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The paper presents an exciting and rich mix of foundational issues concern-
ing conditional reasoning and methodological developments involving im-
proved estimation in multiple linear regression. My discussion will focus on
the foundational issues, though certain features of the improved estimators
will be used to illustrate some of the issues.

My first attempt at understanding the fundamental issue raised by the
paper was along the following lines (sticking with the criterion of ‘“‘admissibil-
ity”’ for preciseness): ,

Ancillarity Paradox—A procedure which is conditionally
admissible for each value of an ancillary statistic can be
unconditionally inadmissible.

As I thought about it, however, this did not seem to capture the true novelty of
the paper, because this ancillarity paradox has long been known, going back at
least as far as the Cox example concerning testing with two randomly differing
sample sizes. Brown notes that there is a difference between tests and estima-
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tion in regard to the role of reported accuracy, and hence views the estimation
examples as more telling, but the difference strikes me as being at most one of
degree. In the situation of Section 2.1, for instance, the conditional risk, given
o, of 6* = w'd* is certainly not irrelevant; if this were enormous for a
particular w, and w, were actually observed, the good unconditional perfor-
mance of 6* would hardly seem satisfying. (Brown does not argue otherwise,
but simply suggests that unconditional performance is clearly relevant in
estimation, perhaps less so in testing.) To focus on the true novelty of Brown’s
examples, consider the following estimation example which trivially demon-
strates the ancillarity paradox.

ExampLE. Observed are X ~ N(6,1) and (independently) Y ~ Bernoulli(3).
It is desired to estimate § under squared error loss. The estimator §(X,Y) =
YX is conditionally admissible given Y = 0 or Y = 1, but is globally inadmissi-
ble and is dominated by the Rao-Blackwellized *(X,Y) = 1X.

While this is an example of the ancillarity paradox in estimation, I would
lump it with the Cox example and differentiate it from Brown’s examples by
adding a phrase to the paradox:

Alternative Ancillarity Paradox—A procedure which is con-
ditionally admissible for each value of an ancillary statistic
can be unconditionally inadmissible, and it can be impossi-
ble to determine its inadequacy using conditional reasoning.

To understand the motivation for the last phrase above, observe that it is
possible to realize the inadequacy of 86(X,Y) =YX in the earlier example
using only conditional reasoning. One observes that, given Y = 0, (X, 0) = 0
is admissible because it is Bayes with respect to a point mass at zero, while,
given Y =1, 8(X,1) = X is admissible because it is generalized Bayes with
respect to a constant prior density (known to yield admissible estimators in
one-dimensional location problems). Since the implied prior distribution
changes with Y, one is immediately suspicious of 8(X, Y), either from Bayesian
reasoning or from the folklore metatheorem that any admissible rule must be
more or less Bayes with respect to a fixed prior. The Cox example exhibits the
same feature: Fixed a-level tests for differing sample sizes are Bayes with
respect to differing priors. In these examples, one can thus realize the inade-
quacy of the procedures without resorting to any frequentist calculations.

Brown’s examples are quite different and much more surprising. The
(generalized) prior yielding the standard procedure in his examples is the same
for all values of the ancillary statistic. Indeed, I know of no way to condition-
ally criticize these procedures. Only by resorting to unconditional frequentist
calculations can one realize their possible inadequacy. This strikes much
deeper than a mere criticism of the actually rather ad hoc practice of condition-
ing on an ancillary and performing a conditional frequentist analysis; it
suggests that solely conditional reasoning may sometimes be inadequate.
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I somewhat reluctantly agree with this conclusion, reluctantly because of
my support for the likelihood principle. One can remain an uncompromising
conditionalist only by strict adherence to the subjective (proper prior) Bayesian
paradigm or the more recent robust Bayesian version thereof [see Berger
(1985) for references]. Since I find it pragmatically necessary to sometimes
leave the subjective Bayesian paradigm—at least to allow improper priors and
even perhaps likelihood methods—1I accept the possible relevance of uncondi-
tional frequentist calculations.

I should add a practical qualification to this endorsement of a role for
unconditional frequentist analysis. One of the primary attractions of condi-
tional analysis is that it is often much easier than unconditional analysis,
allowing much more sophisticated modelling or utilization of prior informa-
tion. The study of dominating minimax estimators in Brown’s paper is a case
in point. Brown admits that it is far from clear how to choose among the
various possibilities, or even if any of the suggested estimators will ultimately
be judged suitable. My own view is that approaching the problem from the
unconditional side is far too difficult. Much easier is to approach it in a
conditional Bayesian fashion, utilizing priors that incorporate available infor-
mation about (a, 8). (In this regard, I found Brown’s explanations of certain
estimators in terms of Bayes or empirical Bayes motivations very interesting.)
The functional form chosen for the prior may be influenced by general
unconditional frequentist considerations (e.g., flat tails are desirable, though
not too flat), but one can often get by without actually doing a frequentist
computation.

I do not feel that one can operate in the other direction as easily. It is rare
for estimators developed solely as unconditional frequentist dominating esti-
mators to be of much use in practice. Basically, they are unlikely to ‘“shrink”
right. Also, in this regard, if one has no prior information about (a, 8) (even
very vague knowledge that, say, 8 is near zero), then there is no real practical
advantage to using alternatives to §,. If one has no idea where to shrink, it
would be a waste of effort to do so.

There is also, of course, the generic motivation for conditional development
of procedures based on a desire for good conditional behavior. An uncondition-
ally satisfactory procedure can be terrible conditionally on certain sets; an
example is (2.1.4) for x near zero. [Of course, the positive part version (2.1.7)
would partially correct this problem.] Developing the procedure conditionally
to assure conditional soundness and then checking its unconditional behavior
is usually much easier than the reverse.

From the conditional frequentist perspective there is also concern in using a
procedure developed from the unconditional side. For instance, in Section 2.1
where 6 = w'u is of interest, it is certainly relevant upon observing o to look
at the conditional risk given w. This conditional risk can be very unappealing;
for instance, it can be as large as |w|’p/4 for the estimator (2.1.4) when
p=p—2and 3 =Q=1I [cf. Efron and Morris (1972)], and can be much
larger in nonsymmetric problems. (Note that w'x has conditional risk, given w,
of only |w|2.) This should be disturbing to frequentists and would probably lead
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to use of limited translation versions of (2.1.4) [Efron and Morris (1972), Stein
(1981), Berger and Dey (1985)], which have much smaller maximum condi-
tional risks.

The above comments are not meant to imply that estimators developed
solely as unconditional dominating estimators are of no interest. Quite to the
contrary, they are often very helpful in guiding the type of development I
recommend. My view is simply that such unconditional estimators tend to be
mainly of theoretical interest, as opposed to being statistical methodology that
can be recommended in practice. I am sure, for instance, that Brown’s
estimators and his interesting discussion of the role of information about V
will be intently studied by those wanting to create conditionally (and uncondi-
tionally) satisfactory methodology for the multiple linear regression problem.

The following points summarize my comments:

1. Brown has convincingly demonstrated that, except for subjective proper
prior Bayesian analysis (single-prior or robust versions, chosen—not for-
mally—Dbut to reflect actual subjective beliefs), conditional reasoning is not
necessarily self-sufficient; unconditional inadmissibility can occur in ways
that are not conditionally recognizable.

2. While unconditional inadmissibility is useful as a check on conditional
reasoning, actual procedure development should be done in the conditional
arena; procedures developed solely as unconditional dominating procedures
can be very interesting and helpful theoretically, but are rarely practical
solutions.

3. The ancillarity paradox poses severe problems for frequentist theory. Condi-
tional evaluations are clearly important, but one cannot condition and then
simply apply usual frequentist criteria. A mix of good conditional and good
unconditional frequentist behavior is needed, but this opens up a Pandora’s
box of possibilities. I do not feel that a good mix can generally be found
within the frequentist domain. The conditional development of procedures
and conditional evaluation thereof is most naturally a Bayesian enterprise. I
see unconditional frequentist performance in a supporting role, possibly
guiding certain aspects of the conditional development.
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