manager with the statistician
and the fans with readers of the statistician’s report. Although this example is
not one of estimation (or even inference), it does illustrate the conflict between
the conditional perspective of a statistician’s audience and the unconditional
perspective of the statistician.

For statistical inference, a resolution of this conflict (from Brown’s perspec-
tive) is possible. As Brown remarks, proper Bayes procedures are (except for
pathological cases) both conditionally and unconditionally admissible. Since
Brown’s stated criteria for an estimator are that it be conditionally and
unconditionally admissible and reasonable in the light of generally accepted
prior information about the parameter, I recommend that Brown adopt a
proper Bayes approach to estimation. Unfortunately, a generally acceptable
prior opinion about the parameter may not exist, so that the statistician’s
prior distribution may be criticized. One could advocate a robust Bayes ap-
proach, but (again as Brown notes) estimators constructed by such an ap-
proach may fail to be unconditionally admissible. One advantage of a Bayesian
approach is that the statistician’s prior opinion is available for inspection, not
hidden (as it so often is).

The difference between the conditional and unconditional perspectives on
inference is basic to the dispute between frequentists and Bayesians. Frequen-
tist measures of performance implicitly assume a stream of similar experi-
ments and inference problems, in which no single experiment is singled out for
particular attention. The Bayesian (and also likelihood) perspective concen-
trates on what can be learned from a single experiment taken from this
stream. Both perspectives have their own validity and applicability. Although
the frequentist perspective is clearly appropriate in automatic repetitions of a
certain type of inference problem (quality control, laboratory assay), the
Bayesian approach appears better suited to general scientific and practical
inquiry. In any case, these approaches address quite different issues. For this
reason, any apparent conflict between them is illusory.
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What both frequentists and Bayesians tend to overlook is the fact that data
(and data summaries) are put to many uses and viewed from many perspec-
tives (prior opinions) by a statistician’s audience. Concentration upon which
single procedure to use in analyzing data tends to neglect the diverse interests
of this audience. More attention needs to be paid to the design of the
experiment, The founders (Neyman, Pearson, Wald) of the modern frequentist
approach to inference were aware of this point, and discussed designs based on
minimax procedures as a way to satisfy all users of the data. Where prior
opinion is not highly variable (as assumed by the minimax approach), designs
constructed from a robust Bayesian perspective may be more efficient in
satisfying the needs and interests of a statistician’s audience. A step in this
direction has been made in hypothesis testing by my student Burt (1989), and
for estimation by DasGupta and Studden (1989).
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I am delighted for the opportunity to discuss this interesting paper by
Professor Brown. I have long admired his work both for its technical virtuosity
and for his thoughtful, philosophical discussions of the statistical approach he
advocates. I have often expressed the hope that frequentists would offer
Bayesians some interesting challenges, which Professor Brown does here. He
shows that the frequentist admissibility paradigm (FA) is not compatible with
the principle of ancillarity (AP) and suggests that the latter should be aban-
doned. AP is an intuitively compelling idea, a version of which is implied by the



